首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K.M. Petty  J.B. Jackson 《BBA》1979,547(3):474-483
ATP synthesis was measured after chromatophores from Rhodopseudomonas capsulata had been subjected to illumination by single turnover flashes fired at variable frequencies. Three processes were examined, which under different conditions can limit the net yield of ATP.(1) A process with an apparent relaxation time of 10–20 ms. This reaction probably limits the rate of ATP synthesis in continuous illumination. It has a similar time dependence to the stimulation of the carotenoid shift decay by ADP after a single flash.(2) An active state of the ATPase only persists when the chromatophores are excited more often than once in 10 s. This state decays with similar kinetics to the entire carotenoid shift decay. Full activation is achieved after two flashes.(1) and (2) are not significantly affected by concentrations of antimycin A sufficient to block electron flow through the cytochrome bc2 oxidoreductase and abolish phase III in the generation of the carotenoid shift.(3) In the presence of antimycin A, after the third, fourth and subsequent flashes ATP synthesis is limited by the quantity of reducing equivalents transported through the reaction centre rather than by the level of the electrochemical proton gradient.  相似文献   

2.
ATP synthesis and the acceleration of the decay of the carotenoid absorption band shift after single flash excitation of Rhodopseudomonas capsulata chromatophores were compared. The two processes behave similarly with respect to: (1) ADP and Pi concentration; (2) inhibition by efrapeptin and venturicidin, and (3) inhibition by valinomycin/K+ and by ionophores. Taken together with earlier evidence for the electrochromic nature of the carotenoid band shift the data support the contention that positive charge moves outwards across the chromatophore membrane during ATP synthesis and justify the method for determination of the H+/ATP ratio (Petty, K.M. and Jackson, J.B. (1979) FEBS Lett. 97, 367-372). The ability of nucleotide diphosphates in the presence of Pi and Mg2+ to give rise to the acceleration of the carotenoid shift decay closely correlates with the rate of phosphorylation of the nucleotides in steady-state light. Nucleotide triphosphates enhance the decay in parallel with their rate of hydrolysis. Adenylyl imidodiphosphate is itself without effect on the decay of the carotenoid shift and it does not prevent the ADP-induced acceleration. The analogue does prevent the ATP effect but only after repeated flashes.  相似文献   

3.
1. ATP synthesis (monitored by luciferin-luciferase) can be elicited by a single turnover flash of saturating intensity in chromatophores from Rhodopseudomonas capsulata, Kb1. The ATP yield from the first to the fourth turnover is strongly influenced by the phosphate potential: at high phosphate potential (?11.5 kcal/mol) no ATP is formed in the first three turnovers while at lower phosphate potential (?8.2 kcal/mol) the yield in the first flash is already one half of the maximum, which is reached after 2–3 turnovers.2. The response to ionophores indicates that the driving force for ATP synthesis in the first 20 turnovers is mainly given by a membrane potential. The amplitude of the carotenoid band shift shows that during a train of flashes an increasing ΔΨ is built up, which reaches a stationary level after a few turnovers; at high phosphate potential, therefore, more turnovers of the same photosynthetic unit are required to overcome an energetic threshold.3. After several (six to seven) flashes the ATP yield becomes constant, independently from the phosphate potential; the yield varies, however, as a function of dark time (td) between flashes, with an optimum for td = 160–320 ms.4. The decay kinetics of the high energy state generated by a long (125 ms) flash have been studied directly measuring the ATP yield produced in post-illumination by one single turnover flash, under conditions of phosphate potential (?10 kcal/mol), which will not allow ATP formation by one single turnover. The high energy state decays within 20 s after the illumination. The decay rate is strongly accelerated by 10?8 M valinomycin.5. Under all the experimental conditions described, the amplitude of the carotenoid signal correlates univocally with the ATP yield per flash, demonstrating that this signal monitores accurately an energetic state of the membrane directly involved in ATP synthesis.6. Although values of the carotenoid signal much larger than the minimal threshold are present, relax slowly, and contribute to the energy input for phosphorylation, no ATP is formed unless electron flow is induced by a single turnover flash.7. The conclusions drawn are independent from the assumption that a ΔΨ between bulk phases is evaluable from the carotenoid signal.  相似文献   

