首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Inner epidermal membrane of the onion bulb scales was studied as a natural polymer support for immobilization of the glucose oxidase (GOD) enzyme for biosensor application. Onion epidermal membrane was used for immobilization of glucose oxidase and was associated with dissolved oxygen (DO) probe for biosensor reading. Glucose was detected on the basis of depletion of oxygen, when immobilized GOD oxidizes glucose into gluconolactone. A wide detection range between 22.5 and 450 mg/dl was estimated from calibration plot. A single membrane was reused for 127 reactions with retention of approximately 90% of its initial enzyme activity. Membrane was stable for 45 days ( approximately 90% activity) when stored in buffer at 4 degrees C. Surface structure studies of the immobilized membranes were carried under SEM. To our knowledge, this is the first report on employing inner epidermal membrane of onion bulb scales as the solid support for immobilization of enzyme.  相似文献   

2.
Commercial lipase, glycerol kinase (GK), glycerol-3-phosphate oxidase (GPO) and peroxidase (POD) have been co-immobilized covalently on to arylamine glass beads affixed on a plastic strip through diazotization with a conjugation yield of 89.1 mg/g support and 64.1% retention of specific activity. The co-immobilized enzymes showed maximum activity at pH 7.5, when incubated at 40 degrees C for 20 min. The strip was employed for determination of serum triglycerides (Tgs). The minimum detection limit of the method was 0.20 mM/L. The recovery of added Tgs was 88.0%. Within day and between day coefficient of variations were <7.0 % and <11.0%, respectively. A good correlation (r = 0.982) was observed between total serum Tgs values obtained by present method and the most commonly used enzymic colorimetric method, employing free enzymes. Among the various serum substances tested at their physiological concentrations, only cholesterol, ascorbic acid and bilirubin caused 30%, 15%, and 20% inhibition of strip-bound enzymes, respectively. The strip lost 50% of its activity after 150 regular uses over a period of 33 days, when stored in reaction buffer at 4 degrees C. The method reported here has the advantage over other existing methods, as it provides higher sensitivity, better stability and reusability of co-immobilized enzymes and is also economical.  相似文献   

3.
The co-immobilization of Aspergillus niger glucose oxidase (GOD) with bovine liver catalase (CAT) onto florisil (magnesium silicate-based porous carrier) was investigated to improve the catalytic efficiency of GOD against H2O2 inactivation. The effect of the amount of bound CAT on the GOD activity was also studied for 12 different initial combinations of GOD and CAT, using simultaneous and sequential coupling. The sequentially co-immobilized GOD-CAT showed a higher efficiency than the simultaneously co-immobilized GOD-CAT in terms of the GOD activity and economic costs. The highest activity was shown by the sequentially co-immobilized GOD-CAT when the initial amounts of GOD and CAT were 10 mg and 5 mg per gram of carrier. The optimum pH, buffer concentration, and temperature for GOD activity for the same co-immobilized GOD-CAT sample were then determined as pH 6.5, 50 mM, and 30 degrees C, respectively. When compared with the individually immobilized GOD, the catalytic activity of the co-immobilized GOD-CAT was 70% higher, plus the reusability was more than two-fold. The storage stability of the co-immobilized GOD-CAT was also found to be higher than that of the free form at both 5 degrees C and 25 degrees C. The increased GOD activity and reusability resulting from the co-immobilization process may have been due to CAT protecting GOD from inactivation by H2O2 and supplying additional O2 to the reaction system.  相似文献   

4.
An intracellular glucose oxidase (GOD) was isolated from the mycelium extract of a locally isolated strain of Aspergillus niger NFCCP. The enzyme was partially purified to a yield of 28.43% and specific activity of 135 U mg(-1) through ammonium sulfate precipitation, anion-exchange chromatography, and gel filtration. The enzyme showed high specificity for D-glucose, with a K(m) value of 25 mmol L(-1). The enzyme exhibited optimum catalytic activity at pH 5.5. Optimum temperature for GOD-catalyzed D-glucose oxidation was 40 degrees C. The enzyme displayed a high thermostability having a half-life (t(1/2)) of 30 min, enthalpy of denaturation (H*) of 99.66 kJ mol(-1), and free energy of denaturation (G*) of 103.63 kJ mol(-1). These characteristics suggest that GOD from A. niger NFCCP can be used as an analytical reagent and in the design of biosensors for clinical, biochemical, and diagnostic assays.  相似文献   

