首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently described a new route for the synthesis of phosphatidylethanolamine (PtdEtn) from exogenous lyso-PtdEtn, which we have termed the exogenous lysolipid metabolism (ELM) pathway. The ELM pathway for lyso-PtdEtn requires the action of plasma membrane P-type ATPases Dnf1p and Dnf2p and their requisite beta-subunit, Lem3p, for the active uptake of lyso-PtdEtn. In addition, the acyl-CoA-dependent acyltransferase, Ale1p, mediates the acylation of the imported lysolipid to form PtdEtn. We now report that these components of the lyso-PtdEtn ELM pathway are also active with lyso-1-acyl-2-hydroxyl-sn-glycero-3-phosphocholine (PtdCho) as a substrate. Lyso-PtdCho supports the growth of a choline auxotrophic pem1Delta pem2Delta strain. Uptake of radiolabeled lyso-PtdCho was impaired by the dnf2Delta and lem3Delta mutations. Introduction of a lem3Delta mutation into a pem1Delta pem2Delta background impaired the ability of the resulting strain to grow with lyso-PtdCho as the sole precursor of PtdCho. After import of lyso-PtdCho, the recently characterized lyso-PtdEtn acyltransferase, Ale1p, functioned as the sole lyso-PtdCho acyltransferase in yeast. A pem1Delta pem2Delta ale1Delta strain grew with lyso-PtdCho as a substrate but showed a profound reduction in PtdCho content when lyso-PtdCho was the only precursor of PtdCho. Ale1p acylates lyso-PtdCho with a preference for monounsaturated acyl-CoA species, and the specific LPCAT activity of Ale1p in yeast membranes is >50-fold higher than the basal rate of de novo aminoglycerophospholipid biosynthesis from phosphatidylserine synthase activity. In addition to lyso-PtdCho, lyso-PtdEtn, and lyso-phosphatidic acid, Ale1p was also active with lysophosphatidylserine, lysophosphatidylglycerol, and lysophosphatidylinositol as substrates. These results establish a new pathway for the net synthesis of PtdCho in yeast and provide new tools for the study of PtdCho synthesis, transport, and remodeling.  相似文献   

2.
In the yeast, three biosynthetic pathways lead to the formation of phosphatidylethanolamine (PtdEtn): (i) decarboxylation of phosphatidylserine (PtdSer) by phosphatidylserine decarboxylase 1 (Psd1p) in mitochondria; (ii) decarboxylation of PtdSer by Psd2p in a Golgi/vacuolar compartment; and (iii) the CDP-ethanolamine (CDP-Etn) branch of the Kennedy pathway. The major phospholipid of the yeast, phosphatidylcholine (PtdCho), is formed either by methylation of PtdEtn or via the CDP-choline branch of the Kennedy pathway. To study the contribution of these pathways to the supply of PtdEtn and PtdCho to mitochondrial membranes, labeling experiments in vivo with [(3)H]serine and [(14)C]ethanolamine, or with [(3)H]serine and [(14)C]choline, respectively, and subsequent cell fractionation were performed with psd1Delta and psd2Delta mutants. As shown by comparison of the labeling patterns of the different strains, the major source of cellular and mitochondrial PtdEtn is Psd1p. PtdEtn formed by Psd2p or the CDP-Etn pathway, however, can be imported into mitochondria, although with moderate efficiency. In contrast to mitochondria, microsomal PtdEtn is mainly derived from the CDP-Etn pathway. PtdEtn formed by Psd2p is the preferred substrate for PtdCho synthesis. PtdCho derived from the different pathways appears to be supplied to subcellular membranes from a single PtdCho pool. Thus, the different pathways of PtdEtn biosynthesis play different roles in the assembly of PtdEtn into cellular membranes.  相似文献   

