首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The species composition and phytoplankton biomass of Lake Awassa, Ethiopia were studied from September 1985 to July 1986 in relation to some limnological features of the lake. During the study period, three phases of thermal stratification were recognized: a period of unstable stratification and near-complete mixing was followed by a stable stratification period and another period of complete mixing. Complete mixing was associated with cooling of air temperature with an influx of cool rain and high rainfall. The underwater light penetration showed a similar pattern over the whole period with the highest in the red, and the lowest in the blue spectral region. Euphotic depth varied between 1.6 and 3.0 meters with the highest measurements corresponding to the stable stratification period. PO4-P concentrations ranged between 23 and 45 µg l–1 and NO3-N concentrations varied between 7 and 14 µg l–1 during the study period. Both nutrients showed increasing values associated with mixing periods and/or the rainy season.A total of 100 phytoplankton species were identified with 48% of the taxa represented by green algae, 30% by blue-green algae, 11% by diatoms, and the rest by chrysophytes, dinoflagellates, cryptomonads and euglenoids. The dominant phytoplankton species were Lyngbya nyassae, Botryococcus braunii and Microcystis species. Seasonal biomass variation was pronounced in the first two species but not in Mycrocystis. Phytoplankton biomass increased following the mixing period in December, and thermal destratification during May to July which was also a period with high rainfall and relatively high nutrient concentration. While the seasonal variation of the total phytoplankton community in Lake Awassa was relatively low (coefficient of variation < 20%), it was higher in some of the individual component species.  相似文献   

2.
1. Abundance and bacterial production (BP) of heterotrophic bacteria (HBact) were measured in the north and south basins of Lake Tanganyika, East Africa, during seasonal sampling series between 2002 and 2007. The major objective of the study was to assess whether BP can supplement phytoplankton particulate primary production (particulate PP) in the pelagic waters, and whether BP and particulate PP are related in this large lake. HBact were enumerated in the 0–100 m surface layer by epifluorescence microscopy and flow cytometry; BP was quantified using 3H‐thymidine incorporation, usually in three mixolimnion layers (0–40, 40–60 and 60–100 m). 2. Flow cytometry allowed three subpopulations to be distinguished: low nucleic acid content bacteria (LNA), high nucleic acid content bacteria (HNA) and Synechococcus‐like picocyanobacteria (PCya). The proportion of HNA was on average 67% of total bacterial abundance, and tended to increase with depth. HBact abundance was between 1.2 × 105 and 4.8 × 106 cells mL−1, and was maximal in the 0–40 m layer (i.e. roughly, the euphotic layer). Using a single conversion factor of 15 fg C cell−1, estimated from biovolume measurements, average HBact biomass (integrated over a 100‐m water column depth) was 1.89 ± 1.05 g C m−2. 3. Significant differences in BP appeared between seasons, especially in the south basin. The range of BP integrated over the 0–100 m layer was 93–735 mg C m−2 day−1, and overlapped with the range of particulate PP (150–1687 mg C m−2 day−1) measured in the same period of time at the same sites. 4. Depth‐integrated BP was significantly correlated to particulate PP and chlorophyll‐a, and BP in the euphotic layer was on average 25% of PP. 5. These results suggest that HBact contribute substantially to the particulate organic carbon available to consumers in Lake Tanganyika, and that BP may be sustained by phytoplankton‐derived organic carbon in the pelagic waters.  相似文献   

3.
Primary production rates, chlorophyll and phytoplankton biovolume were measured monthly from April 2003 to November 2004 in Lake Tana, a large tropical lake in the highlands of Ethiopia. The lake is characterised by low nutrient concentrations, and a low water transparency due to high silt load of the inflowing rivers during the rainy seasons (May–November) and daily resuspension of sediments in the inshore zone. The mean chlorophyll-a concentrations varied seasonally and ranged from 2.6 mg m−3 to 8.5 mg m−3 (mean: 4.5 mg m−3) in the offshore zone. Primary production was measured using the light–dark bottles technique. We incubated only at three depths, i.e. 0.6, 1.2 and 1.8 m. Therefore, we may have missed a substantial part of the depth production profile and probably also frequently missed P max. Gross primary production in the openwater averaged 2.43 g O2 m−2 d−1 and ranged between 0.03 g O2 m−2 d−1 and 10.2 g O2 m−2 d−1; production was significantly higher in the inshore zone. The highest production rates were observed in the post-rainy season (Oct–Nov), which coincided with a bloom of Microcystis and higher chlorophyll levels. This seasonal high production is probably caused by a relatively high nutrient availability in combination with favourable light conditions. The gross primary production rates of L. Tana are among the lowest compared with other tropical lakes. This will be partly the result of our underestimation of gross primary production by often missing P max. Another cause is the oligotrophic nature of the lake in combination with its relatively low water transparency. The gross primary production per unit chlorophyll in the openwater zone was in the same range as in 30 other tropical lakes and reservoirs. The higher primary production in the inshore zone is probably the result of the daily water column mixing (Z mixZ t) in this area, enhancing nutrient recycling. A large proportion of the annual primary production is realised in one of the four seasons only. This productive post-rainy season is relatively short (2 months) and therefore efficiency of transfer of matter between the first and second trophic level of the Lake ecosystem will be poor.  相似文献   

