首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.

Background

Lactobacillus salivarius strains are increasingly being exploited for their probiotic properties in humans and animals. Dissemination of antibiotic resistance genes among species with food or probiotic-association is undesirable and is often mediated by plasmids or integrative and conjugative elements. L. salivarius strains typically have multireplicon genomes including circular megaplasmids that encode strain-specific traits for intestinal survival and probiotic activity. Linear plasmids are less common in lactobacilli and show a very limited distribution in L. salivarius. Here we present experimental evidence that supports an unusually complex multireplicon genome structure in the porcine isolate L. salivarius JCM1046.

Results

JCM1046 harbours a 1.83 Mb chromosome, and four plasmids which constitute 20% of the genome. In addition to the known 219 kb repA-type megaplasmid pMP1046A, we identified and experimentally validated the topology of three additional replicons, the circular pMP1046B (129 kb), a linear plasmid pLMP1046 (101 kb) and pCTN1046 (33 kb) harbouring a conjugative transposon. pMP1046B harbours both plasmid-associated replication genes and paralogues of chromosomally encoded housekeeping and information-processing related genes, thus qualifying it as a putative chromid. pLMP1046 shares limited sequence homology or gene synteny with other L. salivarius plasmids, and its putative replication-associated protein is homologous to the RepA/E proteins found in the large circular megaplasmids of L. salivarius. Plasmid pCTN1046 harbours a single copy of an integrated conjugative transposon (Tn6224) which appears to be functionally intact and includes the tetracycline resistance gene tetM.

Conclusion

Experimental validation of sequence assemblies and plasmid topology resolved the complex genome architecture of L. salivarius JCM1046. A high-coverage draft genome sequence would not have elucidated the genome complexity in this strain. Given the expanding use of L. salivarius as a probiotic, it is important to determine the genotypic and phenotypic organization of L. salivarius strains. The identification of Tn6224-like elements in this species has implications for strain selection for probiotic applications.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-771) contains supplementary material, which is available to authorized users.  相似文献   

3.

Background

Transposable elements constitute an important part of the genome and are essential in adaptive mechanisms. Transposition events associated with phenotypic changes occur naturally or are induced in insertional mutant populations. Transposon mutagenesis results in multiple random insertions and recovery of most/all the insertions is critical for forward genetics study. Using genome next-generation sequencing data and appropriate bioinformatics tool, it is plausible to accurately identify transposon insertion sites, which could provide candidate causal mutations for desired phenotypes for further functional validation.

Results

We developed a novel bioinformatics tool, ITIS (Identification of Transposon Insertion Sites), for localizing transposon insertion sites within a genome. It takes next-generation genome re-sequencing data (NGS data), transposon sequence, and reference genome sequence as input, and generates a list of highly reliable candidate insertion sites as well as zygosity information of each insertion. Using a simulated dataset and a case study based on an insertional mutant line from Medicago truncatula, we showed that ITIS performed better in terms of sensitivity and specificity than other similar algorithms such as RelocaTE, RetroSeq, TEMP and TIF. With the case study data, we demonstrated the efficiency of ITIS by validating the presence and zygosity of predicted insertion sites of the Tnt1 transposon within a complex plant system, M. truncatula.

Conclusion

This study showed that ITIS is a robust and powerful tool for forward genetic studies in identifying transposable element insertions causing phenotypes. ITIS is suitable in various systems such as cell culture, bacteria, yeast, insect, mammal and plant.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0507-2) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

There are over a half a million copies of L1 retroelements in the human genome which are responsible for as much as 0.5% of new human genetic diseases. Most new L1 inserts arise from young source elements that are polymorphic in the human genome. Highly active polymorphic “hot” L1 source elements have been shown to be capable of extremely high levels of mobilization and result in numerous instances of disease. Additionally, hot polymorphic L1s have been described to be highly active within numerous cancer genomes. These hot L1s result in mutagenesis by insertion of new L1 copies elsewhere in the genome, but also have been shown to generate additional full length L1 insertions which are also hot and able to further retrotranspose. Through this mechanism, hot L1s may amplify within a tumor and result in a continued cycle of mutagenesis.