3.
We recently demonstrated that yeast actively import lysophosphatidylethanolamine (lyso-PtdEtn) through the action of plasma membrane P-type ATPases and rapidly acylate it to form PtdEtn. The predominant lyso-PtdEtn acyltransferase (LPEAT) activity present in cellular extracts is acyl-CoA dependent, but the identity of the gene encoding this activity was unknown. We now demonstrate that a previously uncharacterized open reading frame, YOR175C, encodes the major acyl-CoA-dependent LPEAT activity in yeast and henceforth refer to it as ALE1 (acyltransferase for lyso-PtdEtn). Ale1p is an integral membrane protein and is highly enriched in the mitochondria-associated endoplasmic reticulum membrane. It is a member of the membrane-bound O-acyltransferase family and possesses a dibasic motif at its C terminus that is likely responsible for Golgi retrieval and retention in the endoplasmic reticulum. An ale1Delta strain retains only trace amounts of acyl-CoA-dependent LPEAT activity, and strains lacking the capacity for PtdEtn synthesis via the phosphatidylserine decarboxylase and Kennedy pathways show a stringent requirement for both exogenous lyso-PtdEtn and a functional ALE1 gene for viability. Ale1p catalytic activity has a pH optimum between pH 7 and 7.5 and a strong preference for unsaturated acyl-CoA substrates.  相似文献   

4.
In yeast, nascent phosphatidylserine (PtdSer) can be transported to the mitochondria and Golgi/vacuole for decarboxylation to synthesize phosphatidylethanolamine (PtdEtn). In strains with a psd1Delta allele for the mitochondrial PtdSer decarboxylase, the conversion of nascent PtdSer to PtdEtn can serve as an indicator of lipid transport to the locus of PtdSer decarboxylase 2 (Psd2p) in the Golgi/vacuole. We have followed the metabolism of [(3)H]serine into PtdSer and PtdEtn to study lipid transport in permeabilized psd1Delta yeast. The permeabilized cells synthesize (3)H-PtdSer and, after a 20-min lag, decarboxylate it to form [(3)H]PtdEtn. Formation of [(3)H]PtdEtn is linear between 20 and 100 min of incubation and does not require ongoing PtdSer synthesis. PtdSer transport can be resolved into a two-component system using washed, permeabilized psd1Delta cells as donors and membranes isolated by ultracentrifugation as acceptors. With this system, the transport-dependent decarboxylation of nascent PtdSer is dependent upon the concentration of acceptor membranes, requires Mn(2+) but not nucleotides, and is inhibited by EDTA. High speed membranes isolated from a previously identified PtdSer transport mutant, pstB2, contain normal Psd2p activity but fail to reconstitute PtdSer transport and decarboxylation. Reconstitution with permutations of wild type and pstB2Delta donors and acceptors identifies the site of the mutant defect as the acceptor side of the transport reaction.  相似文献   

5.
In the yeast Saccharomyces cerevisiae, three pathways lead to the formation of cellular phosphatidylethanolamine (PtdEtn), namely the mitochondrial conversion of phosphatidylserine (PtdSer) to PtdEtn catalyzed by phosphatidylserine decarboxylase 1 (Psd1p), the equivalent reaction catalyzed by phosphatidylserine decarboxylase 2 (Psd2p) in the Golgi, and the CDP-ethanolamine branch of the so-called Kennedy pathway which is located to the microsomal fraction. To investigate the contributions of these three pathways to the cellular pattern of PtdEtn species (fatty acid composition) we subjected lipids of wild-type and yeast mutant strains with distinct defects in the respective pathways to mass spectrometric analysis. We also analyzed species of PtdSer and phosphatidylcholine (PtdCho) of these strains because formation of the three aminoglycerophospholipids is linked through their biosynthetic route. We demonstrate that all three pathways involved in PtdEtn synthesis exhibit a preference for the formation of C34:2 and C32:2 species resulting in a high degree of unsaturation in total cellular PtdEtn. In PtdSer, the ratio of unsaturated to saturated fatty acids is much lower than in PtdEtn, suggesting a high species selectivity of PtdSer decarboxylases. Finally, PtdCho is characterized by its higher ratio of C16 to C18 fatty acids compared to PtdSer and PtdEtn. In contrast to biosynthetic steps, import of all three aminoglycerophospholipids into mitochondria of wild-type and mutant cells is not highly specific with respect to species transported. Thus, the species pattern of aminoglycerophospholipids in mitochondria is mainly the result of enzyme specificities, but not of translocation processes involved. Our results support a model that suggests equilibrium transport of aminoglycerophospholipids between mitochondria and microsomes based on membrane contact between the two compartments.  相似文献   

