首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An endogenous inhibitor of calcium activated neutral proteinase has been purified from human placenta. The procedure included chromatography on DEAE cellulose, Ultrogel AcA 22 and milli calcium activated neutral proteinase-sepharose in succession. Endogenous calcium activated neutral proteinase inhibitor was a tetramer with identical subunits of molecular weight 68 kDa. It was specific for milli calcium activated neutral proteinase (Calpain II) which is inhibited by the formation of an inactive enzyme-inhibitor complex and not by sequestering Ca2+ from the medium. Although micro calcium activated neutral proteinase (Calpain I) was not inhibited by endogenous calcium activated neutral proteinase inhibitor, it was protected from autolysis in the presence of the inhibitor. The placental endogenous calcium activated neutral proteinase inhibitor thus regulates Ca2+ activated proteolysis by ensuring micro calcium activated neutral proteinase activity, while inhibiting milli calcium activated neutral proteinase.  相似文献   

2.
The soluble neutral proteinase of human erythrocytes dissociates into constituent subunits of 80k and 30k in the presence of mM concentrations of Ca2+. Similarly the soluble natural inhibitor of this proteinase, of approximate molecular weight 240k, is dissociated into 60k subunits by mM concentrations of Ca2+. Removal of Ca2+ restores the native oligomeric structure of the proteinase and of the natural inhibitor. The formation of the native active enzyme or of the inactive enzyme-inhibitor complex depends on reversible association-dissociation processes mediated by Ca2+ concentration.  相似文献   

3.
The amino acid sequences of two subunits (80K and 30K) of calcium-activated neutral protease (CANP) were examined to clarify the structure-function relationship of CANP. The 80K subunit is composed of four clear domains (I–IV from the N-terminus). Domain II is a cysteine proteinase domain homologous to cathepsins B, L, and H. Domain IV is a calcium binding domain with four consecutive EF-hand structures known as typical calcium-binding sites found in calmodulin. The 30K subunit also has a clear domain structure (two domains). The N-terminal domain, a Gly-rich hydrophobic domain, probably determines the location of CANP through association with cellular membrane. The C-terminal domain is a calmodulinlike calcium-binding domain highly homologous to IV in the 80K subunit. The protease activity ascribable to II is regulated by 2 moles of built-in calmodulins, though its precise regulation mechanism is unknown. These results are discussed together with the molecular evolution of CANP on the basis of the gene structures of the two subunits.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.  相似文献   

4.
Abstract Calcium-activated neutral proteinase (CANP) was purified 2,625-fold from postmortem human cerebral cortex by a procedure involving chromatography on diethylaminoethyl (DEAE)-cellulose, phenyl-Sepharose, Ultrogel AcA-44, and DEAE-Biogel A. The major active form of CANP exhibited a molecular weight of 94–100 kilodaltons (Kd) by gel filtration on Sephacryl 300 and consisted of 78-Kd and 27-Kd subunits. Two-dimensional gel electrophoresis resolved the small subunit into two molecular species with different isoelectric points. CANP degraded most human cytoskeletal proteins but was particularly active toward fodrin and the neurofilament protein subunits (145 Kd > 200 Kd > 70 Kd). The enzyme required 175 μMCa2+ for half-maximal activation and 2 mM Ca2+ for optimal activity toward [methl-14C]azocasein. Other divalent metal ions were poor activators of the enzyme, and some, including copper, lead, and zinc, strongly inhibited the enzyme. Aluminum, a neurotoxic ion that induces neurofilament accumulations in mammalian brain, inhibited the enzyme 47% at 1 mM and 100% at 5 mM A second CANP form lacking the 27-Kd subunit was partially resolved from the 100-Kd heterodimer during DEAE-Biogel A chromatography. The 78-Kd monomer exhibited the same specific activity, calcium ion requirement, pH optimum, and specificity for cytoskeletal proteins as the 100-Kd heterodimer, suggesting that the 27-Kd subunit is not essential for the major catalytic properties of the enzyme. The rapid autolysis of the 27-Kd subunit to a 18-Kd intermediate when CANP is exposed to calcium may explain differences between our results and previous reports, which describe brain mCANP in other species as a 76-80-Kd monomer or a heterodimer containing 76-80-Kd and 17-20-Kd subunits. The similarity of the 100-Kd human brain CANP to CANPs in nonneural tissues indicates that the heterodimeric form is relatively conserved among various tissues and species.  相似文献   