4.
K.M. Petty  J.B. Jackson 《BBA》1979,547(3):463-473
ATP synthesis and the acceleration of the decay of the carotenoid absorption band shift after single flash excitation of Rhodopseudomonas capsulata chromatophores were compared. The two processes behave similarly with respect to: (1) ADP and Pi concentration; (2) inhibition by efrapeptin and venturicidin, and (3) inhibition by valinomycin/K+ and by ionophores.Taken together with earlier evidence for the electrochromic nature of the carotenoid band shift the data support the contention that positive charge moves outwards across the chromatophore membrane during ATP synthesis and justify the method for determination of the H+/ATP ratio (Petty, K.M. and Jackson, J.B. (1979) FEBS Lett. 97, 367–372).The ability of nucleotide diphosphates in the presence of Pi and Mg2+ to give rise to the acceleration of the carotenoid shift decay closely correlates with the rate of phosphorylation of the nucleotides in steady-state light. Nucleotide triphosphates enhance the decay in parallel with their rate of hydrolysis.Adenylyl imidodiphosphate is itself without effect on the decay of the carotenoid shift and it does not prevent the ADP-induced acceleration. The analogue does prevent the ATP effect but only after repeated flashes.  相似文献   

5.
1. In chromatophores from Rps. sphaeroides, the stimulation by ADP and Pi of the electric potential decay indicated by the carotenoid shift is greater than the stimulation of the decay of pH change indicated by the colour change of added cresol red under similar conditions. This difference is attributed to H+ consumption during the synthesis of ATP. The ratio of H+ translocated across the membrane to ATP synthesized was estimated to be approximately 1.7 H+/ATP. 2. The stimulation of the electrical potential decay by ADP and Pi was found to be a constant fraction (10%) of the total decay when the flash intensity was varied. No 'critical' or 'threshold' potential was observed. 3. The stimulated electrical potential decay after a second flash, given within a few seconds of the first, was related to the amplitude of the electrical potential produced by the second flash (10%) but neither to the dark time between the flashes, nor to the total extent of the electrical potential above the dark level. These results are consistent with two hypotheses (a) the chromatophores are a mixed population of vesicles, only a small fraction (10%) of which possess an active ATP synthesizing system (b) the activity of the ATP synthesizing system, though driven by a proton motive force, is controlled by electron transport processess. If alternative (a) is correct then the overall single turnover flash yield of 1 ATP per 1470 bacteriochlorophyll measured in (1) would mean that the yield of the active vesicles is approximately 10 ATP per 1470 bacteriochlorophyll or 30 ATP per vesicle. 4. The stimulation of the electrical potential decay by ADP and Pi is approximately 40% less in antimycin-treated chromatophores. It is shown that this is probably a consequence of antimycin-inhibited H+-release on the inside of the chromatophore vesicles following a flash.  相似文献   

6.
(1) A flash number dependency of flash-induced absorbance changes was observed with whole cells of Rhodospirillum rubrum and chromatophores of R. rubrum and Rhodopseudomonas sphaeroides wild type and the G1C mutant. The oscillatory behavior was dependent on the redox potential; it was observed under oxidizing conditions only. Absorbance difference spectra measured after each flash in the 275--500 nm wavelength region showed that a molecule of ubiquinone, R, is reduced to the semiquinone (R-) after odd-numbered flashes and reoxidized after even-numbered flashes. The amount of R reduced was approximately one molecule per reaction center. (2) The flash number dependency of the electrochromic shift of the carotenoid spectrum was studied with chromatophores of Rps. sphaeroides wild type and the G1C mutant. At higher values of the ambient redox potential a relatively slow phase with a rise time of 30 ms was observed after even-numbered flashes, in addition to the fast phase (completed within 0.2 ms) occurring after each flash. Evidence was obtained that the slow phase represents the formation of an additional membrane potential during a dark reaction that occurs after flashes with an even number. This reaction is inhibited by antimycin A, whereas the oscillations of the R/R- absorbance changes remain unaffected. At low potentials (E = 100 mV) no oscillations of the carotenoid shift were observed: a fast phase was followed by a slow phase (antimycin-sensitive) with a half-time of 3 ms after each flash. (3) The results are discussed in terms of a model for the cyclic electron flow as described by Prince and Dutton (Prince, R.C. and Dutton, P.L. (1976) Bacterial Photosynthesis Conference, Brussels, Belgium, September 6--9, Abstr. TB4) employing the so-called Q-cycle.  相似文献   