Results and conclusions

We have developed a method to detect full-length, polymorphic L1 elements using a targeted next generation sequencing approach, Sequencing Identification and Mapping of Primed L1 Elements (SIMPLE). SIMPLE has 94% sensitivity and detects nearly all full-length L1 elements in a genome. SIMPLE will allow researchers to identify hot mutagenic full-length L1s as potential drivers of genome instability. Using SIMPLE we find that the typical individual has approximately 100 non-reference, polymorphic L1 elements in their genome. These elements are at relatively low population frequencies relative to previously identified polymorphic L1 elements and demonstrate the tremendous diversity in potentially active L1 elements in the human population.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1374-y) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background

Transposons are useful tools for creating transgenic organisms, insertional mutagenesis, and genome engineering. TcBuster, a novel hAT-family transposon system derived from the red flour beetle Tribolium castaneum, was shown to be highly active in previous studies in insect embryoes.

Methodology/Principal Findings

We tested TcBuster for its activity in human embryonic kidney 293 (HEK-293) cells. Excision footprints obtained from HEK-293 cells contained small insertions and deletions consistent with a hAT-type repair mechanism of hairpin formation and non-homologous end-joining. Genome-wide analysis of 23,417 piggyBac, 30,303 Sleeping Beauty, and 27,985 TcBuster integrations in HEK-293 cells revealed a uniquely different integration pattern when compared to other transposon systems with regards to genomic elements. TcBuster experimental conditions were optimized to assay TcBuster activity in HEK-293 cells by colony assay selection for a neomycin-containing transposon. Increasing transposon plasmid increased the number of colonies, whereas gene transfer activity dependent on codon-optimized transposase plasmid peaked at 100 ng with decreased colonies at the highest doses of transposase DNA. Expression of the related human proteins Buster1, Buster3, and SCAND3 in HEK-293 cells did not result in genomic integration of the TcBuster transposon. TcBuster, Tol2, and piggyBac were compared directly at different ratios of transposon to transposase and found to be approximately comparable while having their own ratio preferences.

Conclusions/Significance

TcBuster was found to be highly active in mammalian HEK-293 cells and represents a promising tool for mammalian genome engineering.  相似文献   

6.

Background

Mobile elements are active in the human genome, both in the germline and cancers, where they can mutate driver genes.

Results

While analysing whole genome paired-end sequencing of oesophageal adenocarcinomas to find genomic rearrangements, we identified three ways in which new mobile element insertions appear in the data, resembling translocation or insertion junctions: inserts where unique sequence has been transduced by an L1 (Long interspersed element 1) mobile element; novel inserts that are confidently, but often incorrectly, mapped by alignment software to L1s or polyA tracts in the reference sequence; and a combination of these two ways, where different sequences within one insert are mapped to different loci. We identified nine unique sequences that were transduced by neighbouring L1s, both L1s in the reference genome and L1s not present in the reference. Many of the resulting inserts were small fragments that include little or no recognisable mobile element sequence. We found 6 loci in the reference genome to which sequence reads from inserts were frequently mapped, probably erroneously, by alignment software: these were either L1 sequence or particularly long polyA runs. Inserts identified from such apparent rearrangement junctions averaged 16 inserts/tumour, range 0–153 insertions in 43 tumours. However, many inserts would not be detected by mapping the sequences to the reference genome, because they do not include sufficient mappable sequence. To estimate total somatic inserts we searched for polyA sequences that were not present in the matched normal or other normals from the same tumour batch, and were not associated with known polymorphisms. Samples of these candidate inserts were verified by sequencing across them or manual inspection of surrounding reads: at least 85 % were somatic and resembled L1-mediated events, most including L1Hs sequence. Approximately 100 such inserts were detected per tumour on average (range zero to approximately 700).

Conclusions

Somatic mobile elements insertions are abundant in these tumours, with over 75 % of cases having a number of novel inserts detected. The inserts create a variety of problems for the interpretation of paired-end sequencing data.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1685-z) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background  

A large fraction of the human genome is attributable to L1 retrotransposon sequences. Not only do L1s themselves make up a significant portion of the genome, but L1-encoded proteins are thought to be responsible for the transposition of other repetitive elements and processed pseudogenes. In addition, L1s can mobilize non-L1, 3'-flanking DNA in a process called 3' transduction. Using computational methods, we collected DNA sequences from the human genome for which we have high confidence of their mobilization through L1-mediated 3' transduction.  相似文献   

8.

Background

The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs) in this symbiotic ectomycorrhizal fungus. Using a TE-specific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome.

Methodology/Principal Findings

TEs occupy 24% of the 60 Mb L. bicolor genome and represent 25,787 full-length and partial copy elements distributed within 171 families. The most abundant elements were the Copia-like. TEs are not randomly distributed across the genome, but are tightly nested or clustered. The majority of TEs exhibits signs of ancient transposition except some intact copies of terminal inverted repeats (TIRS), long terminal repeats (LTRs) and a large retrotransposon derivative (LARD) element. There were three main periods of TE expansion in L. bicolor: the first from 57 to 10 Mya, the second from 5 to 1 Mya and the most recent from 0.5 Mya ago until now. LTR retrotransposons are closely related to retrotransposons found in another basidiomycete, Coprinopsis cinerea.

