首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P M Wise 《Life sciences》1982,31(2):165-173
The purpose of the following study was to assess the changes in the proestrous hormone profile in middle-aged cycling rats to better understand the inter-relationship and possible interaction of these hormones during the transition to estrous acyclicity. Median eminence LHRH concentrations and serum LH, FSH, estradiol and progesterone concentrations were measured in young (3-4 months old) and middle-aged (8-10 months old) proestrous rats at 0900, 1200, 1500 and 1800h. The data demonstrate that (1) baseline hormone concentrations prior to the surge at 0900h are the same in middle-aged and young rats; (2) the proestrous gonadotropin surge is temporally delayed in middle-aged rats; (3) this delay is preceded by lower median eminence LHRH concentrations and serum estradiol concentrations at 1200h; (4) serum progesterone concentrations are lower in middle-aged rats during the preovulatory gonadotropin surge (at 1500 and 1800h) probably as a consequence of the delayed LH surge.  相似文献   

2.
The purpose of this study was to investigate whether melanin-concentrating hormone (MCH) acts directly on the median eminence and on the anterior pituitary of female rats regulating LHRH and gonadotropin release. In addition, immunohistochemistry was used to examine the density and distribution of MCH-immunoreactive fibers in the median eminence of proestrous rats. MCH-immunoreactive fibers were found in both the internal and external layers of the median eminence and in close association with hypophysial portal vessels. In the first series of in vitro experiments, median eminences and anterior pituitaries were incubated in Krebs-Ringer bicarbonate buffer containing two MCH concentrations (10(-10) and 10(-8) M). The lowest MCH concentration (10(-10) M) increased (P < 0.01) LHRH release only from proestrous median eminences. Anterior pituitaries incubated with both MCH concentrations also showed that 10(-10) M MCH increased gonadotropin release only from proestrous pituitaries. In the second series of experiments, median eminences and pituitaries from proestrous rats were incubated with graded concentrations of MCH. MCH (10(-10) and 10(-9) M) increased (P < 0.01) LHRH release from the median eminence, and only 10(-10) M MCH increased (P < 0.01) LH and FSH release from the anterior pituitary. The effect of MCH on the stimulation of both gonadotropins from proestrous pituitaries was similar to the effect produced by LHRH. Simultaneous incubation of pituitaries with MCH and LHRH did not modify LH but increased the FSH release induced by LHRH. The present results suggest that MCH could be involved in the regulation of preovulatory gonadotropin secretion.  相似文献   

3.
Age-related changes in hypothalamic luteinizing hormone-releasing hormone (LHRH) and luteinizing hormone (LH) secretion were studied in young (6 months), middle-aged (12 months) and old (18 months) female rats. The LHRH levels in the mid-hypothalamic area were higher in intact middle-aged and old females than in young ones. Additionally, there was no age difference in the hypothalamic LHRH levels in male rats. In order to clarify the significance of this age-related increase in female rats, we examined the effects of progesterone treatment in estrogen-primed ovariectomized young and old rats on the LHRH levels in the median eminence (ME) and on plasma LH levels. We found phasic changes in ME-LHRH and plasma LH levels in estrogen-primed rats following progesterone treatment in rats of both ages, but the progesterone-induced change in ME-LHRH levels tended to be delayed in old rats compared with young females. This delay may correspond to the delayed onset, slow and low magnitude of plasma LH increase in old females. The ME-LHRH levels were generally higher in old rats than in young rats. Nevertheless, we found that the increase in plasma LH in response to progesterone treatment in estrogen-primed ovariectomized females was smaller in old rats than young rats. These results suggest that the LHRH secretory mechanism changes with age in female rats. Such alterations may result in the accumulation of LHRH in the mid-hypothalamic area and an increase in ME-LHRH.  相似文献   