5.
Glucose oxidase (GOD) was immobilized on cellulose acetate-polymethylmethacrylate (CA-PMMA) membrane. The immobilized GOD showed better performance as compared to the free enzyme in terms of thermal stability retaining 46% of the original activity at 70 degrees C where the original activity corresponded to that obtained at 20 degrees C. FT-IR and SEM were employed to study the membrane morphology and structure after treatment at 70 degrees C. The pH profile of the immobilized and the free enzyme was found to be similar. A 2.4-fold increase in Km value was observed after immobilization whereas Vmax value was lower for the immobilized GOD. Immobilized glucose oxidase showed improved operational stability by maintaining 33% of the initial activity after 35 cycles of repeated use and was found to retain 94% of activity after 1 month storage period. Improved resistance against urea denaturation was achieved and the immobilized glucose oxidase retained 50% of the activity without urea in the presence of 5M urea whereas free enzyme retained only 8% activity.  相似文献   

6.
An important requirement of immobilized enzyme based biosensors is the thermal stability of the enzyme. Studies were carried out to increase thermal stability of glucose oxidase (GOD) for biosensor applications. Immobilization of the enzyme was carried out using glass beads as support and the effect of silane concentration (in the range 1-10%) during the silanization step on the thermal stability of GOD has been investigated. Upon incubation at 70 degrees C for 3h, the activity retention with 1% silane was only 23%, which increased with silane concentration to reach a maximum up to 250% of the initial activity with 4% silane. Above this concentration the activity decreased. The increased stability of the enzyme in the presence of high silane concentrations may be attributed to the increase in the surface hydrophobicity of the support. The decrease in the enzyme stability for silane concentrations above 4% was apparently due to the uneven deposition of the silane layer on the glass bead support. Further work on thermal stability above 70 degrees C was carried out by using 4% silane and it was found that the enzyme was stable up to 75 degrees C with an increased activity of 180% after 3-h incubation. Although silanization has been used for the modification of the supports for immobilization of enzymes, the use of higher concentrations to stabilize immobilized enzymes is being reported for the first time.  相似文献   

7.
Hou X  Liu B  Deng X  Zhang B  Chen H  Luo R 《Analytical biochemistry》2007,368(1):100-110
In this study, micron-sized poly(styrene-co-glycidyl methacrylate) (PSt-GMA) fluorescent microspheres of 5.1microm in diameter were synthesized via dispersion polymerization of styrene and glycidyl methacrylate in the presence of 1,4-bis(5-phenyloxazol-2-yl) benzene (POPOP), which provided surface functional groups for covalent immobilization of enzymes. In an effort to study the biocompatibility of the microspheres' surface, glucose oxidase and beta-d-(+)-glucose were selected as a catalytic system for enzymatic assays. A colorimetric method was adopted in evaluating enzymatic activity by introducing horseradish peroxidase (HRP). Both the immobilization amount and the apparent activity of immobilized glucose oxidase from Aspergillus niger (GOD) were determined at different conditions. The results show that the immobilized enzymes retained approximately 28 to 34% activity, as compared with free enzymes, without pronounced alteration of the optimum pH and temperature. Kinetics studies show that the corresponding values of K(m) and V(max) are 23.2944 mM and 21.6450M/min.mg GOD for free enzymes and 35.1780 mM and 15.4799M/min.mg GOD for immobilized enzymes. The operational stability studies show that immobilized GOD could retain nearly 50% initial activity after being washed 20 times. The results suggest that the resultant PSt-GMA fluorescent microspheres provide a suitable surface for covalent immobilizing biomolecules; therefore, they have the potential of being used in fluorescence-based immunoassays in high-throughput screening or biosensors.  相似文献   