6.
Two yeast enzymes, Psd1p and Psd2p, catalyze the decarboxylation of phosphatidylserine to produce phosphatidylethanolamine (PtdEtn). Mitochondrial Psd1p provides approximately 90% of total cellular phosphatidylserine decarboxylase activity. When the PSD1 gene is deleted, the resultant strain (psd1Delta) grows normally at 30 degrees C in glucose and in the absence of exogenous choline or ethanolamine. However, at elevated temperature (37 degrees C) or on the nonfermentable carbon source lactate, the growth of psd1Delta strains is minimal without ethanolamine supplementation. The reduced growth and viability correlate with a PtdEtn content below 4% of total phospholipid. These results suggest that there is a critical level of PtdEtn required to support growth. This theory is supported by growth data revealing that a psd1Delta psd2Delta dpl1Delta strain can only grow in the presence of ethanolamine. In contrast, a psd1Delta psd2Delta strain, which makes low levels of PtdEtn from sphingolipid breakdown, can be rescued by ethanolamine, choline, or the ethanolamine analogue propanolamine. psd1Delta psd2Delta cells grown in 2 mm propanolamine accumulate a novel lipid, which was determined by mass spectrometry to be phosphatidylpropanolamine (PtdPrn). PtdPrn can comprise up to 40% of the total phospholipid content in supplemented cells at the expense of phosphatidylcholine and PtdEtn. The absolute level of PtdEtn required for growth when PtdPrn is present appears to be 1% of the total phospholipid content. The essential function of the PtdEtn in the presence of propanolamine does not appear to be the formation of hexagonal phase lipid, insofar as PtdPrn readily forms hexagonal phase structures detectable by (31)P NMR.  相似文献   

7.
The majority of mitochondrial phosphatidylethanolamine (PtdEtn), a phospholipid essential for aerobic growth of yeast cells, is synthesized by phosphatidylserine decarboxylase 1 (Psd1p) in the inner mitochondrial membrane (IMM). To identify components that become essential when the level of mitochondrial PtdEtn is decreased, we screened for mutants that are synthetically lethal with a temperature-sensitive (ts) allele of PSD1. This screen unveiled mutations in PHB1 and PHB2 encoding the two subunits of the prohibitin complex, which is located to the IMM and required for the stability of mitochondrially encoded proteins. Deletion of PHB1 and PHB2 resulted in an increase of mitochondrial PtdEtn at 30 degrees C. On glucose media, phb1Delta psd1Delta and phb2Delta psd1Delta double mutants were rescued only for a limited number of generations by exogenous ethanolamine, indicating that a decrease of the PtdEtn level is detrimental for prohibitin mutants. Similar to phb mutants, deletion of PSD1 destabilizes polypeptides encoded by the mitochondrial genome. In a phb1Delta phb2Delta psd1(ts) strain the destabilizing effect is dramatically enhanced. In addition, the mitochondrial genome is lost in this triple mutant, and nuclear-encoded proteins of the IMM are assembled at a very low rate. At the nonpermissive temperature mitochondria of phb1Delta phb2Delta psd1(ts) were fragmented and aggregated. In conclusion, destabilizing effects triggered by low levels of mitochondrial PtdEtn seem to account for synthetic lethality of psd1Delta with phb mutants.  相似文献   

8.
The aminoglycerophospholipids of eukaryotic cells, phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho), can be synthesized by multiple pathways. The PtdSer pathway encompasses the synthesis of PtdSer, its decarboxylation to PtdEtn and subsequent methylation reactions to form PtdCho. The Kennedy pathways consist of the synthesis of PtdEtn and PtdCho from Etn and Cho precursors via CDP-Etn and CDP-Cho intermediates. The reactions along the PtdSer pathway are spatially segregated with PtdSer synthesis occurring in the endoplasmic reticulum or mitochondria-associated membrane (MAM), PtdEtn formation occurring in the mitochondria and Golgi/vacuole compartments and PtdCho formation occurring in the endoplasmic reticulum or MAM. The organelle-specific metabolism of the different lipids in the PtdSer pathway has provided a convenient biochemical means for defining events in the interorganelle transport of the aminoglycerophospholipids in intact cells, isolated organelles and permeabilized cells. Studies with both mammalian cells and yeast demonstrate many significant similarities in lipid transport processes between the two systems. Genetic experiments in yeast now provide the tools to create new strains with mutations along the PtdSer pathway that can be conditionally rescued by the Kennedy pathway reactions. The genetic studies in yeast indicate that it is now possible to begin to define genes that participate in the interorganelle transport of the aminoglycerophospholipids.  相似文献   