5.
A calcium dependent soluble neutral proteinase has been purified to homogeneity from human erythrocytes. The proteinase is composed of two different polypeptide chains of approximate molecular weight of 80 k and 30 k daltons. Maximum activity is expressed at 50 μM Ca2+. The enzyme is regulated by reversible binding to a natural inhibitor, also present in the cytosolic compartment. The formation of the enzyme-inhibitor complex is dependent on high Ca2+ concentrations and is reversed by chelating agents. The proteinase is inhibited by leupeptin, chymostatin, antipain and free hemin and has a marked specificity for native or denatured human globin chains.  相似文献   

6.
Inbred mice can be phenotypically divided into two groups: those that contain high levels of a kidney metallo-endopeptidase activity (meprin-a) and those with low meprin-a activity. In studies to investigate the molecular basis for the heterogeneity in the expression of this proteinase activity, we found a latent metallo-proteinase activity associated with kidney membranes of C3H/HeJ mice, a low activity strain. The latent proteinase was activated by treatment of kidney brush border membranes with trypsin and was purified from solubilized C3H kidney membranes. Purified preparations of the C3H latent proteinase (referred to as meprin-b) contained three major proteins of subunit molecular weights 90,000, 140,000, and 160,000. In the absence of reducing agents, four 90,000-Da subunits are covalently linked by S-S bridges. The two higher molecular mass proteins are not covalently linked to each other or to the 90,000-Da subunits. However, cross-linking and affinity chromatography studies indicated that the proteins in the meprin-b preparation were tightly associated. By contrast, purified meprin-a contains only 85,000-Da subunit proteins linked by S-S bridges to form a tetramer. Endoglycosidase F treatment decreased the mass of the 90,000-Da meprin-b subunit and the 85,000-Da meprin-a subunit to polypeptides of 65,000-70,000 Da. The 90,000- and 85,000-Da subunits are immunologically similar, in that polyclonal antibodies prepared against one of the subunits cross-react with the other. The substrate specificities and inhibitor profiles of purified preparations of meprin-a and meprin-b are also similar. These data are consistent with the proposition that meprin-b is a polymorphic form of meprin-a that is incompletely processed in vivo.  相似文献   

7.
Mn2+ (50 microM) satisfies the requirement for activity of the purified Ca2+-dependent neutral proteinase from human erythrocytes. Unlike the activation by Ca2+ [E. Melloni et al. (1984) Biochem. Int. 8, 477-489], the effect of Mn2+ is fully reversible and does not involve autodigestion of the native 80-kDa catalytic subunit. However, the native dimeric proenzyme (procalpain), which contains both the 80-kDa subunit and a smaller 30-kDa subunit, is not activated by Mn2+ alone but also requires the presence of micromolar concentrations of Ca2+. Under these conditions, 40% of the maximum activity is expressed without dissociation of the 80- and 30-kDa subunits. Mn2+, but not micromolar Ca2+, can also partially satisfy the metal requirement of the native 80-kDa subunit isolated after dissociation of the heterodimer. This activity is further enhanced by the addition of 5 microM Ca2+, which is ineffective in the absence of Mn2+. After procalpain is converted to active calpain by incubation with Ca2+ and substrate [S. Pontremoli et al. (1984) Biochem. Biophys. Res. Commun. 123, 331-337] full activity is observed with 5 microM Mn2+, which now substitutes completely for Ca2+. Activation of procalpain by Mn2+ represents a new mechanism for modulation of the Ca2+-dependent proteinase activity.  相似文献   

8.
The component subunits of the pro-(carboxypeptidase A)–pro-(proteinase E) binary complex from pig pancreas were separated with a high recovery (80–95%) of their original potential activity. The isolated subunits and the reconstituted complex have properties similar to those of the corresponding natural species. The tryptic activation course of the pro-(carboxypeptidase A) subunit is substantially modified when bound to pro-(proteinase E), whereas the activation of pro-(proteinase E) is not dependent on this association.  相似文献   

9.
The mechanism of activation of human erythrocyte calpain was investigated using the immunoblotting technique with anticalpain monoclonal antibody. The purified calpain underwent a Ca2+-induced fragmentation of the 80 kDa subunit to 76 kDa and 36 kDa fragments. The behavior of the 76 kDa fragment in electrophoresis corresponded to the proteinase activity of calpain, whereas the behavior of the 80 kDa subunit and the 36 kDa fragment did not. When inside-out membrane vesicles were added to the reaction mixture of calpain and Ca2+ and the vesicles were separated from the supernatant solution by centrifugation, the 80 kDa subunit and 76 kDa fragment were found in the vesicle fraction. No other fragments were found in this fraction. On the other hand, the 80 kDa subunit and 36 kDa fragment were found in the supernatant fraction. When right-side-out membrane vesicles were added to the reaction mixture and the vesicles were separated from the supernatant fraction, no fragment was found in the vesicle fraction, while only the 36 kDa fragment was found in the supernatant fraction. These results indicate that the 80 kDa subunit of procalpain was bound in a Ca2+-dependent manner to the cytosolic surface of the plasma membrane and then underwent fragmentation to produce the 76 kDa fragment (active form) and that it expressed its proteinase activity at the surface of the membrane.  相似文献   