8.
Silica-encapsulated magnetic nanoparticles (MNPs) were prepared via microemulsion method. The products were characterized by high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectrum (EDS). MNPs with no observed cytotoxic activity against human lung carcinoma cell and brine shrimp lethality were used as suitable support for glucose oxidase (GOD) immobilization. Binding of GOD onto the support was confirmed by the FTIR spectra. The amount of immobilized GODs was 95 mg/g. Storage stability study showed that the immobilized GOD retained 98% of its initial activity after 45 days and 90% of the activity was also remained after 12 repeated uses. Considerable enhancements in thermal stabilities were observed for the immobilized GOD at elevated temperatures up to 80°C and the activity of immobilized enzyme was less sensitive to pH changes in solution.  相似文献   

9.
A method for isolating extracellular glucose oxidase from the fungus Penicillium funiculosum 46.1, using ultrafiltration membranes, was developed. Two samples of the enzyme with a specific activity of 914-956 IU were obtained. The enzyme exhibited a high catalytic activity at pH above 6.0. The effective rate constant of glucose oxidase inactivation at pH 2.6 and 16 degrees C was 2.74 x 10(-6) s-1. This constant decreased significantly as pH of the medium increased (4.0-10.0). The temperature optimum for glucose oxidase-catalyzed beta-D-glucose oxidation was in the range 30-65 degrees C. At temperatures below 30 degrees C, the activation energy for beta-D-glucose oxidation was 6.42 kcal/mol; at higher temperatures, this parameter was equal to 0.61 kcal/mol. Kinetic parameters of glucose oxidase-catalyzed delta-D-glucose oxidation depended on the initial concentration of the enzyme in the solution. Glucose oxidase also catalyzed the oxidation of 2-deoxy-D-glucose, maltose, and galactose.  相似文献   

10.
Thermal inactivation of glucose oxidase (GOD; beta-d-glucose: oxygen oxidoreductase), from Aspergillus niger, followed first order kinetics both in the absence and presence of additives. Additives such as lysozyme, NaCl, and K2SO4 increased the half-life of the enzyme by 3.5-, 33.4-, and 23.7-fold respectively, from its initial value at 60 degrees C. The activation energy increased from 60.3 kcal mol-1 to 72.9, 76.1, and 88.3 kcal mol-1, whereas the entropy of activation increased from 104 to 141, 147, and 184 cal x mol-1 x deg-1 in the presence of 7.1 x 10-5 m lysozyme, 1 m NaCl, and 0.2 m K2SO4, respectively. The thermal unfolding of GOD in the temperature range of 25-90 degrees C was studied using circular dichroism measurements at 222, 274, and 375 nm. Size exclusion chromatography was employed to follow the state of association of enzyme and dissociation of FAD from GOD. The midpoint for thermal inactivation of residual activity and the dissociation of FAD was 59 degrees C, whereas the corresponding midpoint for loss of secondary and tertiary structure was 62 degrees C. Dissociation of FAD from the holoenzyme was responsible for the thermal inactivation of GOD. The irreversible nature of inactivation was caused by a change in the state of association of apoenzyme. The dissociation of FAD resulted in the loss of secondary and tertiary structure, leading to the unfolding and nonspecific aggregation of the enzyme molecule because of hydrophobic interactions of side chains. This confirmed the critical role of FAD in structure and activity. Cysteine oxidation did not contribute to the nonspecific aggregation. The stabilization of enzyme by NaCl and lysozyme was primarily the result of charge neutralization. K2SO4 enhanced the thermal stability by primarily strengthening the hydrophobic interactions and made the holoenzyme a more compact dimeric structure.  相似文献   

11.
葡萄糖氧化酶的有机相共价固定化   总被引:1,自引:0,他引:1  
将葡萄糖氧化酶(GOD)在最适pH条件下冻干后,以戊二醛活化的壳聚糖为载体,分别在传统水相和1,4-二氧六环、乙醚、乙醇三种不同的有机相中进行共价固定化。通过比较水相固定化酶和有机相固定化酶的酶比活力、酶学性质及酶动力学参数,考察酶在有机相中的刚性特质对酶在共价固定化过程中保持酶活力的影响。结果表明,戊二醛浓度为0.1%、加酶量为80 mg/1 g载体、含水1.6%的1,4-二氧六环有机相固定化GOD与水相共价固定化GOD相比,酶比活力提高2.9倍,有效酶活回收率提高3倍;在连续使用7次后,1,4-二氧六环有机相固定化GOD的酶活力仍为相应水相固定化酶的3倍。在酶动力学参数方面,不论是表观米氏常数,最大反应速度还是转换数,1,4-二氧六环有机相固定化的GOD(Kmapp=5.63 mmol/L,Vmax=1.70μmol/(min.mgGOD),Kcat=0.304 s-1)都优于水相共价固定化GOD(Kmapp=7.33 mmol/L,Vmax=1.02μmol/(min.mg GOD),Kcat=0.221 s-1)。因此,相比于传统水相,GOD在合适的有机相中进行共价固定化可以获得具有更高酶活力和更优催化性质的固定化酶。该发现可能为酶蛋白在共价固定化时因构象改变而丢失生物活性的问题提供解决途径。  相似文献   