7.
A stepwise increasing membrane potential was generated in chromatophores of the phototrophic bacterium Rhodobacter capsulatus by illumination with short flashes of light. Proton transfer through ATP-synthase (measured by electrochromic carotenoid bandshift and by pH-indicators) and ATP release (measured by luminescence of luciferin-luciferase) were monitored. The ratio between the amount of protons translocated by F0F1 and the ATP yield decreased with the flash number from an apparent value of 13 after the first flash to about 5 when averaged over three flashes. In the absence of ADP, protons slipped through F0F1. The proton transfer through F0F1 after the first flash contained two kinetic components, of about 6 ms and 20 ms both under the ATP synthesis conditions and under slip. The slower component of proton transfer was substantially suppressed in the absence of ADP. We attribute our observations to the mechanism of energy storage in the ATP-synthase needed to couple the transfer of four protons with the synthesis of one molecule of ATP. Most probably, the transfer of initial protons of each tetrad creates a strain in the enzyme that slows the translocation of the following protons.  相似文献   

8.
J.B. Jackson  S. Saphon  H.T. Witt 《BBA》1975,408(1):83-92
1. In chromatophores from Rps. sphaeroides, the stimulation by ADP and Pi of the electric potential decay indicated by the carotenoid shift is greater than the stimulation of the decay of the pH change indicated by the colour change of added cresol red under similar conditions. This difference is attributed to H+ consumption during the synthesis of ATP. The ratio of H+ translocated across the membrane to ATP synthesized was estimated to be approximately 1.7 H+ATP.2. The stimulation of the electrical potential decay by ADP and Pi was found to be a constant fraction (10%) of the total decay when the flash intensity was varied. No ‘critical’ or ‘threshold’ potential was observed.3. The stimulated electrical potential decay after a second flash, given within a few seconds of the first, was related to the amplitude of the electrical potential produced by the second flash (10%) but neither to the dark time between the flashes, nor to the total extent of the electrical potential above the dark level. These results are consistent with two hypotheses (a) the chromatophores are a mixed population of vesicles, only a small fraction (10%) of which possess an active ATP synthesizing system (b) the activity of the ATP synthesizing system, though driven by a proton motive force, is controlled by electron transport processess. If alternative (a) is correct then the overall single turnover flash yield of 1 ATP per 1470 bacteriochlorophyll measured in (1) would mean that the yield of the active vesicles is approximately 10 ATP per 1470 bacteriochlorophyll or 30 ATP per vesicle.4. The stimulation of the electrical potential decay by ADP and Pi is approximately 40% less in antimycin-treated chromatophores. It is shown that this is probably a consequence of antimycin-inhibited H+-release on the inside of the chromatophore vesicles following a flash.  相似文献   

9.
N.P.J. Cotton  J.B. Jackson 《BBA》1982,679(1):138-145
The kinetics of carotenoid absorption changes have been measured in intact cells of Rhodopseudomonas capsulata after short flash excitation. The observed changes were consistent with the thesis that they indicate the development and dissipation of membrane potential. In the generation of the absorption changes in anaerobic cells, fast (complete in 0.5 ms) and slow (half-time 3 ms) components can be distinguished. The slow component corresponds kinetically to the rate of cytochrome c re-reduction and is similarly antimycin sensitive. These data are similar to those observed in isolated chromatophores which have been artifically poised with redox mediators. In aerobic intact cells the kinetic profile is altered, mainly because the decay of the carotenoid change is much faster. Inhibition of respiration with KCN leads to flash-induced changes similar to those in anaerobic cells. At least two components can be distinguished in the decay of the carotenoid absorption changes in anaerobic intact cells. Only the faster decay component was inhibited by venturicidin which suggests that it corresponds to H+ flux through the F0F1-ATPase during ATP synthesis. The contribution of the venturicidin-sensitive decay to the total decay was dependent upon the initial amplitude of the carotenoid absorption change produced by the flash group. This suggests that there is an apparent threshold of membrane potential for ATP synthesis. Supporting evidence was provided by the finding that venturicidin stimulated the steady-state light-induced carotenoid absorption change at high but not at low light intensities. The entire decay of the carotenoid absorption changes was stimulated by carbonyl cyanide p-trifluoromethoxyphenylhydrazone in a manner that can be interpreted as an ionophore catalysing the dissipation of membrane potential.  相似文献   

10.
1. A comparison was made of two methods for estimating the membrane potential in chromatophores from Rhodopseudomonas sphaeroides Ga. Illuminated chromatophores generated a potential that is apparently much larger when estimated on the basis of the red-band shift of carotenoids rather than from the extent of uptake of the permeant SCN- ion. 2. In contrast, when the chromatophores were oxidizing NADH or succinate the uptake of SCN- indicated a larger membrane potential than was estimated from the carotenoid band shift. 3. The extent of SCN- uptake and the carotenoid-band shift respond differently to changes in the ionic composition of the reaction medium. 4. The effects of antimycin on the carotenoid band shift and SCN- uptake are reported. 5. It is concluded that the carotenoid band shift and the uptake of SCN- are responding to different aspects of the energized state.  相似文献   