4.
Serum LH levels are diminished in middle-aged rats during spontaneous or steroid-induced LH surges and following ovariectomy (ovx). The compromised LH responses are presumed to reflect age-related alterations in LHRH neurosecretion. Direct measurements of LHRH output in middle-aged females are, however, limited. The present study utilizes an in vitro perifusion paradigm to assess basal and stimulated secretory capacity of LHRH neurons in isolated hypothalamic preparations from aging female rats. Individual hypothalamic fragments from middle-aged and young proestrous, ovx, and ovx, estradiol-treated females were perifused for 6 h and effluents were collected continuously at 10-min intervals. After 4 h of unstimulated output, two 10-min depolarizing pulses of KCl were administered. Although stimulated LHRH secretion was comparable in the two age groups, basal LHRH release from aging hypothalami was significantly elevated (pbasal less than 0.001). Furthermore, endocrine influences on LHRH output from aging hypothalami were less pronounced when compared to endocrine influences on LHRH output from young hypothalami, suggesting that steroidal regulation of LHRH secretion may be impaired in middle-aged females. These data demonstrate that LHRH neurons maintain the capacity to respond to a depolarizing stimulus at the time when regular estrous cycles cease and consequently suggest the importance of altered modulation of LHRH neurosecretion to the development of reproductive senescence.  相似文献   

5.
Age-related functional and morphological alterations in the hypothalamo-pituitary-gonadal axis were investigated in old recurrently pseudopregnant (RPP) female rats, and these alterations were compared with those in young diestrous rats. LHRH in the median eminence (ME) and mediobasal hypothalamus (MBH) as well as plasma FSH, LH, and progesterone were measured by RIA. LHRH in the lateral ME (LME) and pituitary FSH and LH were evaluated by morphometry and densitometrical immunocytochemistry. Furthermore, by light microscopy, we classified and counted the number of ovarian follicles and corpora lutea. LHRH concentrations in the ME and MBH were similar in old and young rats, whereas in old rats, plasma FSH was markedly increased, LH was moderately increased, and plasma progesterone was unchanged. The number and the total area and immunoreactivity of LHRH-labeled axon cross sections in the LME were reduced in old rats. The number of nucleated FSH-labeled cells and total FSH area and immunoreactivity were almost twice in old compared with young animals. The measurements of LH-labeled cells were not different between the two groups. In old rats, the numbers of ovarian follicles and corpora lutea were reduced and that of atretic follicles increased. In conclusion, age-related morphological impairments of LHRH axons associated with an increased number of FSH gonadotropes and higher plasma FSH in our old RPP rats suggest hypothalamic and pituitary disturbances, which may largely contribute to the complex hormonal disarrangement responsible for the decline of reproductive functions in old female rats.  相似文献   

6.
Aging exerts profound influences on the function of the hypothalamic-pituitary-testicular-axis. This work has been performed in order to verify whether, in male rats, the decreased secretion of LH and testosterone (T) occurring in old animals is reflected by modifications of luteinizing hormone-releasing hormone (LHRH) receptors at the level of the anterior pituitary and of the testes. To this purpose, the affinity constant (Ka) and the maximal binding capacity (Bmax) for the LHRH analog [D-Ser(tBu)6]des-Gly10-LHRH-N-ethylamide were evaluated, by means of a receptor binding assay, in membrane preparations derived from the anterior pituitary and testicular Leydig cells of male rats of 3 and 19 months of age. Serum levels of LH and T were measured by specific RIAs. The results obtained show that, in aged male rats, the concentration of pituitary LHRH receptors is significantly lower than that found in young animals. On the other hand, the concentration of LHRH binding sites is significantly increased on the membranes of Leydig cells of old rats. In no instance the Ka for the LHRH analog is significantly affected. Serum levels of LH and T are significantly lower in old than in young male rats. In conclusion, these results suggest that the reduced secretion of LH in old male rats may be linked, at least partially, to a decrease of the number of pituitary LHRH receptors. The impaired production of testosterone occurring in aged rats is accompanied by a significant increase of the number of testicular LHRH receptors, indicating that also the intratesticular mechanisms controlling testosterone release undergo significant alterations with aging.  相似文献   

7.
We have reinvestigated the question of maintenance of differential LHRH sensitivity in culture and further investigated the role of pulsatile LHRH in the in vitro release of pulsatile LH and FSH at different stages of the estrous cycle. Pituitaries were collected on each day of the 4 day cycle at 0800. In addition, pituitaries were also collected at 1500 and 1900 on proestrous. The cells were dispersed and exposed 48 hrs later to short duration 4 ng LHRH pulses; this dose was optimized for LH release and was applied at a frequency of 1 pulse/60 min. In terms of absolute magnitude of LH response, observed responsiveness was ranked in the following order: proestrous 1900 greater than estrous 0800 greater than diestrous 1 0800 greater than proestrous 1500 greater than diestrous 2 0800. Responsiveness was significantly greater at proestrous 1900 (p greater than 0.01), estrous 0800 (p greater than 0.05) and diestrous 1 0800 (p greater than 0.05) when compared to either of the other stages tested. The heightened LHRH sensitivity of proestrous was therefore maintained in cell culture indicating that the system should be valid for conducting studies on the control of gonadotropin secretion during this period. FSH did not respond in pulsatile manner to the LHRH levels employed further substantiating recent evidence that LHRH seems to function somehow less directly in FSH as compared to LH secretion.  相似文献   