9.
Three different pathways lead to the synthesis of phosphatidylethanolamine (PtdEtn) in yeast, one of which is localized to the inner mitochondrial membrane. To study the contribution of each of these pathways, we constructed a series of deletion mutants in which different combinations of the pathways are blocked. Analysis of their growth phenotypes revealed that a minimal level of PtdEtn is essential for growth. On fermentable carbon sources such as glucose, endogenous ethanolaminephosphate provided by sphingolipid catabolism is sufficient to allow synthesis of the essential amount of PtdEtn through the cytidyldiphosphate (CDP)-ethanolamine pathway. On nonfermentable carbon sources, however, a higher level of PtdEtn is required for growth, and the amounts of PtdEtn produced through the CDP-ethanolamine pathway and by extramitochondrial phosphatidylserine decarboxylase 2 are not sufficient to maintain growth unless the action of the former pathway is enhanced by supplementing the growth medium with ethanolamine. Thus, in the absence of such supplementation, production of PtdEtn by mitochondrial phosphatidylserine decarboxylase 1 becomes essential. In psd1Delta strains or cho1Delta strains (defective in phosphatidylserine synthesis), which contain decreased amounts of PtdEtn, the growth rate on nonfermentable carbon sources correlates with the content of PtdEtn in mitochondria, suggesting that import of PtdEtn into this organelle becomes growth limiting. Although morphological and biochemical analysis revealed no obvious defects of PtdEtn-depleted mitochondria, the mutants exhibited an enhanced formation of respiration-deficient cells. Synthesis of glycosylphosphatidylinositol-anchored proteins is also impaired in PtdEtn-depleted cells, as demonstrated by delayed maturation of Gas1p. Carboxypeptidase Y and invertase, on the other hand, were processed with wild-type kinetics. Thus, PtdEtn depletion does not affect protein secretion in general, suggesting that high levels of nonbilayer-forming lipids such as PtdEtn are not essential for membrane vesicle fusion processes in vivo.  相似文献   

10.
The transbilayer movement of phospholipids plays an essential role in establishing and maintaining the asymmetric distribution of lipids in biological membranes. The P4-ATPase family has been implicated as the major transporters of the aminoglycerophospholipids in both surface and endomembrane systems. Historically, fluorescent lipid analogs have been used to monitor the lipid transport activity of the P4-ATPases. Recent evidence now demonstrates that lyso-phosphatidylethanolamine (lyso-PtdEtn) and lyso-phosphatidylcholine (lyso-PtdCho) are bona fide biological substrates transported by the yeast plasma membrane ATPases, Dnf1p and Dnf2p, in consort with a second protein Lem3p. Subsequent to transport, the lysophospholipids are acylated by the enzyme Ale1p to produce PtdEtn and PtdCho. The transport of the lysophospholipids occurs at rates sufficient to support all the PtdEtn and PtdCho synthesis required for rapid cell growth. The lysophospholipid transporters also utilize the anti-neoplastic and anti-parasitic ether lipid substrates related to edelfosine. The identification of biological substrates for the plasma membrane ATPases coupled with the power of yeast genetics now provides new tools to dissect the structure and function of the aminoglycerophospholipid transporters.  相似文献   

11.
Phosphatidylserine decarboxylase 2 (Psd2p) is currently being used to study lipid trafficking processes in intact and permeabilized yeast cells. The Psd2p contains a C2 homology domain and a putative Golgi retention/localization (GR) domain. C2 domains play important functions in membrane binding and docking reactions involving phospholipids and proteins. We constructed a C2 domain deletion variant (C2Delta) and a GR deletion variant (GRDelta) of Psd2p and examined their effects on in vivo function and catalysis. Immunoblotting confirmed that the predicted immature and mature forms of Psd2(C2Delta)p, Psd2(GRDelta)p, and wild type Psd2p were produced in vivo and that the proteins localized normally. Enzymology revealed that the Psd2(C2Delta)p and Psd2(GRDelta)p were catalytically active and could readily be expressed at levels 10-fold higher than endogenous Psd2p. Both Psd2p and Psd2(GRDelta)p expression complemented the growth defect of psd1Deltapsd2Delta strains and resulted in normal aminoglycerophospholipid metabolism. In contrast, the Psd2(C2Delta)p failed to complement psd1Deltapsd2Delta strains, and [(3)H]serine labeling revealed a severe defect in the formation of PtdEtn in both intact and permeabilized cells, indicative of disruption of lipid trafficking. These findings identify an essential, non-catalytic function of the C2 domain of Psd2p and raise the possibility that it plays a direct role in membrane docking and/or PtdSer transport to the enzyme.  相似文献   