11.
Light-induced ATP synthesis was studied in intact cells and chromatophores of Erythrobacter sp. strain OCh114. ATP synthesis was measured by both the pH method and the luciferin-luciferase luminescence method. The rate of ATP synthesis was moderate (a typical value of 0.65 mol of ATP per mol of bacteriochlorophyll per min), and synthesis was inhibited by antimycin A. ATP was synthesized under illumination only under aerobic conditions and not under anaerobic conditions. This characteristic was similar to that of other light-induced energy transduction processes in this bacterial species, such as oxidation of reaction center, oxidation of cytochrome c551, and translocation of H+, which were not observed under anaerobic conditions. This phenomenon was reconciled with the fact that the Erythrobacter sp. could not grow anaerobically even in the light. The characteristics of oxidative phosphorylation and ATP hydrolysis were also investigated. The respiratory ratio of chromatophores was 2.3. Typical rates of oxidative phosphorylation by NADH and by succinate were 2.9 mol of ATP per mol of bacteriochlorophyll per min (P/O = 0.22) and 1.1 mol of ATP per mol of bacteriochlorophyll per min (P/O = 0.19), respectively. A typical rate of ATP hydrolysis was 0.25 mol of ATP per mol of bacteriochlorophyll per min in chromatophores. ATPase and adenylate kinase are also involved in the metabolism of adenine nucleotides in this bacterium.  相似文献   

12.
1. The inhibition by antimycin A of the cyclic electron transfer has been studied in chromatophores from Rhodopseudomonas sphaeroides Ga following an approach based on the analysis of the relaxation kinetics of the reaction center optical changes in pulsed light. The recovery kinetics of the bacteriochlorophyll redox state have been found to be clearly biphasic. The half-times of the fast phase (13 ms) and slow phase (about 400 ms) were not modified by antimycin in a range of concentrations from 0.1 to 9 μM. On the other hand the percentage extent of the fast phase, which reflects the rate of the cyclic electron transfer, was monotonically decreased by increasing concentrations of the inhibitor. This indicates that antimycin decreases progressively the fraction of the photosynthetic units, active in cyclic electron transfer. 2. The ATP yield per flash observed under conditions of controlled inhibition of electron flow was strongly dependent upon the amount of active redox cycles. On the other hand, the amplitude of the carotenoid band shift, which has been demonstrated unequivocally to be correlated to the ATP yield per flash in uninhibited chromatophores, was not affected by antimycin up to a 40% inhibition of electron flow. 3. The effect of a progressive limitation by DCCD in the number of active ATP synthetase complexes on flash-induced phosphorylation has been examined. The decrease in ATP yield observed over a wide range of flash frequencies is related simply to the ATPase activity and to phosphorylation in continuous light, irrespective of the value of the membrane potential, which appears to be stabilized by this inhibitor. 4. As a whole, the results obtained at low concentrations of antimycin and under conditions of partial inhibition by DCCD evidence a localized coupling between the redox reactions and phosphorylation.  相似文献   

13.
14.
1. The kinetics of cytochrome b reduction and oxidation in the ubiquinone-cytochrome b/c2 oxidoreductase of chromatophores from Rhodopseudomonas sphaeroides Ga have been measured both in the presence and absence of antimycin, after subtraction of contributions due to absorption changes from cytochrome c2, the oxidized bacteriochlorophyll dimer of the reaction center, and a red shift of the antenna bacteriochlorophyll. 2. A small red shift of the antenna bacteriochlorophyll band centered at 589 nm has been identified and found to be kinetically similar to the carotenoid bandshift. 3. Antimycin inhibits the oxidation of ferrocytochrome b under all conditions; it also stimulates the amount of single flash activated cytochrome b reductions 3- to 4-fold under certain if not all conditions. 4. A maximum of approximately 0.6 cytochrome b-560 (Em(7) = 50 mV, n = 1, previously cytochrome b50) hemes per reaction center are reduced following activating flashes. This ratio suggests that there is one cytochrome b-560 heme functional per ubiquinone-cytochrome b/c2 oxidoreductase. 5. Under the experimental conditions used here, only cytochrome b-560 is observed functional in cyclic electron transfer. 6. We describe the existence of three distinct states of reduction of the ubiquinone-cytochrome b/c2 oxidoreductase which can be established before activation, and result in markedly different reaction sequences involving cytochrome b after the flash activation. Poising such that the special ubiquinone (Qz) is reduced and cytochrome b-560 is oxidized yields the conditions for optimal flash activated electron transfer rates through the ubiquinone-cytochrome b/c2 oxidoreductase. However when the ambient redox state is lowered to reduce cytochrome b-560 or raised to oxidize Qz, single turnover flash induced electron transfer through the ubiquinone-cytochrome b/c2 oxidoreductase appears impeded; the points of the impediment are tentatively identified with the electron transfer step from the reduced secondary quinone (QII) of the reaction center to ferricytochrome b-560 and from the ferrocytochrome b-560 to oxidized Qz, respectively.  相似文献   