10.
An endogenous inhibitor of neutral Ca2+-dependent proteinases has been isolated from rabbit liver cytosol. The inhibitor is a heat-stable, 240-kDa, tetrameric protein. It is dissociated into its 60-kDa subunits by high concentrations of Ca2+ (0.1-1 mM), but not by lower concentrations in the physiological range. Inhibition of the 150-kDa proteinase of rabbit liver [Melloni, E., Pontremoli, S., Salamino, F., Sparatore, B., Michetti, M. and Horecker, B.L. (1984) Arch. Biochem. Biophys. 232, 505-512] requires the monomeric form of the inhibitor, and occurs only at the high concentrations of Ca2+ which also cause dissociation of the dimeric 150-kDa proteinase into its 80-kDa subunits. The molecular weight of the inactive proteinase-inhibitor complex was estimated by the equilibrium gel penetration method to be 140 kDa, suggesting that it contains one subunit of proteinase and one of inhibitor. The mechanism of interaction of the inhibitor with the 200-kDa proteinase at high concentrations of Ca2+ is identical to that observed for the 150-kDa proteinase, namely dissociation of both proteinase and inhibitor into subunits and formation of an inactive 160-kDa proteinase-inhibitor complex. However, unlike the 150-kDa proteinase, which does not interact with the inhibitor at low Ca2+ concentrations, the 200-kDa proteinase is also inhibited at low concentrations of Ca2+. Under these conditions, the high-molecular-weight complex (greater than 400 kDa) formed between the tetrameric inhibitor and the dimeric proteinase prevents conversion of the 200-kDa proenzyme to the active, low-Ca2+-requiring form.  相似文献   

11.
Culture medium from rabbit uterine cervical fibroblasts contained a procollagenase and a neutral proproteinase which acts as a procollagenase activator. These two proenzymes have been purified by a combination of ion-exchange, affinity and gel chromatographies. The purified neutral proproteinase showed Mr 60,000 with sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. This neutral proproteinase was activated by trypsin, 4-aminophenylmercuric acetate (APMA) and plasmin, and the active species of the proteinase had Mr 53,000 when activated by APMA; kallikrein and urokinase did not activate this proproteinase. The purified neutral proteinase was inhibited by EDTA, 1,10-phenanthroline and rabbit plasma, but not by serine proteinase inhibitors, suggesting that this proteinase is a metal-dependent proteinase. The purified enzyme could also degrade gelatin, casein, proteoglycan and type IV procollagen. The purified procollagenase had Mr 55,000 and was activated by trypsin, APMA and the active neutral proteinase. These activations were accompanied by decrease in Mr, and the activated species had an Mr which was approx. 10,000 less than that of the procollagenase. In particular, procollagenase activation with neutral proteinase depended on incubation time and proteolytic activity of proteinase. These results indicate that activation of procollagenase by the rabbit uterine neutral proteinase is related to limited proteolysis in the procollagenase molecule.  相似文献   

12.
Abstract— The activity of soluble tryptophan hydroxylase from rat brain stem was increased in presence of mm concentrations of calcium. Similarly to that observed by treating the enzyme with sodium dodecyl sulphate or trypsin, this activation resulted mainly from an increased affinity of tryptophan hydroxylase for both its substrate, tryptophan, and the cofactor 2-amino-4-hydroxy-6-methyl-5,6,7,8-tetrahydropteridine (6-MPH4). In addition, the optimal pH for the enzymic activity was shifted from 7.6 to 7.9 following activation by calcium, sodium dodecyl sulphate or trypsin.
Under the assay conditions used for measuring tryptophan hydroxylase activity, calcium also stimulated a neutral proteinase. This latter enzyme could be eliminated from the solution of tryptophan hydroxylase by filtration through Sephadex G 200. The resulting partially purified tryptophan hydroxylase could be activated by calcium only when the neutral proteinase was included in the assay mixture. In support of this conclusion, the effect of calcium on tryptophan hydroxylase was very small in the new born rat when the activity of the neutral proteinase was low. In addition, the activating effect of Ca2+ could be antagonized not only by a chelating agent like EGTA but also (partially) by specific inhibitors of proteinases such as benzethonium and PMSF.
These results strongly suggest that the activation of tryptophan hydroxylase by calcium is the consequence of a partial proteolysis of the enzyme by the calcium-dependent neutral proteinase. Therefore, the physiological significance of this irreversible effect is doubtful.  相似文献   