12.
We proposed a yeast transformant cell incorporating the Aspergillus niger glucose oxidase gene (GOX gene), which is capable of constitutively as well as secretory expression. The GOX gene has been cloned in this study. This conclusion is based on the following: first, the ligated DNA determined by electrophoresis, was a 1489-1882bp fragment, close to the size of glucose oxidase (GOD), which is 1818bp. Secondly, the single open reading frame encoded a protein of 605 amino acids. Thirdly, secreted GOD recombinant proteins in the culture supernatants of the GOX gene transformant migrated as a single band in SDS-PAGE with an apparent molecular mass of between 75,000 and 100,000 Da, which is glycosylated GOD by the Pichia pastoris X-33 host machinery during the secretion process. Finally, the clones were cultured and secreted a protein, which possessed the GOD activity of catalyzing beta-d-glucose oxidation. With regard to the pH characteristics, the activity was more than 80% of the maximum activity in the range between pH 5 and pH 7. As for the temperature characteristics, the activity was not less than 92% of the maximum in the temperature range between 10 and 45 degrees C. The GOX gene transformant was able to maintain the GOD enzyme activity and produce recombinant GOD continuously for at least 2 weeks.  相似文献   

13.
Glucose oxidase (GOD) was genetically modified by adding a poly-lysine chain at the C-terminal with a peptide linker inserted between the enzyme and poly-lysine chain. The poly-lysine chain was added in order to anchor more electron transfer mediator, ferrocenecarboxylic acid, to GOD for the purpose of improving sensitivity and stability of glucose biosensors. The modified GOD had similar K(m) and K(cat) to those of the wild type enzyme. After interacted with the electron transfer mediator, the modified enzyme retained 90.01% of its native activity, while the commercial GOD and the wild type GOD (Aspergillus niger) retained only 22.43 and 22.17%, respectively. Screen-printed electrodes coated with the modified GOD, wild type yeast-derived GOD or the commercial GOD were tested in glucose solution of different concentrations. Experimental results showed that the biosensor based on the modified GOD gave the largest signal among the three. In addition, the linear range of the biosensor prepared by the modified GOD could extend to 45 mM, while they were about 20 mM for the biosensors based on the wild type yeast-derived enzyme and the commercial enzyme.  相似文献   

14.
Ahmad A  Akhtar MS  Bhakuni V 《Biochemistry》2001,40(7):1945-1955
Glucose oxidase (GOD) from Aspergillus niger is an acidic dimeric enzyme having a high degree of localization of negative charges on the enzyme surface and dimer interface. We have studied the effect of monovalent cations on the structure and stability of GOD using various optical spectroscopic techniques, limited proteolysis, size exclusion chromatography, differential scanning calorimetry, and enzymic activity measurements. The monovalent cations were found to influence the enzymic activity and tertiary structure of GOD, but no effect on the secondary structure of the enzyme was observed. The monovalent cation-stabilized GOD was found to have a more compact dimeric structure but lower enzymic activity than the native enzyme. The enzyme's K(m) for D-glucose was found to be slightly enhanced for the monovalent cation-stabilized enzyme (maximum enhancement of about 35% for LiCl) as compared to native GOD. Comparative denaturation studies on the native and monovalent cation-stabilized enzyme demonstrated a significant resistance of cation-stabilized GOD to urea (about 50% residual activity at 6.5 M urea) and thermal denaturation (Delta T(m) maximum of 10 degrees C compared to native enzyme). However, pH-induced denaturation showed a destabilization of monovalent cation-stabilized GOD as compared to the native enzyme. The effectiveness of monovalent cations in stabilizing GOD structure against urea and thermal denaturation was found to follow the Hofmeister series: K(+) > Na(+) > Li(+).  相似文献   