Conclusions

This analysis 1) represents an initial characterization of TEs in the L. bicolor genome, 2) contributes to improve genome annotation and a greater understanding of the role TEs played in genome organization and evolution and 3) provides a valuable resource for future research on the genome evolution within the Laccaria genus.  相似文献   

9.

Background

Although the human genome sequence was declared complete in 2004, the sequence was interrupted by 341 gaps of which 308 lay in an estimated approximately 28 Mb of euchromatin. While these gaps constitute only approximately 1% of the sequence, knowledge of the full complement of human genes and regulatory elements is incomplete without their sequences.

Results

We have used a combination of conventional chromosome walking (aided by the availability of end sequences) in fosmid and bacterial artificial chromosome (BAC) libraries, whole chromosome shotgun sequencing, comparative genome analysis and long PCR to finish 8 of the 11 gaps in the initial chromosome 22 sequence. In addition, we have patched four regions of the initial sequence where the original clones were found to be deleted, or contained a deletion allele of a known gene, with a further 126 kb of new sequence. Over 1.018 Mb of new sequence has been generated to extend into and close the gaps, and we have annotated 16 new or extended gene structures and one pseudogene.

Conclusion

Thus, we have made significant progress to completing the sequence of the euchromatic regions of human chromosome 22 using a combination of detailed approaches. Our experience suggests that substantial work remains to close the outstanding gaps in the human genome sequence.  相似文献   

10.
11.

Background -  

The availability of multiple whole genome sequences has facilitated in silico identification of fixed and polymorphic transposable elements (TE). Whereas polymorphic loci serve as makers for phylogenetic and forensic analysis, fixed species-specific transposon insertions, when compared to orthologous loci in other closely related species, may give insights into their evolutionary significance. Besides, TE insertions are not isolated events and are frequently associated with subtle sequence changes concurrent with insertion or post insertion. These include duplication of target site, 3' and 5' flank transduction, deletion of the target locus, 5' truncation or partial deletion and inversion of the transposon, and post insertion changes like inter or intra element recombination, disruption etc. Although such changes have been studied independently, no automated platform to identify differential transposon insertions and the associated array of sequence changes in genomes of the same or closely related species is available till date. To this end, we have designed RISCI - 'Repeat Induced Sequence Changes Identifier' - a comprehensive, comparative genomics-based, in silico subtractive hybridization pipeline to identify differential transposon insertions and associated sequence changes using specific alignment signatures, which may then be examined for their downstream effects.  相似文献   

12.

Background

An enhanced understanding of the hookworm genome and its resident mobile genetic elements should facilitate understanding of the genome evolution, genome organization, possibly host-parasite co-evolution and horizontal gene transfer, and from a practical perspective, development of transposon-based transgenesis for hookworms and other parasitic nematodes.

Methodology/Principal Findings

A novel mariner-like element (MLE) was characterized from the genome of the dog hookworm, Ancylostoma caninum, and termed bandit. The consensus sequence of the bandit transposon was 1,285 base pairs (bp) in length. The new transposon was flanked by perfect terminal inverted repeats of 32 nucleotides in length with a common target site duplication TA, and it encoded an open reading frame (ORF) of 342 deduced amino acid residues. Phylogenetic comparisons confirmed that the ORF encoded a mariner-like transposase, which included conserved catalytic domains, and that the bandit transposon belonged to the cecropia subfamily of MLEs. The phylogenetic analysis also indicated that the Hsmar1 transposon from humans was the closest known relative of bandit, and that bandit and Hsmar1 constituted a clade discrete from the Tc1 subfamily of MLEs from the nematode Caenorhabditis elegans. Moreover, homology models based on the crystal structure of Mos1 from Drosophila mauritiana revealed closer identity in active site residues of the catalytic domain including Ser281, Lys289 and Asp293 between bandit and Hsmar1 than between Mos1 and either bandit or Hsmar1. The entire bandit ORF was amplified from genomic DNA and a fragment of the bandit ORF was amplified from RNA, indicating that this transposon is actively transcribed in hookworms.