15.
S. Saphon  J.B. Jackson  V. Lerbs  H.T. Witt 《BBA》1975,408(1):58-66
1. From electron micrographs of chromatophores from Rhodopseudomonas sphaeroides and from the estimated bacteriochlorophyll content of the sample a mean value of 4700 bacteriochlorophyll per chromatophore was estimated. The mean diameter of the chromatophore vesicles was 600 Å.2. The decay of the flash-induced electric potential across the chromatophore membrane measured by the carotenoid band shift was 20% accelerated by about one valinomycin molecule per 4700 bacteriochlorophyll, i.e. by one ionophore molecule per chromatophore.3. The inhibition of the flash-induced ATP formation by valinomycin followed a similar pattern to the accelerated decay of the electric potential.4. The single turnover flash yield of ATP synthesis gave a mean value of one ATP per 1470 bacteriochlorophyll or about 3 ATP per vesicle.5. With regard to the partitioning of the ionophore between the membrane (85%) and aqueous phase (15%) we conclude that one molecule of valinomycin per chromatophore is sufficient to begin to collapse the electrical potential and inhibit ATP synthesis. It is therefore suggested that the membrane potential is an essential component of the energized state which is used for phosphorylation.The results correspond to those obtained for the 100-fold larger vesicles in chloroplasts (thylakoids) where one molecule of ionophore is also sufficient to quench both events.  相似文献   

16.
Generation of photoelectric potential in chromatophores of Rhodopseudomonas sphaeroides has been measured (i) spectrophotometrically, using electrochromic shift of carotenoid absorption band or (ii) electrometrically, by means of two electrodes separated by a collodion film covered on one side with chromatophores. A 15 ns laser flash was used to induce a single turnover of photosynthetic reaction centers. It was found that results obtained by both methods are similar in (i) direction of electric vector (the chromatophore interior positive) and (ii) redox titration curves (Em = 10mV). The magnitudes of the photopotential were about 60 and 25 mV, when monitored with spectral and electrometric techniques, respectively. In both cases, the rise times of the photopotentials were faster than time resolution of the techniques used. Decay of the response of carotenoids was found to be slower than that in the collodion film system. The addition of ubiquinone Q10 into the decane solution of asolectin used to impregnate the collodion film led to slowing down of the decay. The carotenoid response decay could be accelerated by FCCP or o-phenanthroline. In the latter case, the shape of the decay curve coincides with decay of the photopotential measured in the collodion film system. It is suggested that decane extracts secondary ubiquinone from chromatophores attached to the collodion film. Such an unfavorable effect can be strongly decreased by added ubiquinone  相似文献   

17.
Delayed fluorescence from Rhodopseudomonas sphaeroides chromatophores was studied with the use of short flashes for excitation. Although the delayed fluorescence probably arises from a back-reaction between the oxidized reaction center bacteriochlorophyll complex (P+) and the reduced electron acceptor (X-), the decay of delayed fluorescence after a flash is much faster (tau1/2 approximately 120 mus) than the decay of P+X-. The rapid decay of delayed fluorescence is not due to the uptake of a proton from the solution, nor to a change in membrane potential. It correlates with small optical absorbance changes at 450 and 770 nm which could reflect a change in the state of X-. The intensity of the delayed fluorescence is 11-18-fold greater if the excitation flashes are spaced 2 s apart than it is if they are 30 s apart. The enhancement of delayed fluorescence at high flash repetition rates occurs only at redox potentials which are low enough (less than +240 mV) so that electron donors are available to reduce P+X- to PX- in part of the reaction center population. The enhancement decays between flashes as PX- is reoxidized to PX, as measured by the recovery of photochemical activity. Evidently, the reduction of P+X- to PX- leads to the storage of free energy that can be used on a subsequent flash to promote delayed fluorescence. The reduction of P+X- also is associated with a carotenoid spectral shift which decays as PX- is reoxidized to PX. Although this suggests that the free energy which supports the delayed fluorescence might be stored as a membrane potential, the ionophore gramicidin D only partially inhibits the enhancement of delayed fluorescence. With widely separated flashes, gramicidin has no effect on delayed fluorescence. At redox potentials low enough to keep X fully reduced, delayed fluorescence of the type described above does not occur, but one can detect weak luminescence which probably is due to phosphorescence of a protoporphyrin.  相似文献   

