首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mini-P1 plasmid origin of replication is contained on a 246 base pair (bp) piece of DNA. At one end there are five 19-bp binding sites for the P1 initiator protein, RepA, and near the other end there are two 9-bp DnaA protein-binding sites. To further define the limits of the origin, we cloned the origin region in M13 and constructed deletions of either end. We sequenced the DNA and tested the replicative form I DNA of the deletion phages for their ability to support RepA-dependent DNA replication in an in vitro system. The origin that is functional in vitro could be reduced to 202 bp. It includes three intact and one incomplete RepA-binding sites at one end and the two DnaA-binding sites at the other end. When the two naturally occurring DnaA-binding sites were replaced with one or two synthetic sites, only the construction containing two sites was active in vitro. We found that the minimal origin that is functional in vivo contains all of the five RepA and the two DnaA-binding sites. Mini-P1 plasmid replication both in vivo and in vitro requires two initiator proteins, the Escherichia coli DnaA protein and the P1 RepA protein. We have found that the ADP form of DnaA is as active as the ATP form of the protein in the in vitro replication of mini-P1. In contrast, only the ATP form is active for in vitro replication of plasmids carrying the E. coli origin (Bramhill, D., and Kornberg, A. (1988) Cell 52, 743-755).  相似文献   

2.
3.
The replicon of the low copy number plasmid P1 uses the three Escherichia coli heat shock proteins DnaJ, DnaK, and GrpE for the efficient initiation of its DNA replication. The only P1-encoded protein required for plasmid replication is the initiator, RepA. Binding of RepA to the origin also represses the promoter for the repA gene, which is located within the origin. We found that repression is incomplete in E. coli strains with mutations in the dnaJ, dnaK, or grpE genes. Since there is no decrease in RepA concentration in the mutant strains, the mutations are likely to affect the protein-DNA or protein-protein reactions required for repression, thereby decreasing RepA binding at its promoter. We also showed that the deficit in repression can be overcome by providing excess RepA, implying that the mechanism of repression is not altered in the mutant strains. Since repression requires RepA binding to the origin, a binding deficit might account for the replication defect in the heat shock mutants.  相似文献   

4.
DNA methylation is known to regulate several prokaryotic replication origins. In particular, the Escherichia coli chromosomal origin oriC and the pMB1 plasmid origin (which is homologous to the ColE1 origin) replicate poorly when hemimethylated at dam (GATC) sites. Because the mismatch repair protein MutH is known to recognize hemimethylated dam sites, its role in the replication of these origins was investigated. The results presented here show that the mutH gene product is partially responsible for the poor replication of the pMB1 origin when hemimethylated but has no effect on the replication of oriC. Methylation levels at individual dam sites suggest that the MutH protein binds to an inverted repeat in the pMB1 replication primer promoter. These findings suggest a mechanism for the coordinated control of DNA repair and replication.  相似文献   

5.
A Abeles  T Brendler    S Austin 《Journal of bacteriology》1993,175(24):7801-7807
A mutant mini-P1 plasmid with increased copy number can be established in Dam- strains of Escherichia coli, where mini-P1 plasmid replication is normally blocked. Comparison of this plasmid and a plasmid driven by the host oriC replication origin showed that both origins are subject to control by methylation at two different levels. First, both origins appear to be subject to negative regulation acting at the level of hemimethylation. This probably involves the sequestration of the hemimethylated DNA produced by replication, as has been previously described for oriC. Second, both origins show a positive requirement for adenine methylation for efficient function in vivo. This conclusion is supported by the behavior of the P1 origin in an improved in vitro replication system. In vitro, where sequestration of hemimethylated DNA is not expected to occur, the hemimethylated P1 origin DNA was fully functional as a template. However, the activity of fully unmethylated DNA was severely restricted in comparison with that of either of the methylated forms. This in vitro uncoupling of the two effects of origin methylation suggests that two separate mechanisms are involved.  相似文献   