13.
1. Large quantities of human Factor XIII were prepared from ethanol precipitates of outdated human plasma. 2. Material homogeneous after chromatography on DEAE-cellulose was further resolved into two proteins, A and B, after filtration on Sepharose 6B. 3. Protein A has a molecular weight of 350000 and a subunit structure a(2)b(2) and is activated by thrombin and calcium. Protein B is inactive and probably has a subunit structure b(2). 4. Calcium causes protein A, after thrombin cleavage, to fragment to give protein B and a protein, containing only a' subunits, which is catalytically active. The latter protein slowly forms a misty precipitate which is still active and not cross-linked covalently. This confirms the suggestion of Schwartz et al. (1971) that catalytic activity is only associated with a' subunits. 5. Iodoacetate, which inhibits the enzyme, does not inhibit dissociation and aggregation of protein A. 6. The existence of two proteins and the fragmentation are possible explanations for the wide range of molecular weights given for Factor XIII in the literature.  相似文献   

14.
The complete amino-acid sequence of a neutral proteinase, produced by Bacillus cereus, was determined by protein sequencing. The neutral proteinase consists of 317 amino-acid residues. The primary structure is 70% homologous to thermolysin, a thermostable neutral proteinase and 45% homologous to Bacillus subtilis neutral proteinase. The zinc-binding site and the hydrophobic pocket of the active site are highly similar in all three proteinases. B. cereus neutral proteinase which is 20 degrees C less thermostable (60 degrees C) than thermolysin (80 degrees C) shows only minor differences in calcium binding sites and salt bridges compared to thermolysin (known from its X-ray diffraction analysis), whereas B. subtilis neutral proteinase (50 degrees C) differs considerably. Therefore it was assumed that the difference in thermostability between B. cereus neutral proteinase and thermolysin is not caused by different metal binding properties, or differences in the active site, but by changes within the rest of the molecule. Calculation of secondary structure potentials according to Chou & Fasman, hydrophobicity and bulkiness of the different structural elements and preferred cold----hot amino-acid residue exchanges indicated, that the thermostability of thermolysin compared to B. cereus neutral proteinase is caused by small effects contributed by numerous amino-acid exchanges distributed over the whole molecule, resulting in increased hydrophobicity of beta-pleated sheet and higher bulkiness of alpha-helical regions.  相似文献   

15.
Two forms of a high-molecular-weight proteinase were isolated from rat liver. The purification procedure involved homogenization of the tissue, chromatography on DEAE-cellulose, high-performance liquid chromatography (HPLC: TSK 3000 SWG) and hydroxyapatite chromatography. The breakthrough fraction from the hydroxyapatite column contained the sodium dodecyl sulphate (SDS)- and linoleic acid-activated proteinase, ingensin A, but the other form, ingensin B, which was also activated by SDS and linoleic acid, was bound to the hydroxyapatite and eluted at 200 mM phosphate. A distinct feature of ingensin A was its activation by a brief sonication procedure. The optimum pH of the two forms was 7.5-9.5, and both of them were activated by monovalent cations. Although both enzymes show similar molecular weights of 700,000 on gel filtration, ingensins A and B were separated into a major subunit of 120,000 and subunits of 25,000-35,000, respectively, under the denaturing conditions.  相似文献   

16.
Disc tissue consisting of pooled annuli fibrosus and nuclei pulposus from the cadaver of an adolescent aged 19 years was extracted with 4.0 M Gu-HCl. Proteins of low buoyant density (p less than or equal to 1.38 g/ml) containing the disc enzymes and inhibitors were separated from proteoglycans of high buoyant density (p greater than or equal to 1.50 g/ml) by density gradient ultracentrifugation. Sephadex G-75F gel chromatography followed by trypsin affinity chromatography was then used to resolve disc proteolytic and trypsin inhibitory activities. The results obtained were strongly suggestive of the presence of a high molecular weight zymogen which upon activation generated a population of smaller molecular weight proteinases. The disc proteinases obtained by this process showed similar properties in terms of: their pH optima (7.4-7.6); their inhibition patterns by class-specific proteinase inhibitors; their variation of activity as a function of NaCl and lysine concentrations; and the hydrodynamic size of their proteoglycan degradation products. The activated disc neutral proteinase demonstrated many characteristics in common with plasmin; however, unlike the latter, the disc proteinases also showed some calcium dependence.  相似文献   