15.
Glucose oxidase (GOD) was covalently immobilized onto Fe3O4/SiO2 magnetic nanoparticles (FSMNs) using glutaraldehyde (GA). Optimal immobilization was at pH 6 with 3-aminopropyltriethoxysilane at 2% (v/v), GA at 3% (v/v) and 0.143 g GOD per g carrier. The activity of immobilized GOD was 4,570 U/g at pH 7 and 50°C. The immobilized GOD retained 80% of its initial activity after 6 h at 45°C while free enzyme retained only 20% activity. The immobilized GOD maintained 60% of its initial activity after 6 cycles of repeated use and retained 75% of its initial activity after 1 month at 4°C whereas free enzymes retained 62% of its activity.  相似文献   

16.
The preparations and performances of the novel amperometric biosensors for glucose based on immobilized glucose oxidase (GOD) on modified Pt electrodes are described. Two types of modified electrodes for the enzyme immobilization were used in this study, polyvinylferrocene (PVF) coated Pt electrode and gold deposited PVF coated Pt electrode. A simple method for the immobilization of GOD enzyme on the modified electrodes was described. The enzyme electrodes developed in this study were called as PVF-GOD enzyme electrode and PVF-Au-GOD enzyme electrode, respectively. The amperometric responses of the enzyme electrodes were measured at constant potential, which was due to the electrooxidation of enzymatically produced H2O2. The electrocatalytic effects of the polymer, PVF, and the gold particles towards the electrooxidation of the enzymatically generated H2O2 offers sensitive and selective monitoring of glucose. The biosensor based on PVF-Au-GOD electrode has 6.6 times larger maximum current, 3.8 times higher sensitivity and 1.6 times larger linear working portion than those of the biosensor based on PVF-GOD electrode. The effects of the applied potential, the thickness of the polymeric film, the amount of the immobilized enzyme, pH, the amount of the deposited Au, temperature and substrate concentration on the responses of the biosensors were investigated. The optimum pH was found to be pH 7.4 at 25 degrees C. Finally the effects of interferents, stability of the biosensors and applicability to serum analysis of the biosensor were also investigated.  相似文献   

17.
1. Pure or impure C-type phospholipases hydrolysed rat liver microsomal phosphatides in situ at 5 degrees or 37 degrees C. At 5 degrees C mean hydrolysis of total phospholipids was 90% by Bacillus cereus and 75% by Clostridium perfringens (Clostridium welchii) C-type phospholipases. 2. Four degrees of inhibition of glucose 6-phosphatase (D-glucose 6-phosphate phosphohydrolase; EC 3.1.3.9) resulted. (a) At 37 degrees C inhibition was virtually complete and apparently irreversible. (b) At 5 degrees C phospholipase C inhibited 50-87% of the activity expressed by intact control microsomal fractions. (c) Bovine serum albumin present during delipidation alleviated most of this inhibition: at 5 degrees C phospholipase C plus bovine serum albumin inhibited by 0-35% (mean 18%):simultaneous stimulation by the destruction of its latency seems to offset glucose 6-phosphatase inhibition, sometimes completely. (d) If latency was first destroyed, phospholipase C plus bovine serum albumin inhibited 30-50% of total glucose 6-phosphatase activity at 5 degrees C. Only this inhibition is likely largely to reflect the lower availability of phospholipids, essential for maximal enzyme activity, as it is virtually completely reversed by added phospholipid dispersions. Co-dispersions of phosphatidylserine plus phosphatidylcholine (1:1, w/w) were especially effective but Triton X-100 was unable effectively to restore activity. 3. Considerable glucose 6-phosphatase activity survived 240min of treatment with phospholipase C at 5 degrees C, but in the absence of substrate or at physiological glucose 6-phosphate concentrations the delipidated enzyme was completely inactivated within 10min at 37 degrees C. However, 80mM-glucose 6-phosphate stabilized it and phospholipid dispersions substantially restored thermal stability. 4. It is concluded that glucose 6-phosphatase is at least partly phospholipid-dependent, and complete dependence is not excluded. For reasons discussed it is impossible yet to be certain which phospholipid class(es) the enzyme requires for activity.  相似文献   