6.
Boundaries of the pSC101 minimal replicon are conditional.   总被引:5,自引:3,他引:2       下载免费PDF全文
The DNA segment essential for plasmid replication commonly is referred to as the core or minimal replicon. We report here that host and plasmid genes and sites external to the core replicon of plasmid pSC101 determine the boundaries and competence of the replicon and also the efficiency of partitioning. Missense mutations in the plasmid-encoded RepA protein or mutation of the Escherichia coli topoisomerase I gene enable autonomous replication of a 310-bp pSC101 DNA fragment that contains only the actual replication origin plus binding sites for RepA and the host-encoded DnaA protein. However, in the absence of a repA or topA mutation, the DNA-bending protein integration host factor (IHF) and either of two cis-acting elements are required. One of these, the partitioning (par) locus, is known to promote negative DNA supercoiling; our data suggest that the effects of the other element, the inverted repeat (IR) sequences that overlap the repA promoter, are mediated through the IR's ability to bind RepA. The concentrations of RepA and DnaA, which interact with each other and with plasmid DNA in the origin region (T. T. Stenzel, T. MacAllister, and D. Bastia, Genes Dev. 5:1453-1463, 1991), also affect both replication and partitioning. Our results, which indicate that the sequence requirements for replication of pSC101 are conditional rather than absolute, compel reassessment of the definition of a core replicon. Additionally, they provide further evidence that the origin region RepA-DnaA-DNA complex initiating replication of pSC101 also mediates the partitioning of pSC101 plasmids at cell division.  相似文献   

7.
The RepA protein of the plasmid Rts1, consisting of 288 amino acids, is a trans-acting protein essential for initiation of plasmid replication. To study the functional domains of RepA, hybrid proteins of Rts1 RepA with the RepA initiator protein of plasmid P1 were constructed such that the N-terminal portion was from Rts1 RepA and the C-terminal portion was from P1 RepA. Six hybrid proteins were examined for function. The N-terminal region of Rts1 RepA between amino acid residues 113 and 129 was found to be important for Rts1 ori binding in vitro. For activation of the origin in vivo, an Rts1 RepA subregion between residues 177 and 206 as well as the DNA binding domain was required. None of the hybrid initiator proteins activated the P1 origin. Both in vivo and in vitro studies showed, in addition, that a C-terminal portion of Rts1 RepA was required along with the DNA binding and ori activating domains to achieve autorepression, suggesting that the C-terminal region of Rts1 RepA is involved in dimer formation. A hybrid protein consisting of the N-terminal 145 amino acids of Rts1 and the C-terminal 142 amino acids from P1 showed strong interference with both Rts1 and P1 replication, whereas other hybrid proteins showed no or little effect on P1 replication.  相似文献   

8.
B J Froehlich  J R Scott 《Plasmid》1988,19(2):121-133
P1 and P7 are closely related plasmid prophages which are members of the same incompatibility group. We report the complete DNA sequence of the replication region of P7 and compare it to that of P1. The sequence predicts a single amino acid difference between the RepA proteins of these two plasmids, no differences in methylation sites or regions where dnaA protein is expected to bind, and no difference in the spacing of the major features of the two replicons. A P1 replicon with a mutation in repA, the gene that encodes an essential replication protein, is complemented for replication by providing either the P1 RepA protein (RepA1) or the P7 RepA protein (RepA7) in trans. Furthermore, when either of these proteins is supplied in trans, the plasmid copy number of P1 cop mutants drops to that of P1 cop+. However, when RepA7 is supplied, the copy number of P1 cop and P1 cop+ is higher than that when RepA1 is supplied. This indicates that the single amino acid difference between the two versions of the RepA protein plays an important role in determining the plasmid copy number.  相似文献   

9.
The replication initiator protein RepA of the IncB plasmid pMU720 was shown to induce localized unwinding of its cognate origin of replication in vitro. DnaA, the initiator protein of Escherichia coli, was unable to induce localized unwinding of this origin of replication on its own but enhanced the opening generated by RepA. The opened region lies immediately downstream of the last of the three binding sites for RepA (RepA boxes) and covers one turn of DNA helix. A 6-mer sequence, 5'-TCTTAA-3', which lies within the opened region, was essential for the localized unwinding of the origin in vitro and origin activity in vivo. In addition, efficient unwinding of the origin of replication of pMU720 in vitro required the native positioning of the binding sites for the initiator proteins. Interestingly, binding of RepA to RepA box 1, which is essential for origin activity, was not required for the localized opening of the origin in vitro.  相似文献   

10.
11.
DNA adenine methylation controls DNA replication of plasmids containing the prototypic REPI replicon by affecting protein recognition and by altering the helical stability of the origin. Denaturing gradient gel electrophoresis shows that adenine methylated origin DNA is more easily melted than unmethylated. However, because an added DNA adenine methylation (dam) site at the origin, whether in or out of phase with other helically aligned dam sites, actually prevents replication, we conclude that destabilization of the helix is not the exclusive function of adenine methylation in REPI replication. We find that the conformation and degree of methylation at the origin, features which are important for protein recognition, are essential for replication. In fact, RepI, a protein required for replication initiation at REPI replicons, contains a region homologous with a domain in proteins which specifically recognize and bind 5'-GATC-3'. We propose that the dam sites in the origin play a dual role: one is destabilization of the helix, and the other is protein recognition.  相似文献   