12.
Vps4p and Vps36p of Saccharomyces cerevisiae are involved in the transport of proteins to the vacuole via the carboxypeptidase Y pathway. We found that deletion of VPS4 and VPS36 caused impaired maturation of the vacuolar proaminopeptidase I (pAPI) via autophagy or the cytosol to vacuole targeting pathway. Supplementation with ethanolamine rescued this defect, leading to an increase of the cellular amount of phosphatidylethanolamine (PtdEtn), an enhanced level of the PtdEtn-binding autophagy protein Atg8p and a balanced rate of autophagy. We also discovered that maturation of pAPI was generally affected by PtdEtn depletion in a psd1Delta psd2Delta mutant due to reduced recruitment of Atg8p to the preautophagosomal structure. Ethanolamine supplementation provided the necessary amounts of PtdEtn for complete maturation of pAPI. Since the expression level of Atg8p was not compromised in the psd1Delta psd2Delta strain, we concluded that the amount of available PtdEtn was limiting. Thus, PtdEtn appears to be a limiting factor for the balance of the carboxypeptidase Y pathway and autophagy/the cytosol to vacuole targeting pathway in the yeast.  相似文献   

13.
The aminoglycerophospholipids of eukaryotic cells, phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho), can be synthesized by multiple pathways. The PtdSer pathway encompasses the synthesis of PtdSer, its decarboxylation to PtdEtn and subsequent methylation reactions to form PtdCho. The Kennedy pathways consist of the synthesis of PtdEtn and PtdCho from Etn and Cho precursors via CDP-Etn and CDP-Cho intermediates. The reactions along the PtdSer pathway are spatially segregated with PtdSer synthesis occurring in the endoplasmic reticulum or mitochondria-associated membrane (MAM), PtdEtn formation occurring in the mitochondria and Golgi/vacuole compartments and PtdCho formation occurring in the endoplasmic reticulum or MAM. The organelle-specific metabolism of the different lipids in the PtdSer pathway has provided a convenient biochemical means for defining events in the interorganelle transport of the aminoglycerophospholipids in intact cells, isolated organelles and permeabilized cells. Studies with both mammalian cells and yeast demonstrate many significant similarities in lipid transport processes between the two systems. Genetic experiments in yeast now provide the tools to create new strains with mutations along the PtdSer pathway that can be conditionally rescued by the Kennedy pathway reactions. The genetic studies in yeast indicate that it is now possible to begin to define genes that participate in the interorganelle transport of the aminoglycerophospholipids.  相似文献   

14.
In eukaryotes, phosphatidylserine (PtdSer) can serve as a precursor of phosphatidylethanolamine (PtdEtn) and phosphatidylcholine (PtdCho), which are the major cellular phospholipids. PtdSer synthesis originates in the endoplasmic reticulum (ER) and its subdomain named the mitochondria-associated membrane (MAM). PtdSer is transported to the mitochondria in mammalian cells and yeast, and decarboxylated by PtdSer decarboxylase 1 (Psd1p) to form PtdEtn. A second decarboxylase, Psd2p, is also found in yeast in the Golgi-vacuole. PtdEtn produced by Psd1p and Psd2p can be transported to the ER, where it is methylated to form PtdCho. Organelle-specific metabolism of the aminoglycerophospholipids is a powerful tool for experimentally following lipid traffic that is now enabling identification of new proteins involved in the regulation of this process. Genetic and biochemical experiments demonstrate that transport of PtdSer between the MAM and mitochondria is regulated by protein ubiquitination, which affects events at both membranes. Similar analyses of PtdSer transport to the locus of Psd2p now indicate that a membrane-bound phosphatidylinositol transfer protein and the C2 domain of Psd2p are both required on the acceptor membrane for efficient transport of PtdSer. Collectively, these recent findings indicate that novel multiprotein assemblies on both donor and acceptor membranes participate in interorganelle phospholipid transport.  相似文献   