4.
The Nilnag (alt. 2180 m) situated in the Kashmir Himalayas, marks the beginning of the dimictic lake series of this region. The high turbidity of water (t : % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGadiiEayaara% aaaa!3703!\[\bar x\] = 1.16) as a result of accelerated particle movement from the adjoining terrestrial ecosystem, has affected the sensitive macroflora which was recorded five decades ago. The lake water chemistry depicts a cation pattern which is dominated by divalent calcium (Ca++ > Mg++ > Na+ > K+) and the anions by a carbonate-bicarbonate system (HCO3 > SO4 > Cl). The ionic composition of the lake water comes close to the World Standard for freshwater lakes. The levels of ortho-phosphate and nitrate-nitrogen are not very high, indicating moderate fertility of the lake. The phytoplankton production, as measured by 14C isotope technique, ranged from 120–562 mgCassim m–2 d–1 during the ice-free period (1975–76) with an annual estimated yield of 90–100 gC m–2. The vertical distribution of production is suggestive of plankton rich lake water. In its general limnological features, the Nilnag resembles mesotrophic lakes of the Kashmir valley.Formed a part of thesis for which Ph.D. was awarded to MAK by Kashmir UniversityFormed a part of thesis for which Ph.D. was awarded to MAK by Kashmir University  相似文献   

5.
Photosynthetic activity by phytoplankton was measured during the ice-free seasons of 1984, 1985 and 1987 using the 14C radioassay in high altitude Emerald Lake (California). Relative quantum yield (B) and light-saturated chlorophyll-specific carbon uptake (Pm B) were calculated from the relationship of light and photosynthesis fitted to a hyperbolic tangent function. Temporal changes in Pm B showed no regular pattern. Seasonal patterns of B generally had peaks in the summer and autumn. Phytoplankton biomass (as measured by chlorophyll a) and light-saturated carbon uptake (Pm) had peaks in the summer and autumn which were associated with vertical mixing. Estimates of mean daily carbon production were similar among the three years: 57 mg C m–2 2 d–1 in 1984, 70 mg C m–2 2 d–1 in 1985 and 60 mg C m–2 d–1 in 1987. Primary productivity in Emerald Lake is low compared to other montane lakes of California and similar to high-altitude or high-latitude lakes in other regions.  相似文献   

6.
The biomass and primary production of phytoplankton in Lake Awasa, Ethiopia was measured over a 14 month period, November 1983 to March 1985. The lake had a mean phytoplankton biomass of 34 mg chl a m–3 (n = 14). The seasonal variation in phytoplankton biomass of the euphotic zone (mg chl a m–2 h–1) was muted with a CV (standard deviation/mean) of 31%. The vertical distribution of photosynthetic activity was of a typical pattern for phytoplankton with light inhibition on all but overcast days. The maximum specific rates of photosynthesis or photosynthetic capacity (Ømax) for the lake approached 19 mg O2 (mg chl a)–1 h–1, with high values during periods of low phytoplankton biomass. Areal rates of photosynthesis ranged between 0.30 to 0.73 g O2 m–2 h–1 and 3.3 to 7.8 g O2 m–2 d–1. The efficiency of utilisation of PhAR incident on the lake surface varied from 2.4 to 4.1 mmol E–1 with the highest efficiency observed corresponding to the lowest surface radiation. Calculated on a caloric basis, the efficiency ranged between 1.7 and 2.9%. The temporal pattern of primary production by phytoplankton showed limited variability (CV = 21 %).  相似文献   