12.
Zoueva OP  Iyer VN  Matula TI  Kozlowski M 《Plasmid》2003,49(2):152-159
The broad-host-range replicon of the plasmid pCU1 has three origins of vegetative replication called oriB, oriS, and oriV. In the multi-origin replicon, individual origins can distinguish among replication factors provided by the host. It has been found that during replication in Escherichia coli polA(-) host, oriS was the only active origin of a mutant pCU1 derivative bearing a mutation in the gene encoding replication initiation protein RepA. To further investigate the capacity of oriS to function in an E. coli polA(-) host we constructed a number of clones of the basic replicon of pCU1 containing oriS as the only replication origin. An oriS construct created with pUC18 could transform the polA(-) strain when RepA was supplied in trans. When the oriS region (between nucleotides 290 and 832) was ligated to an antibiotic resistance Omega fragment, the construct could be recovered as a plasmid from polA(+) strain if functional RepA was provided in trans. Our results therefore indicate that the basic replicon of pCU1, containing oriS as the sole origin, does require RepA to initiate plasmid replication in E. coli  相似文献   

13.
R Maas  C Wang    W K Maas 《Journal of bacteriology》1997,179(12):3823-3827
By studying the interaction of derivatives of RepFIC miniplasmids, we were able to demonstrate that under certain conditions the RepA1 initiator protein inhibits plasmid replication. An analysis of cloned derivatives whose replication is inhibited by the RepA1 protein revealed the existence of two areas of the RepFIC genome that interact with RepA1 in the inhibition reaction. One of these areas, which occurs in the origin region, was explored by in vivo methylation protection footprinting studies. The protected area was 200 bp long and showed a definite periodicity of protected and hypersensitive sites, suggesting that RepA1 promotes a topological change in the RepFIC genome. The significance of our results is discussed in the context of plasmid replication control.  相似文献   

14.
The origin of replication of plasmid pSC101 contains three directly repeated sequences RS1, RS2, and RS3 separated by 22 bp from two palindromic sequences, IR1 and IR2, which are partially homologous to the direct repeats. These inverted repeat (IR) sequences overlap the promoter of the repA gene which encodes a protein essential for plasmid replication. We have shown that RepA binds to the RS sites as a monomer and to the IR sites as a dimer. The influence of the IR1 site, and of the DNA segment that separates it from RS3, on plasmid copy number control has been studied in detail. We show that the integrity of IR1 is essential for efficient replication and plasmid stability, the critical site extending to the left of IR1 proper. We also show that the presence of IR1 modifies profoundly the binding properties of purified RepA protein to a segment of DNA containing the RS sequences. IR1 is separated from its homologous site on RS3 by approximately four turns of the DNA helix. Replication is abolished if this distance is increased by half a turn of the helix but it is restored if the distance is increased by a whole turn. These results suggest a DNA looping interaction, in the initiation of replication, between the RepA dimer that binds iR1 and the RepA monomers that bind the RS sequences.  相似文献   

15.
16.
The functional ori1 of the 5.6kb gonococcal R-plasmid pSJ5.6 contains an A-T rich region followed by four 22bp direct repeats and one 19bp inverted repeat. The replication region of the plasmid also contains a gene encoding for a 39kD RepA protein. We have further assessed the functionality of the replication region in pSJ5.6, an-iteron type plasmid, using in vivo complementation assays in Escherichia coli. A 2.1kb PstI-RsaI fragment containing the ori1 and repA gene of pSJ5.6 was cloned into vector pZErO -2 to obtain pZA-MRR. The pUC origin in pZA-MRR was deleted to render the plasmid dependable on the cis-acting ori1 for replication. The resulting plasmid, pMRR, was capable of replication and maintenance in E. coli. We also cloned the ori1 and repA gene separately to obtain pA-Ori and pZG-Rep, respectively. Using in vivo complementation assays, we demonstrated that the ori1(+) plasmid (pA-Ori) was maintained only when the RepA protein was supplied in trans by the high copy number plasmid pZG-Rep.  相似文献   