15.
In mammalian cells, phosphatidylethanolamine (PtdEtn) is mainly synthesized via the CDP-ethanolamine (Kennedy) pathway and by decarboxylation of phosphatidylserine (PtdSer). However, the extent to which these two pathways contribute to overall PtdEtn synthesis both quantitatively and qualitatively is still not clear. To assess their contributions, PtdEtn species synthesized by the two routes were labeled with pathway-specific stable isotope precursors, d(3)-serine and d(4)-ethanolamine, and analyzed by high performance liquid chromatography-mass spectrometry. The major conclusions from this study are that (i) in both McA-RH7777 and Chinese hamster ovary K1 cells, the CDP-ethanolamine pathway was favored over PtdSer decarboxylation, and (ii) both pathways for PtdEtn synthesis are able to produce all diacyl-PtdEtn species, but most of these species were preferentially made by one pathway. For example, the CDP-ethanolamine pathway preferentially synthesized phospholipids with mono- or di-unsaturated fatty acids on the sn-2 position (e.g. (16:0-18:2)PtdEtn and (18:1-18:2)PtdEtn), whereas PtdSer decarboxylation generated species with mainly polyunsaturated fatty acids on the sn-2 position (e.g. (18:0-20:4)PtdEtn and (18:0-20:5)PtdEtn in McArdle and (18: 0-20:4)PtdEtn and (18:0-22:6)PtdEtn in Chinese hamster ovary K1 cells). (iii) The main PtdEtn species newly synthesized from the Kennedy pathway in the microsomal fraction appeared to equilibrate rapidly between the endoplasmic reticulum and mitochondria. (iv) Newly synthesized PtdEtn species preferably formed in the mitochondria, which is at least in part due to the substrate specificity of the phosphatidylserine decarboxylase, seemed to be retained in this organelle. Our data suggest a potentially essential role of the PtdSer decarboxylation pathway in mitochondrial functioning.  相似文献   

16.
A genetic screen for ethanolamine auxotrophs has identified a novel mutant allele of the morphogenesis checkpoint dependent (MCD)-4 gene, designated mcd4-P301L. In the presence of a null allele for the phosphatidylserine (PtdSer) decarboxylase 1 gene (psd1 Delta), the mcd4-P301L mutation confers temperature sensitivity for growth on minimal medium. This growth defect is reversed by either ethanolamine or choline supplementation. Incubation of mutant cells with [(3)H]serine followed by analysis of the aminoglycerophospholipids demonstrated a 60% decrease in phosphatidylethanolamine (PtdEtn) formation compared to parental cells. Chemical analysis of phospholipid content after culture under non-permissive conditions also demonstrated a 60% decrease in the PtdEtn pool compared to the parental strain. Although the morphogenesis checkpoint dependent (MCD)-4 gene and its homologues have been shown to play a role in glycosylphosphatidylinositol (GPI) anchor synthesis, the mcd4-P301L strain displayed normal incorporation of [(3)H]inositol into both proteins and lipids. Thus, a defect in GPI anchor synthesis does not explain either the ethanolamine auxotrophy or biochemical phenotype of this mutant. We also examined the growth characteristics and PtdSer metabolism of a previously described mcd4-174 mutant strain, with defects in GPI anchor synthesis, protein modification and cell wall maintenance. The mcd4-174, psd1 Delta strain is a temperature sensitive ethanolamine auxotroph that requires osmotic support for growth, and displays normal PtdEtn formation compared to parental cells. These results reveal important genetic interactions between PSD1 and MCD4 genes, and provide evidence that Mcd4p can modulate aminoglycerophospholipid metabolism, in a way independent of its role in GPI anchor synthesis.  相似文献   