8.
The preovulatory surge of gonadotropins is triggered by estradiol and enhanced to its full magnitude by progesterone. Progesterone may exert this effect through several mechanisms. One of the mechanisms is through the ability of progesterone to induce an increase in the hypothalamic content and release of LHRH. The purpose of this study was to determine if progesterone might not act through yet another mechanism and facilitate LHRH release of the proestrous gonadotropin surge through modulation of luteinizing hormone releasing hormone (LHRH) degrading activity. Sixty-day-old Sprague-Dawley rats were ovariectomized; 14 days later, the estradiol-progesterone milieu of proestrous was mimicked in these animals through the use of estradiol containing silastic implants and subcutaneous progesterone injections. The LHRH degrading activity of the hypothalamus, pituitary and serum were monitored subsequently at preselected time points. In the hypothalamus, estradiol alone was capable of inducing significant increase in degrading activity; progesterone alone had no effect; however, progesterone subsequent to estradiol priming suppressed the increase induced by estradiol alone. In the pituitary, neither estradiol alone nor progesterone alone nor progesterone subsequent to estradiol priming had any significant effect on degrading activity. In the serum, estradiol induced a rapid and significant increase in activity; progesterone alone suppressed activity; progesterone subsequent to estradiol priming induced a similar but more rapid suppression. Therefore, the overall tendency was for estradiol to stimulate and progesterone to suppress LHRH degrading activity in the tissues studied. The results of this study indicate that progesterone has the capacity to suppress LHRH degrading activity and may be one of the mechanisms capable of increasing the availability of LHRH to the anterior pituitary gland thereby facilitating the preovulatory gonadotropin surges.  相似文献   

9.
张樟进  任惠民 《生理学报》1992,44(3):275-281
Hypothalamic and plasma luteinizing hormone-releasing hormone (LHRH) levels following orchidectomy (ORDX) and testosterone (T)-replacement were compared between young (2-3 months old) and aged (24-26 months old) male rats by radioimmunoassay. Plasma T level and hypothalamic LHRH content are markedly decreased in the aged rat as compared to those of the young rat, whereas plasma LHRH levels are similar in the two groups. Following ORDX and ORDX plus T-replacement, plasma T levels in both groups are about the same, whereas the rates of variation of hypothalamic and plasma LHRH levels in the aged rat are significantly lower than those in the young rat. These results suggest that the negative feedback mechanism of the hypothalamic LHRHergic system is impaired in the aged rat, which may be one of the important reasons causing age-dependent deterioration of the functional control of hypothalamic-pituitary-testicular axis.  相似文献   

10.
Hypothalamic-pituitary control of prolactin and LH secretion was tested in young (4-6 months) and aged (22-30 months) male Long-Evans rats given L-dopa, methyl dopa, LHRH, or stress treatments. Pretreatment serum LH levels were consistently higher in young than in the aged groups. The increase in serum LH after LHRH injection was only about half as much in aged as compared to young control males. Although acute stress caused a prompt increase in serum LH in young male rats, this treatment was without effect in the aged group. Methyl dopa treatment stimulated serum prolactin secretion in both young and old rats. Although L-dopa treatment caused a reduction in serum prolactin in both age groups, the sensitivity, magnitude, and duration of the reduction was smaller in the aged rats.  相似文献   