Conclusions/Significance

A mariner-like transposon termed bandit has colonized the genome of the hookworm A. caninum. Although MLEs exhibit a broad host range, and are identified in other nematodes, the closest phylogenetic relative of bandit is the Hsmar1 element of humans. This surprising finding suggests that bandit was transferred horizontally between hookworm parasites and their mammalian hosts.  相似文献   

13.

Background

We identify DNA transposons from the completed draft genome sequence of Daphnia pulex, a cyclically parthenogenetic, aquatic microcrustacean of the class Branchiopoda. In addition, we experimentally quantify the abundance of six DNA transposon families in mutation-accumulation lines in which sex is either promoted or prohibited in order to better understand the role of recombination in transposon proliferation.

Results

We identified 55 families belonging to 10 of the known superfamilies of DNA transposons in the genome of D. pulex. DNA transposons constitute approximately 0.7% of the genome. We characterized each family and, in many cases, identified elements capable of activity in the genome. Based on assays of six putatively active element families in mutation-accumulation lines, we compared DNA transposon abundance in lines where sex was either promoted or prohibited. We find the major difference in abundance in sexuals relative to asexuals in lab-reared lines is explained by independent assortment of heterozygotes in lineages where sex has occurred.

Conclusions

Our examination of the duality of sex as a mechanism for both the spread and elimination of DNA transposons in the genome reveals that independent assortment of chromosomes leads to significant copy loss in lineages undergoing sex. Although this advantage may offset the so-called 'two fold cost of sex' in the short-term, if insertions become homozygous at specific loci due to recombination, the advantage of sex may be decreased over long time periods. Given these results, we discuss the potential effects of sex on the dynamics of DNA transposons in natural populations of D. pulex.  相似文献   

14.
15.

Background  

The molecular organization of very few genetically defined CACTA transposon systems have been characterized thoroughly as those of Spm/En in maize, Tam1 of Antirrhinum majus Candystripe1 (Cs1) from Sorghum bicolor and CAC1 from Arabidopsis thaliana, for example. To date, only defective deletion derivatives of CACTA elements have been described for soybean, an economically important plant species whose genome sequence will be completed in 2008.  相似文献   

16.
17.
Tigger elements are human DNA transposons homologous to the pogo element of Drosophila melanogaster. They contain an open reading frame for a transposase very similar to the major mammalian centromere protein CENP-B. We found in the horse genome a DNA element (Ecatig3) sharing 88% homology with human Tigger3. The presence of Tigger elements in the horse genome confirms previous data that date these elements before the divergence between Perissodactyla and Primates (80–90 Myr ago). Copy number evaluation indicates that the horse element is much more abundant than its human counterpart. Southern blot analysis demonstrates that Ecatig3 elements are extremely homogeneous; this may indicate that the evolution of this DNA transposon has been driven by some kind of selection and has not been neutral.The nucleotide sequence data reported in this paper have been submitted to GenBank and have been assigned the accession number AY382599.  相似文献   

18.
19.

Background

Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES) are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding.

Result

To develop such valuable resources in common carp (Cyprinus carpio), a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp.

Conclusion

BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3,100 microsyntenies, covering over 50% of the zebrafish genome. BES of common carp are tremendous tools for comparative mapping between the two closely related species, zebrafish and common carp, which should facilitate both structural and functional genome analysis in common carp.  相似文献   

20.

Background

Swine is an important agricultural commodity and biomedical model. Manipulation of the pig genome provides opportunity to improve production efficiency, enhance disease resistance, and add value to swine products. Genetic engineering can also expand the utility of pigs for modeling human disease, developing clinical treatment methodologies, or donating tissues for xenotransplantation. Realizing the full potential of pig genetic engineering requires translation of the complete repertoire of genetic tools currently employed in smaller model organisms to practical use in pigs.

Results

Application of transposon and recombinase technologies for manipulation of the swine genome requires characterization of their activity in pig cells. We tested four transposon systems- Sleeping Beauty, Tol2, piggyBac, and Passport in cultured porcine cells. Transposons increased the efficiency of DNA integration up to 28-fold above background and provided for precise delivery of 1 to 15 transgenes per cell. Both Cre and Flp recombinase were functional in pig cells as measured by their ability to remove a positive-negative selection cassette from 16 independent clones and over 20 independent genomic locations. We also demonstrated a Cre-dependent genetic switch capable of eliminating an intervening positive-negative selection cassette and activating GFP expression from episomal and genome-resident transposons.

Conclusion

We have demonstrated for the first time that transposons and recombinases are capable of mobilizing DNA into and out of the porcine genome in a precise and efficient manner. This study provides the basis for developing transposon and recombinase based tools for genetic engineering of the swine genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号