17.
A new yeast strain, designated pstB2, that is defective in the conversion of nascent phosphatidylserine (PtdSer) to phosphatidylethanolamine (PtdEtn) by PtdSer decarboxylase 2, has been isolated. The pstB2 strain requires ethanolamine for growth. Incubation of cells with [(3)H]serine followed by analysis of the aminoglycerophospholipids demonstrates a 50% increase in the labeling of PtdSer and a 72% decrease in PtdEtn formation in the mutant relative to the parental strain. The PSTB2 gene was isolated by complementation, and it restores ethanolamine prototrophy and corrects the defective lipid metabolism of the pstB2 strain. The PSTB2 gene is allelic to the pleiotropic drug resistance gene, PDR17, and is homologous to SEC14, which encodes a phosphatidylinositol/phosphatidylcholine transfer protein. The protein, PstB2p, displays phosphatidylinositol but not PtdSer transfer activity, and its overexpression causes suppression of sec14 mutants. However, overexpression of the SEC14 gene fails to suppress the conditional lethality of pstB2 strains. The transport-dependent metabolism of PtdSer to PtdEtn occurs in permeabilized wild type yeast but is dramatically reduced in permeabilized pstB2 strains. Fractionation of permeabilized cells demonstrates that the pstB2 strain accumulates nascent PtdSer in the Golgi apparatus and a novel light membrane fraction, consistent with a defect in lipid transport processes that control substrate access to PtdSer decarboxylase 2.  相似文献   

18.
Eukaryotic plasma membranes generally display asymmetric lipid distributions with the aminophospholipids concentrated in the cytosolic leaflet. This arrangement is maintained by aminophospholipid translocases (APLTs) that use ATP hydrolysis to flip phosphatidylserine (PS) and phosphatidylethanolamine (PE) from the external to the cytosolic leaflet. The identity of APLTs has not been established, but prime candidates are members of the P4 subfamily of P-type ATPases. Removal of P4 ATPases Dnf1p and Dnf2p from budding yeast abolishes inward translocation of 6-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)aminocaproyl] (NBD)-labeled PS, PE, and phosphatidylcholine (PC) across the plasma membrane and causes cell surface exposure of endogenous PE. Here, we show that yeast post-Golgi secretory vesicles (SVs) contain a translocase activity that flips NBD-PS, NBD-PE, and NBD-PC to the cytosolic leaflet. This activity is independent of Dnf1p and Dnf2p but requires two other P4 ATPases, Drs2p and Dnf3p, that reside primarily in the trans-Golgi network. Moreover, SVs have an asymmetric PE arrangement that is lost upon removal of Drs2p and Dnf3p. Our results indicate that aminophospholipid asymmetry is created when membrane flows through the Golgi and that P4-ATPases are essential for this process.  相似文献   

19.
Lem3p-Dnf1p is a putative aminophospholipid translocase (APLT) complex that is localized to the plasma membrane; Lem3p is required for Dnf1p localization to the plasma membrane. We have identified lem3 mutations, which did not affect formation or localization of the Lem3p-Dnf1p complex, but caused a synthetic growth defect with the null mutation of CDC50, a structurally and functionally redundant homologue of LEM3. Interestingly, these lem3 mutants exhibited nearly normal levels of NBD-labeled phospholipid internalization across the plasma membrane, suggesting that Lem3p may have other functions in addition to regulation of the putative APLT activity of Dnf1p at the plasma membrane. Similarly, deletion of the COOH-terminal cytoplasmic region of Dnf1p affected neither the localization nor the APLT activity of Dnf1p at the plasma membrane, but caused a growth defect in the cdc50Delta background. Our results suggest that the Lem3p-Dnf1p complex may play a role distinct from its plasma membrane APLT activity when it substitutes for the Cdc50p-Drs2p complex, its redundant partner in the endosomal/trans-Golgi network compartments.  相似文献   

20.
Over the past two decades, most of the genes specifying lipid synthesis and metabolism in yeast have been identified and characterized. Several of these biosynthetic genes and their encoded enzymes have provided valuable tools for the genetic and biochemical dissection of interorganelle lipid transport processes in yeast. One such pathway involves the synthesis of phosphatidylserine (PtdSer) in the endoplasmic reticulum (ER), and its non‐vesicular transport to the site of phosphatidylserine decarboxylase2 (Psd2p) in membranes of the Golgi and endosomal sorting system. In this review, we summarize the identification and characterization of the yeast phosphatidylserine decarboxylases, and examine their role in studies of the transport‐dependent pathways of de novo synthesis of phosphatidylethanolamine (PtdEtn). The emerging picture of the Psd2p‐specific transport pathway is one in which the enzyme and its non‐catalytic N‐terminal domains act as a hub to nucleate the assembly of a multiprotein complex, which facilitates PtdSer transport at membrane contact sites between the ER and Golgi/endosome membranes. After transport to the catalytic site of Psd2p, PtdSer is decarboxylated to form PtdEtn, which is disseminated throughout the cell to support the structural and functional needs of multiple membranes.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号