11.
Pubertal and young adult male rats release more luteinizing hormone (LH) in response to luteinizing hormone releasing hormone (LHRH) if pretreated with LHRH than if pretreated with saline. Immature male rats do not show this self-priming effect. In order to examine the role of acute changes in testicular steroids in this process, immature (29-30 days old) or pubertal (50-51 days old) male rats were castrated or sham operated under ketamine HCl anesthesia. Beginning immediately after completion of the surgery, they were given three priming injections of 10 ng LHRH/100 g body wt or saline at 30-min intervals. Thirty minutes after the third priming injection, a blood sample was obtained by cardiac puncture followed immediately by a challenge injection of 50 ng LHRH/100 g body wt given to both saline and LHRH primed groups. Ten minutes after the challenge injection a final blood sample was obtained by heart puncture. Serum was assayed for LH concentration by radioimmunoassay. Sham-operated pubertal rats showed a typical self-priming effect. Animals pretreated with LHRH released significantly (P less than 0.01) more LH in response to the challenge injection than did rats pretreated with saline. Acute castration also resulted in a significant (P less than 0.001) self-priming effect in pubertal rats. As anticipated, sham castrated immature males did not show a self-priming effect. Acutely castrated immature rats however, showed a significant (P less than 0.05) self-priming effect. These data provide support for the hypothesis that, prior to puberty, increases in testosterone during the priming process inhibit the expression of the self-priming effect.  相似文献   

12.
O A Ashiru  C A Blake 《Life sciences》1978,23(14):1507-1513
The periovulatory increases of follicle-stimulating hormone (FSH) in rat sera can be divided into two phases. The first phase consists of a rise and fall during proestrus and the second phase consists of a rise and fall during estrus. The second phase was not blocked by phenobarbital (100 mg/kg BW) injected i.p. between the first and second phases. In contrast, phenobarbital administered prior to the onset of the first phase blocked both phases of increased serum FSH. In phenobarbital-blocked rats, administration of luteinizing hormone releasing hormone (LHRH) during proestrus, either by s.c. injection (10 μg) or by a 3 hr constant-rate i.v. infusion (50 ng/hr), simulated both the proestrous and estrous phases of increased serum FSH. These results indicate that 1) the second phase of the serum FSH rise is itself not susceptible to phenobarbital blockade, 2) a proestrous mechanism susceptible to phenobarbital alteration is necessary for both phases of increased serum FSH to occur, and 3) administration of LHRH to phenobarbital-blocked rats during proestrus restores both phases of FSH release.  相似文献   

13.
A chronic anovulatory polycystic ovarian (PCO) condition can be induced in rats with estradiol valerate (EV). We have previously shown that the early stages (8-10 wk after EV treatment) of the condition are characterized by low basal plasma luteinizing hormone (LH) and estradiol concentrations, as well as poor LH responsiveness to LH-releasing hormone (LHRH). These observations suggested that alterations in pituitary LH secretory activity may be involved in induction and maintenance of the PCO condition. In order to examine this possibility we have measured basal plasma LH and follicle-stimulating hormone (FSH) concentrations at various times (6, 15, 20 and 22 wk) after treatment with EV. AT 22 wk animals were subjected to a double LHRH pulse or equivalent treatment with saline. Basal plasma LH concentrations in EV-treated animals doubled between 6 and 22 wk. Despite this sharp increase, basal plasma LH concentrations at 22 wk were still significantly lower in EV-treated animals compared to proestrous controls. Basal FSH in EV-treated animals, remained in the proestrous range throughout the 22-wk period. Pituitary FSH and LH secretions in response to the LHRH challenge were significantly greater in EV-treated animals compared to proestrous controls. Plasma estradiol was significantly greater at 22 wk post-EV treatment than at 9 wk and this difference was reflected in the histology of the endometrium. These results indicate that a PCO condition is compatible with radical alterations in basal LH, and responsiveness to LHRH. Thus, aberrations in the ability to secrete LH do not appear to be causal in maintaining the condition.  相似文献   

14.
Serum luteinizing hormone (LH) and prolactin (PRL) concentrations were measured in young (3-4 month old) and middle-aged (10-12 month old) intact female rats on proestrus, in ovariectomized rats after two estrogen injections (estradiol benzoate; EB, 10 micrograms/100 g body weight, s.c.) or after preoptic stimulation in EB-primed ovariectomized rats. Only animals showing regular 4-day estrous cycles were selected for the experiment. The magnitude of proestrous LH surge was significantly smaller in middle-aged than in young rats. Two BE injections, at noon on Days 0 and 3, in ovariectomized middle-aged rats failed to induce surges in LH secretion on Day 4 whereas the same treatment produced LH surges in ovariectomized young rats. The preoptic electrochemical stimulation (50 microA for 60 sec) produced a prompt rise in serum LH levels in ovariectomized EB-primed young but not in middle aged rats. The preoptic stimulation with a larger current (200 microA) induced LH secretin in middle-aged rats. In none of these situations serum PRL concentrations were different between young and middle-age rats. These results suggest differential aging rates in the preoptic mechanisms governing LH and PRL secretion in the rat. The function of the preoptic ovulatory center in responding to the estrogen positive feedback action and inducing LH secretion may become impaired and independent of the PRL control mechanism, even before the regular estrous cycle terminates.  相似文献   