18.
1. The basal decay of the carotenoid shift of chromatophores from photosynthetic bacteria following short flash excitation is approximately biphasic. The decay indicates the dissipation of the transmembrane electrical potential. 2. The H+ efflux following rapid H+ binding after a flash, measured from the colour change of added cresol red, shows very similar kinetics to the carotenoid shift decay suggesting that the dissipation of the electric potential decay is a consequence of the H+ efflux. 3. The electric potential decay is stimulated when the chromatophore suspension is supplemented with ADP and Pi (in either the presence or absence of antimycin A). 4. The stimulated electric potential decay by ADP and Pi has a similar pH dependence to that of phosphorylation in continuous light. 5. The stimulation of the electric potential decay by ADP and Pi is reversed, by aurovertin, an antibiotic which inhibits phosphorylation. 6. The stimulation of the electric potential decay by ADP+Pi is also reversed by the inhibitors oligomycin and venturicidin. These inhibitors, but not aurovertin, also inhibit the fast phase of the decay under non-phosphorylating conditions. 7. Valinomycin accelerates the overall rate of decay of the electric potential, inhibits the ADP and Pi stimulated electric potential decay, and inhibits the flash-induced phosphorylation. The decay rate of the H+ efflux however, is slower in the presence of this ionophore. 8. Nigericin-type ionophores accelerate the overall decay rate of the H+ efflux and inhibit the ADP and Pi stimulated electric potential decay. The basal rate of the electric potential decay is unaffected by treatment with these ionophores. 9. When a coupling factor associated with the chromatophore ATPase is removed from the membrane, both the stimulation of the electric potential decay by ADP and Pi and ADP phosphorylation are inhibtied. Both reactions are completely restored after reconstitution with the crude coupling factor extract. The basal electric potential decay rate is not affected by the removal of coupling factor.  相似文献   

19.
The density distribution of photosynthetic membrane vesicles (chromatophores) from Rhodobacter capsulatus has been studied by isopicnic centrifugation. The average vesicle diameters, examined by electron microscopy, varied between 61 and 72 nm in different density fractions (70 nm in unfractionated chromatophores). The ATP synthase catalytic activities showed maxima displaced toward the higher density fractions relative to bacteriochlorophyll, resulting in higher specific activities in those fractions (about threefold). The amount of ATP synthase, measured by quantitative Western blotting, paralleled the catalytic activities. The average number of ATP synthases per chromatophore, evaluated on the basis of the Western blotting data and of vesicle density analysis, ranged between 8 and 13 (10 in unfractionated chromatophores). Poisson distribution analysis indicated that the probability of chromatophores devoid of ATP synthase was negligible. The effects of ATP synthase inhibition by efrapeptin on the time course of the transmembrane electric potential (evaluated as carotenoid electrochromic response) and on ATP synthesis were studied comparatively. The ATP produced after a flash and the total charge associated with the proton flow coupled to ATP synthesis were more resistant to efrapeptin than the initial value of the phosphorylating currents, indicating that several ATP synthases are fed by protons from the same vesicle.  相似文献   

20.
Chromatium vinosum chromatophores contain an energy-linked pyrophosphatase that is insensitive to oligomycin and dicyclohexylcarbodiimide. Pyrophosphate hydrolysis produces a carotenoid band-shift similar to that resulting from illumination. The carotenoid band-shift can also be produced by a K+ diffusion potential (interior positive) and the magnitude of the band shift is proportional to the membrane potential over at least a 100-fold variation in K+ concentration. The light-induced carotenoid band-shift in whole cells is identical to that seen in chromatophores but K+ diffusion potentials (interior positive) produce a mirror image of the light-induced band-shift. These results are interpreted in terms of chromatophores being inside-out vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号