17.
The relative roles of neutral and lysosomal proteinases in degrading intracellular proteins have been examined in rat gastrocnemius muscle. A comparison of the relative activities of the proteinases shows that cathepsin B is 10 times more active in muscle than the calcium activated proteinase. This dramatic difference suggests that, if the calcium activated proteinase is required for protein degradation, it might be rate limiting. In, vivo rates of protein degradation were measured after pulse labeling with [3H]N-ethylmaleimide. The rates were not diminished by intramuscular injection of mersalyl at concentrations that inhibited the calcium activated proteinase by at least 35% throughout the 72 h period of the experiments. On the other hand, the lysosomal proteinase, cathepsin B, increased after mersalyl treatment to 370% by 72 h. Therefore, we conclude that lysosomes are necessary for the degradation of modified proteins in muscle and we question the role of the calcium activated proteinase in this process.  相似文献   

18.
Some experiments were carried out with purified neutral proteinases I and II of Aspergillus sojae in relation to their characteristics as metalloenzyme.

The both enzymes contained one gram atom of zinc and about two gram atoms of calcium per mole (molecular weights of 41,700 for I and 19,800 for II were estimated by gel filtration) of enzyme protein, and the zinc was essential for the activity. Some metal-chelating agents, such as ethylenediaminetetraacetic acid (EDTA), o-phenanthroline, 8-hydroxyquinoline and α,α′-dipyridyl, inhibited the activity of the both enzymes. In the inactivation of neutral proteinase II by EDTA a distinct pH-dependency was observed. The EDTA-inactivated enzymes were reactivated fully or partially by the addition of some metal ions such as Zn2+, Co2+, Mn2+, Cu2+ (only neutral proteinase II) and Ni2+. Zinc-free apo-enzymes were prepared from the native enzymes by the dialysis against EDTA solution. The apo-enzyme of neutral proteinase I still contained calcium, while that of neutral proteinase II did not. The apo-enzymes restored their activity for the most part either by the addition of excess amount of zinc or by mixing with a stoichiometric amount of zinc in the presence of calcium at an alkaline condition.  相似文献   

19.
Fifteen hybridomas secreting antibodies against calcium-activated neutral protease (CANP), especially those for rabbit muscle mCANP with low calcium sensitivity, have been produced by the cell fusion technique. Eight of the monoclonal antibodies belong to the class IgG1, one to the class IgG2a, and six to the class IgG2b. The antibodies from these clones were characterized with regard to their relative binding affinities to the large subunits (80K) and the small subunits (30K) of mCANP as well as mu CANP, which is another type of CANP with high calcium sensitivity. Fourteen antibodies bound only to the 80K subunit of mCANP and one antibody bound to the 80K subunit of both mCANP and mu CANP. These antibodies recognized rat mCANP but not chicken CANP, with the exception of one antibody. Examination of the effects of these antibodies on the enzyme activity of mCANP showed that six antibodies partially inhibited the enzyme activity and the others were noninhibitory. These monoclonal antibodies should be useful for analyzing the fine structure of CANPs and the mechanism of the activation of mCANP, and also for determining the intracellular localization of mCANP.  相似文献   

20.
Rous sarcoma virus-transformed rat liver cell line RSV-BRL secreted a neutral proteinase in a latent precursor form with a molecular weight (Mr) of 57,000 (57k) as a major secreted protein. This enzyme was a calcium-dependent metallo-proteinase. The proenzyme was purified from the serum-free conditioned medium of the transformed cells by affinity chromatographies on a zinc chelate Sepharose column and a reactive red agarose column. When activated by treatment with trypsin or p-aminophenylmercuric acetate (APMA) in the presence of Ca2+, the purified enzyme effectively hydrolyzed casein, fibronectin, and laminin. Type IV collagen was hydrolyzed at 37 degrees C but not at 30 degrees C by the enzyme, whereas type I and type III collagens were hardly hydrolyzed even at 37 degrees C. The treatment with trypsin or AMPA in the presence of Ca2+ converted this 57k proenzyme to an active and stable enzyme with Mr 42k. In the absence of Ca2+, however, APMA converted the proenzyme to an intermediate form with Mr 45k, while trypsin digested it to an inactive peptide with Mr 30k. These results demonstrate that calcium ion is essential for the activation, activity expression, and stabilization of this metallo-proteinase. Analysis of its partial amino acid sequence and amino acid composition showed that the 57k proenzyme was identical or closely related to the putative protein transin, a rat homologue of stromelysin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号