15.
The present series of experiments was conducted in an attempt to correlate previously reported dose-dependent and site-selective inhibitory effects of an antiestrogen, CI-628, on 17 beta-estradiol (E2)-receptor interactions in the anterior pituitary gland (AP) and hypothalamus with its effects on the preovulatory surges of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin. The effects of CI-628 on the response of the AP to luteinizing hormone-releasing hormone (LHRH) and thyrotropin-releasing hormone (TRH) also were examined. In the first study, rats exhibiting 4-day estrous cycles were injected with various doses (0.02, 0.20, 2.0, and 20 mg/kg) of CI-628 or vehicle at 0900 h on diestrus-2 and proestrus. The preovulatory LH surge and both preovulatory and secondary FSH surges were marginally affected by 0.02 mg/kg CI-628, but were completely abolished by higher doses. In contrast, a dose of 0.20 mg/kg only delayed the prolactin surge; however, higher doses were effective in extinguishing cyclic prolactin release. In a second experiment, CI-628 in rats treated on diestrus-2 and proestrus exerted a dose-dependent suppression of the AP LH response to an initial injection of LHRH on proestrous afternoon in rats whose endogenous LH surges were blocked by phenobarbital. However, AP LH responses to a second LHRH injection to assess the self-priming capacity of LHRH were attenuated only in rats given 0.20, 2.0, and 20 mg/kg CI-628. Contrastingly, the AP prolactin response to TRH was suppressed only in rats given 0.20 mg/kg CI-628.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.

Background

Previous work by our lab and others has implicated glutamate as a major excitatory signal to gonadotropin hormone releasing hormone (GnRH) neurons, with gamma amino butyric acid (GABA) serving as a potential major inhibitory signal. However, it is unknown whether GABAergic and/or glutamatergic synaptic appositions to GnRH neurons changes on the day of the proestrous LH surge or is affected by aging.

Methodology/Principal Findings

To examine this question, synaptic terminal appositions on GnRH neurons for VGAT (vesicular GABA transporter) and VGLUT2 (vesicular glutamate transporter-2), markers of GABAergic and glutamatergic synaptic terminals, respectively, was examined by immunohistochemistry and confocal microscopic analysis in young and middle-aged diestrous and proestrous rats. The results show that in young proestrous rats at the time of LH surge, we observed reciprocal changes in the VGAT and VGLUT2 positive terminals apposing GnRH neurons, where VGAT terminal appositions were decreased and VGLUT2 terminal appositions were significantly increased, as compared to young diestrus control animals. Interestingly, in middle-aged cycling animals this divergent modulation of VGAT and VGLUT2 terminal apposition was greatly impaired, as no significant differences were observed between VGAT and VGLUT2 terminals apposing GnRH neurons at proestrous. However, the density of VGAT and VGLUT2 terminals apposing GnRH neurons were both significantly increased in the middle-aged animals.

Conclusions/Significance

In conclusion, there is an increase in glutamatergic and decrease in GABAergic synaptic terminal appositions on GnRH neurons on proestrus in young animals, which may serve to facilitate activation of GnRH neurons. In contrast, middle-aged diestrous and proestrous animals show a significant increase in both VGAT and VGLUT synaptic terminal appositions on GnRH neurons as compared to young animals, and the cycle-related change in these appositions between diestrus and proestrus that is observed in young animals is lost.  相似文献   