17.
The nucleotide sequence recognized and cleaved by the restriction endonuclease MboI is 5' GATC and is identical to the central tetranucleotide of the restriction sites of BamHI and BglII. Experiments on the restriction of DNA from Escherichia coli dam and dam+ confirm the notion that GATC sequences are adenosyl-methylated by the dam function of E. coli and thereby are made refractory to cleavage by MboI. On the basis of this observation the degree of dam methylation of various DNAs was examined by cleavage with MboI and other restriction endonucleases. In plasmid DNA essentially all of the GATC sequences are methylated by the dam function. The DNA of phage lambda is only partially methylated, extended methylation is observed in the DNA of a substitution mutant of lambda, lambda gal8bio256, and in the lambda derived plasmid, lambdadv93, which is completely methylated. In contrast, phage T7 DNA is not methylated by dam. A suppression of dam methylation of T7 DNA appears to act only in cis dam. A suppression of dam methylation of T7 DNA appears to act only in cis since plasmid DNA replicated in a T7-infected cell is completely methylated. The results are discussed with respect to the participation of the dam methylase in different replication systems.  相似文献   

18.
In vivo and in vitro evidence is presented implicating a function of GATC methylation in the Escherichia coli replication origin, oriC, during initiation of DNA synthesis. Transformation frequencies of oriC plasmids into E. coli dam mutants, deficient in the GATC-specific DNA methylase, are greatly reduced compared with parental dam+ cells, particularly for plasmids that must use oriC for initiation. Mutations that suppress the mismatch repair deficiency of dam mutants do not increase these low transformation frequencies, implicating a new function for the Dam methylase. oriC DNA isolated from dam- cells functions 2- to 4-fold less well in the oriC-specific in vitro initiation system when compared with oriC DNA from dam+ cells. This decreased template activity is restored 2- to 3-fold if the DNA from dam- cells is first methylated with purified Dam methylase. Bacterial origin plasmids or M13-oriC chimeric phage DNA, isolated from either base substitution or insertion dam mutants of E. coli, exhibit some sensitivity to digestion by DpnI, a restriction endonuclease specific for methylated GATC sites, showing that these dam mutants retain some Dam methylation activity. Sites of preferred cleavage are found within the oriC region, as well as in the ColE1-type origin.  相似文献   

19.
DNA replication of plasmid P1 requires a plasmid-encoded origin DNA-binding protein, RepA. RepA is an inactive dimer and is converted by molecular chaperones into an active monomer that binds RepA binding sites. Although the sequence of RepA is not homologous to that of F plasmid RepE, we found by using fold-recognition programs that RepA shares structural homology with RepE and built a model based on the RepE crystal structure. We constructed mutants in the two predicted DNA binding domains to test the model. As expected, the mutants were defective in P1 DNA binding. The model predicted that RepA binds the first half of the binding site through interactions with the C-terminal DNA binding domain and the second half through interactions with the N-terminal domain. The experiments supported the prediction. The model was further supported by the observation that mutants defective in dimerization map to the predicted subunit interface region, based on the crystal structure of pPS10 RepA, a RepE family member. These results suggest P1 RepA is structurally homologous to plasmid initiators, including those of F, R6K, pSC101, pCU1, pPS10, pFA3, pGSH500, Rts1, RepHI1B, RepFIB, and RSF1010.  相似文献   

20.
The Escherichia coli dam adenine-N6 methyltransferase modifies DNA at GATC sequences. It is involved in post-replicative mismatch repair, control of DNA replication and gene regulation. We show that E. coli dam acts as a functional monomer and methylates only one strand of the DNA in each binding event. The preferred way of ternary complex assembly is that the enzyme first binds to DNA and then to S-adenosylmethionine. The enzyme methylates an oligonucleotide containing two dam sites and a 879 bp PCR product with four sites in a fully processive reaction. On lambda-DNA comprising 48,502 bp and 116 dam sites, E. coli dam scans 3000 dam sites per binding event in a random walk, that on average leads to a processive methylation of 55 sites. Processive methylation of DNA considerably accelerates DNA methylation. The highly processive mechanism of E. coli dam could explain why small amounts of E. coli dam are able to maintain the methylation state of dam sites during DNA replication. Furthermore, our data support the general rule that solitary DNA methyltransferase modify DNA processively whereas methyltransferases belonging to a restriction-modification system show a distributive mechanism, because processive methylation of DNA would interfere with the biological function of restriction-modification systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号