7.
The biomass and the production of Argyrodiaptomus furcatus (Sars), the most abundant copepod in Broa Reservoir (São Carlos, São Paulo State), were estimated, determining in the laboratory the development time and the quantity of organic carbon and establishing the relationship between these two parameters. The daily production was calculated from P = B(1- egt) and the annual production was obtained by integrating daily production against time. The maximum production of Argyrodiaptomus furcatus in the reservoir depends on the region considered and on the period of the year. The maximum production was 45.15 mg C m–3d–1 in March, 1976 at station II, region of macrophytes and 6.74 mg C m–3d–1 at station IV, near the dam. The mean production for the year is 6.26 mg C m–3d–1 at station II and 1.43 mg C m–3d–1 at station IV.  相似文献   

8.
Quantitative data on primary production of picoplankton are presented for three different Brazilian marine ecosystems: estuarine, coastal and oceanic. The size fraction from 0.45 μm to 1.0 μm was responsible for 3.0% to 28.5% of 14C uptake in estuarine waters; 18.5% to 40.4% in coastal waters, and 6.7% to 100.0% in oceanic waters, respectively. These results establish the importance of picoplankton as primary producers in different marine environments along the Brazilian waters.  相似文献   

9.
Observations of ecosystem net carbon dioxide exchange obtained with eddy covariance techniques over a 4‐year period at spruce, beech and pine forest sites were used to derive time series data for gross primary production (GPP) and ecosystem respiration (Reco). A detailed canopy gas exchange model (PROXELNEE) was inverted at half‐hour time step to estimate seasonal changes in carboxylation capacity and light utilization efficiency of the forest canopies. The parameter estimates were then used further to develop a time‐dependent modifier of physiological activity in the daily time step gas exchange model of Chen et al. (1999) , previously used for regional simulations in BOREAS. The daily model was run under a variety of assumptions and the results emphasize the need in future analyses: (1) to focus on time‐dependent seasonal changes in canopy physiology as well as in leaf area index, (2) to compare time courses of physiological change in different habitats in terms of recognizable cardinal points in the seasonal course, and (3) to develop methods for utilizing information on seasonal changes in physiology in regional and continental carbon budget simulations. The results suggest that the daily model with appropriate seasonal adjustments for physiological process regulation should be an efficient tool for use in conjunction with remote sensing for regional evaluation of global change scenarios.  相似文献   

10.
11.
Tafas  T.  Danielidis  D.  Overbeck  J.  Economou-Amilli  A. 《Hydrobiologia》1997,344(1-3):129-139
The physical and chemical status of Trichonis – the largestanddeepest natural lake in Greece – is examined over two annualcycles (1985–86 and 1988–89). A correlation between lakenutrientpatterns and phytoplankton biomass is attempted. Limnologicalfeatures are compared with data from other warm and temperatelakes.With regard to its thermal regime, Trichonis is classified asawarm monomictic lake. The lake's stratification pattern andannualheat budget resemble those of other temperate lakes. Trichonisisa carbonate type, low conductivity lake (class II, lowsalinitywarm lake). Nitrogen and phosphorus concentrations were ratherlow.The inorganic nitrogen content fluctuated widely over the twoannual cycles examined. On the contrary, phosphorusconcentrationsshowed no significant changes. The limiting factor during1985–86was P, while N was limiting during stratification in 1988–89.Aweak correlation was found between the plankton communityfeatures(species abundance, biomass, chlorophyll-a) and lightpenetration. At present the eutrophication process fromoligotrophytowards mesotrophy has not been essentiallyaccelerated.  相似文献   