17.
F J Bex  A Corbin 《Life sciences》1984,35(9):969-979
Further confirmation that the LHRH/LHRH agonist-induced ovulation in the hypophysectomized (hypx) rat is due to a direct ovarian effect and not mediated by LH release from residual pituitary tissue or other CNS sites is provided by the persistence of this effect despite concomitant median eminence lesion or passive immunization to LH. Adrenalectomy did not affect the ovulatory activity of the LHRH agonist, D-Trp6-N alpha MeLeu7-DesGly10-Pro9-NHEt-LHRH (Wy-40,972), in the hypx rat. Prior administration of a potent LHRH antagonist blocked ovulation induced in hypx proestrous rats by Wy-40,972 but not by LH-S19. Ovulation can be induced by Wy-40,972 one day earlier (e.g. metestrus) in the intact rat than it can in the hypx rat. Results in the hypx metestrous rat indicate that the ovulatory responsiveness of the intact rat at this stage of the cycle may occur by complementary action of Wy-40,972-stimulated endogenous LH release and a direct ovarian effect of the agonist. Prostaglandins (PG) are involved in the ovulatory mechanism of Wy-40,972 in the hypx proestrous rat as evidenced by the dose-dependent inhibition of this effect by PG synthetase inhibitors, indomethacin and Fentiazac. Moreover, there were significant increases in ovarian concentrations of PGF2 alpha and PGE2-PGE1 in response to Wy-40,972 that could be prevented by indomethacin. However, exogenous administration of either of these PG's was not effective in inducing ovulation in the hypx rat.  相似文献   

18.
We have investigated the role of neuroendocrine and neurochemical changes in the age-related deterioration of cyclic female reproductive function. During middle age the timing and amplitude of the proestrous and estradiol-induced LH surge is altered. We have found that the diurnal pattern of norepinephrine turnover is altered in critical hypothalamic areas known to regulate the release of LHRH. These changes may contribute to alterations in the timing and the amplitude of LH release, which may, in turn, affect the ability of rats to maintain regular estrous cycles.  相似文献   

19.
We have shown that 4 ng luteinizing hormone releasing hormone (LHRH) pulses induced significantly greater luteinizing hormone (LH) release from proestrous rat superfused anterior pituitary cells with no cycle related differences in follicle stimulating hormone (FSH). Current studies gave 8 ng LHRH in various pulse regimens to study amplitude, duration and frequency effects on LH and FSH secretion from estrous 0800, proestrous 1500 and proestrous 1900 cells. Regimen 1 gave 8 ng LHRH as a single bolus once/h; regimen 2 divided the 8 ng into 3 equal 'minipulses' given at 4 min intervals to extend duration; regimen 3 gave the 3 'minipulses' at 10 min intervals, thereby further extending duration: regimen 4 was the same as regimen 2, except that the 3 'minipulses' were given at a pulse frequency of 2 h rather than 1 h. In experiment 1, all four regimens were employed at proestrus 1900. FSH was significantly elevated by all 8 ng regimens as compared to 4 ng pulses; further, 8 ng divided into 3 equal 'minipulses' separated by 4 min at 1 and 3 h frequencies (regimens 2 and 4) resulted in FSH secretion that was significantly greater than with either a single 8 ng bolus (regimen 1) or when the 'minipulses' were separated by 10 min (regimen 3). In experiment 2, at proestrus 1500, FSH response to the second pulse of regimen 4 was significantly greater than in regimen 2; LH release was significantly suppressed at pulse 2 compared to regimen 2 accentuating divergent FSH secretion. At estrus 0800, FSH response to the second pulse of regimen 4 was significantly stimulated FSH at proestrus 1900, 1500 and estrus 0800, FSH divergence was most marked at proestrus 1500. These data indicate a potential role for hypothalamic LHRH secretory pattern in inducing divergent gonadotropin secretion in the rat.  相似文献   

20.
Summary 1. Intact or ovariectomized (OVX) cyclic rats injected or not with RU486 (4 mg/0.2 ml oil) from proestrus onwards were bled at 0800 and 1800h on proestrus, estrus and metestrus. Additional RU486-treated rats were injected with: LHRH antagonist (LHRHa), estradiol benzoate (EB) or bovine follicular fluid (bFF) and sacrified at 1800 h in estrous afternoon. LH and FSH serum levels were determined by RIA.2. RU486-treated intact or OVX rats had decreased preovulatory surges of LH and FSH, abolished secondary secretion of FSH and hypersecretion of FSH in estrous afternoon. The latter was decreased by LHRHa and abolished by EB or bFF. In contrast, EB induced an hypersecretion of LH in RU486-treated rats at 1800h in estrus.3. It can be concluded that in the absence of the proestrous progesterone actions, the absence of the inhibitory effect of the ovary in estrus evoked a LHRH independent secretion of FSH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号