18.
Glucose oxidase (GOD), horseradish peroxidase (HRP), and lactate oxidase (LOD) were covalently immobilized on special NH(2)-functionalized glass and on a novel NH(2)-cellulose film via 13 different coupling reagents. The properties of these immobilized enzymes, such as activity, storage stability, and thermostability, are strongly dependent on the coupling reagent. For example, GOD immobilized by cyanuric chloride on the NH(2)-cellulose film loses approximately half of its immobilized activity after 30 days of storage at 4 degrees C or after treatment at 65 degrees C for 30 min. In contrast, GOD immobilized by L-ascorbic acid onto the same NH(2)-cellulose film retains 90% of its initial activity after 1 year of storage at 4 degrees C and 92% after heat treatment at 65 degrees C for 30 min. Unlike GOD, in the case of LOD only immobilization on special NH(2)-functionalized glass, e.g., via cyanuric chloride, led to a stabilization of the enzyme activity in comparison to the native enzyme. The operational stability of immobilized HRP was up to 40 times higher than that of the native enzyme if coupling to the new NH(2)-cellulose film led to an amide or sulfonamide bond. Regarding the kinetics of the immobilized enzymes, the coupling reagent plays a minor role for the enzyme substrate affinity, which is characterized by the apparent Michaelis constant (K(M,app)). The NH(2)-functionalized support material as well as the immobilized density of the protein and/or immobilized activity has a strong influence on the K(M,app) value. In all cases, K(M,app) decreases with increasing immobilized enzyme protein density and particularly drastically for GOD.  相似文献   

19.
AIMS: To obtain an optimal combination of agitation speed and aeration rate for maximization of specific glucose oxidase (GOD) production in recombinant Saccharomyces cerevisiae, and to establish a correlation between kLa vis-à-vis oxygen transfer condition and specific glucose oxidase production. METHODS AND RESULTS: The oxygen transfer condition was manifested indirectly by manipulating the impeller speed and aeration rate in accordance with a Central Composite Rotatory Design (CCRD). The dissolved oxygen concentration and the volumetric oxygen transfer coefficient (kLa) were determined at corresponding combinations of impeller speed and aeration rate. The maximal specific extracellular glucose oxidase production (3.17 U mg-1 dry cell mass) was achieved when the initial dissolved oxygen concentration was 6.83 mg l-1 at the impeller speed of 420 rev min-1 and at the rate of aeration of 0.25 vvm. It was found out that while impeller speed had a direct effect on the production of enzyme, a correlation between kLa and specific GOD production could not be established. CONCLUSION: At the agitation speed of 420 rev min-1 and at 0.25 vvm aeration rate, the degree of turbulence and the dissolved oxygen concentration were thought to be optimal both for cellular growth and production of enzyme. SIGNIFICANCE AND IMPACT OF THE STUDY: The combined effect of agitation and aeration on recombinant glucose oxidase production in batch cultivation has not yet been reported in the literature. Therefore, this study gives an insight into the effect of these two important physical parameters on recombinant protein production. It also suggests that since there is no correlation between kLa and specific production of GOD, kLa should not be used as one of the scale-up parameters.  相似文献   

20.
A novel amperometric glucose sensor was constructed by immobilizing glucose oxidase (GOD) in a titania sol-gel film, which was prepared with a vapor deposition method. The sol-gel film was uniform, porous and showed a very low mass transport barrier and a regular dense distribution of GOD. Titania sol-gel matrix retained the native structure and activity of entrapped enzyme and prevented the cracking of conventional sol-gel glasses and the leaking of enzyme out of the film. With ferrocenium as a mediator the glucose sensor exhibited a fast response, a wide linear range from 0.07 to 15 mM. It showed a good accuracy and high sensitivity as 7.2 microA cm(-2) mM(-1). The general interferences coexisted in blood except ascorbic acid did not affect glucose determination, and coating Nafion film on the sol-gel film could eliminate the interference from ascorbic acid. The serum glucose determination results obtained with a flow injection analysis (FIA) system showed an acceptable accuracy, a good reproducibility and stability and indicated the sensor could be used in FIA determination of glucose. The vapor deposition method could fabricate glucose sensor in batches with a very small amount of enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号