12.
Benthic primary production and nutrient dynamics were examined along a transect in the Bangrong mangrove forest in Thailand. Six stations were established extending from a high-intertidal site within the mangrove forest to low-intertidal flats and seagrass beds in front of the mangrove forest. Benthic processes (O2 and CO2 fluxes) and nutrient dynamics (mineralization, sediment-water fluxes, pore water and sediment pools) were measured under light and dark conditions during wet and dry seasons over a 2-yr period. The sediments were mostly autotrophic, only the mangrove forest sites were net heterotrophic during the wet season. Maximum daily net primary production was found at the non-vegetated tidal flats (40–75 mmol O2 m-2d-1), where light and nutrient availability were highest. The variation in benthic mineralization along the transect was minor (1.6–4.3 mmol CO2 m-2h-1) and did not reflect the large changes inorganic matter content (organic carbon: 0.7–4.2% DW) and quality (C:N ratio varied from 25 to 100), suggesting that the mineralizable pool of organic matter was of similar magnitude at all sites. There was only minor seasonal variation in rates of mineralization. The net primary production showed more variation with lower rates in the mangrove forest (reduced with 74%) and higher rates at the tidal flats (increased with 172%) and in the seagrass beds (increased with 228%) during the wet season. The nutrient pools and fluxes across the sediment-water interface were generally low along the transect, and the sediments were efficient in retaining nitrogen in the nutrient limited mangrove/seagrass environment. Pools and fluxes of phosphorus were generally very low suggesting that benthic primary production was phosphorus limited along the transect. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The Mapire river mouth forms a complex floodplain system, where the river behaves as a river during the dry season, but changes to a transient lake which partially covers the inundation forest during the rainy season. Thus, we expected changes in water chemistry and a gradual increase of primary production during high waters. The system was sampled monthly for one year; two floodplain lakes were also studied for comparative purposes. Variations in the concentration of macro- and micronutrients occurred in a pulse-like manner and seemed to relate to mechanisms at work in the transient lake. Dissolved oxygen showed a stratification with low values at the bottom, but never reached anoxia. Net and gross primary production and respiration did not show any clear spatial pattern, reflecting a mosaic of different biochemical states within the transient lake. Heterotrophy tended to prevail in the transient lake, while autotrophy dominated floodplain lakes.  相似文献   

14.
Qualitative and quantitative benthic samples were collected monthly between December 1986 and December 1987 from several stations at various depths and basins in the karstic Lake Banyoles (Catalonia, Spain), to study the spatial distribution and seasonality of ostracodes. A total of eight ostracode species were found in the lake. Of these, Candona neglecta Sars, Isocypris beauchampi Paris and Cypria ophtalmica Jurine were the most common ostracodes at all depth stations. Darwinula stevensoni Brady & Robertson, Ilyocypris species (I. bradyi Sars and I. gibba (Ramdohr)), Cyprideis torosa (Jones) and Cyclocypris ovum Jurine, on the other hand, were confined to sublittoral and littoral areas of the lake.Substrate and organic matter content appeared to be relevant factors determining the distribution of ostracode species at the different stations. The highest abundance of ostracodes were in the sublittoral (Basin IV–7 m and Basin I-5 m) where the substrate was coarse and sediment had a high organic matter content (>35% LOI). Low oxygen levels in the hypolimnetic waters (i.e. < 1 mg l–1) may explain the absence of ostracodes at deeper zones in stations where the anoxic period lasts more than four months. On the other hand, low temperatures seem to favour the development of C. neglecta and D. stevensoni, while with higher temperatures I. beauchampi, C. torosa and C. ovum increased their abundances. However, no clear pattern can be observed, so ostracode species in Lake Banyoles, apparently, have non-seasonal life histories.  相似文献   

15.
Primary productivity has been measured routinely at Lake Tahoe since 1967, and a number of mechanisms underlying variability in the productivity record have now been identified. A long-term trend due to nutrient loading dominates the series. Seasonality also is prominent, apparently controlled by direct physical factors unrelated to the trophic cascade. A 3-yr cycle has been detected and several possible mechanisms are considered. Irregular fluctuations also are present, caused in part by isolated events (a forest fire) and recurring but variable phenomena (spring mixing). Except possibly for the 3-yr cycle, the known sources of variability appear to operate bottom-up through direct physical and chemical effects on the phytoplankton.  相似文献   

16.
Application of mathematical models in the design and evaluation of lake restoration programmes must include due consideration of three basic concepts of model development; 1) that the model framework is appropriately matched to the intended management use, 2) that selection of the proper degree of model complexity is fundamental to the achievement of model credibility and 3) that field and laboratory studies must be designed and interpreted with the aid of the model to insure development of a comprehensive, integrated tool.These concepts are demonstrated for the case of lake restoration efforts in Green Bay (Lake Michigan, USA). Striking gradients in water quality (transparency, algal standing crop, hypolimnetic oxygen depletion) and trophic state occur along the major axis of the bay in response to phosphorus loaded from the Fox River. A simple model for gross primary production is developed to permit calculation of the relative importance of internal carbon production to the total organic carbon budget of the bay. Primary production varies from high rates over a limited photic depth in the turbid, phosphorus-rich waters of the eutrophic portions of the bay to low rates over an extensive photic depth in the transparent, phosphoruspoor reaches of the oligotrophic regions. Internal production accounts for approximately 90% of the total organic carbon loaded to the system over the summer growing season. Water quality management strategies must address the stimulation of primary production by phosphorus loaded from the Fox River in any attempt to lower the standing crop of nuisance algae, improve water clarity, and reduce rates of hypolimnetic oxygen depletion in Green Bay.  相似文献   

17.
The zooplankton of a Rift Valley lake in Ethiopia, Awasa, was sampled at 3 stations for 2 years (1986 and 1987) concurrently with various meteorological and limnological measurements. The spatial and temporal variation in abundance of some numerically dominant crustaceans, Mesocyclops aequatorialis similis (Copepoda), Thermocyclops consimilis (Copepoda) and Diaphanosoma excisum (Cladocera) is discussed. Temporal (months, sampling dates) rather than spatial (station) variability accounts for more than 50% of the total variance in zooplankton abundance but horizontal patchiness exists during periods of high zooplankton density. Sampling errors were generally low, except for counts of cyclopoid nauplii (subsampling) and Diaphanosoma (inter-replicate variance). Zooplankton showed distinct seasonality associated with the mixing cycle of the lake. Total numbers increased to more than 200 000 m−3 during the unstratified period (July to September). Low numbers were evident during stratification (February to May) when zooplankton numbers did not exceed 15 000 m−3. Individual zooplankton species and age classes showed variable seasonal amplitudes, ranging from 6.4 (nauplius 3) to 44.8 (copepodite 3 of Mesocyclops). We discuss some possible causes for zooplankton seasonality in Lake Awasa, and also review zooplankton seasonal cycles in other tropical lakes, especially African ones.  相似文献   

18.
We describe the distribution in space and time of a series of physical and chemical variables, phyto-plankton, and primary production in Ezequiel Ramos Mexía Reservoir (Argentina). Its waters are soft, poor in nutrients and with a low transparency that greatly depresses primary production. Phytoplankton data indicate the presence of 79 taxa with Bacillariophyceae, Cyanophyta and Chlorophyta alternatively dominant. Chlorophyll a was always low and never exceeded 3 mg m−3. Based on these results, the trophic status of this ecosystem is discussed.  相似文献   

19.
Daily and annual production rates of eight cladoceran and two rotifer species, and their seasonal variation and trophic role in the large, turbid, tropical Lake Tana, Ethiopia, were assessed in 2003–2005. Laboratory cultures were used to infer cladoceran development times, and secondary production was estimated using the growth increment summation and recruitment methods. Production for both taxa was highest in October–November, after the rainy season, and lowest in January–April during the dry season. Cladocerans and rotifers comprised 24% of the metazoan zooplankton biomass of 45.1 mg DW m?3, but comprised 53% of its production. Daily production for cladocerans and rotifers, respectively, was 1.23 and 0.94 mg DW m?3 d?1, and annual production was 447.9 and 353.5 mg DW m?3 y?1. Energy transfer efficiency from producers to zooplankton was 1.3% and 4.4% from zooplankton to planktivores. Herbivores consumed 3.4% of primary production and planktivores 36% of zooplankton production. High biomass turnover rates of cladocerans and rotifers sustain planktivores and, after a month's delay, decomposed Microcystis provides their main food source during the pre- and post-rainy months in Lake Tana.  相似文献   

20.
From 1928 to 1991 the following oligochaete energy budget quantitative values: biomass (B), production (P), respiration (R), assimilation (A), ration (C) changed 8 to 12 times. With increasing depth the ratios of energy budget decreased: P/B ratio from 3.4 to 0.1, R/B ratio from 4.5 to 0.5, net production efficiency from 43 to 18%. A relationship was revealed between oligochaete biomass and the primary production (PP) of the lake. There is a delay in the response in oligochaete biomass to primary production. In Lake Sevan the delay is 2 years in the littoral, 4 years in the sublittoral and 11 years in the profundal zone. The closest correlation was revealed between oligochaete energy budget quantitative values and the values of primary production of the preceding 10 years, which enables a prediction of the quantitative indices of the community of Oligochaeta. The values of energy budget ratios depend on temperature and oxygen regimes but not on the trophic status of the reservoir and were comparatively stable during the observed period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号