首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 543 毫秒
1.
This article reports, for the first time, on the absolute configuration of (+)-9-benzyloxy-α-dihydrotetrabenazine ( 8 ), as determined from the perspective of X-ray crystallography. Compound 8 was prepared by a six-step reaction using 3-benzyloxy-4-methoxybenzaldehyde ( 1 ) as a starting material. The X-ray crystal diffraction structure of two compounds, racemic 9-benzyloxy-tetrabenazine ( 5 ) and the diastereomeric salt of compound 8 , is also described for the first time in this article. The X-ray results and the chiral HPLC helped elucidate that compound 8 has an absolute configuration as 2R,3R,11bR. The crystal structure of racemic compound 5 contains two symmetry- independent molecules in the unit cell. Interestingly, while they are structural isomers, they are enantiomers, too, i.e., in solution, because they are not mirror images of each other in the crystal lattice. In order to elucidate the intermolecular interaction mechanism of the diastereomeric salt of compound 8 , its crystal packing was investigated with regard to the weak interactions, such as salt bridge, OH…O and CH…O hydrogen bonds, and intermolecular CH…π interaction. The results showed that the carbonyl-assisted salt bridges and the OH…O hydrogen bonds formed polar columns in the crystal structure of the diastereomeric salt of compound 8 , resembling butterflies with open wings as viewed along the c-axis. These polar columns were extended to three-dimensional network by intermolecular CH…O hydrogen bonds and intermolecular CH…π interactions. Chirality, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Abstract

Isocytosines are formal analogue of isoguanines for pairing with hydrogen bonds and are substrates for target enzymes for chemotherapy of infections diseases. The compound 5-bromo-6-benzylamino isocytosine crysta-Nized in space group P21/c with a =11.393(1)Å. b = 7.341(2)Å, c = 14.425(1) Å, β = 92.06(2)°. The structure was determined by heavy atom methods and refined by full matrix least squares to R = 6.8% based on 1935 X-ray structure amplitudes. The isocytosine ring in the molecule is protonated at N(3) with internal bond angle of 122° compared to 117° at N(1). The structure is stabilized by intermolecular hydrogen bonding pattern based on N-H.N and N-H…O hydrogen bonds.  相似文献   

3.
A terminally protected acyclic tetrapeptide has been synthesized, and the crystal structure of its hydrated form, Boc‐Tyr‐Aib‐Tyr‐Ile‐OMe·2H2O ( 1 ), has been determined directly from powder X‐ray diffraction data. The backbone conformation of tetrapeptide ( 1 ) exhibiting two consecutive β‐turns is stabilized by two 4 → 1 intramolecular N―H · · · O hydrogen bonds. In the crystalline state, the tetrapeptide molecules are assembled through water‐mediated O―H · · · O hydrogen bonds to form two‐dimensional molecular sheets, which are further linked by intermolecular C―H · · · O hydrogen bonds into a three‐dimensional supramolecular framework. The molecular electrostatic potential (MEP) surface of ( 1 ) has been used to supplement the crystallographic observations. The nature of intermolecular interactions in ( 1 ) has been analyzed quantitatively through the Hirshfeld surface and two‐dimensional fingerprint plot. The DFT optimized molecular geometry of ( 1 ) agrees closely with that obtained from the X‐ray structure analysis. The present structure analysis of Boc‐Tyr‐Aib‐Tyr‐Ile‐OMe·2H2O ( 1 ) represents a case where ab‐initio crystal structure of an acyclic tetrapeptide with considerable molecular flexibility has been accomplished from laboratory X‐ray powder diffraction data. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
In the present paper we describe the synthesis, purification, single crystal x-ray analysis, and solution conformational characterization of the cyclic tetrapeptide cyclo-(L-Pro-beta-Ala-L-Pro-beta-Ala). This peptide was synthesized by classical solution methods and the cyclization of the free tetrapeptide was accomplished in good yields in diluted methylene chloride solution using N,N-dicyclohexyl-carbodiimide (DCCI). The compound crystallizes in the orthorombic space group P2(1)2(1)2(1) from ethyl acetate. All peptide bonds are trans. The molecular conformation is stabilized by two intramolecular hydrogen bonds between the CO and NH groups of the two beta-alanine residues. These hydrogen bonds take place in a C7 structure in which both proline residues occupy the 2 position of an inverse gamma-turn. The two beta-alanine residues have a typical folded conformation (around the C alpha-C beta bond) observed in other cyclic peptides containing this residue. A detailed 1H-nmr analysis in CD3CN solution has been carried out. The molecule assumes a twofold symmetry in solution with a molecular conformation consistent with that observed in the solid state.  相似文献   

5.
The nest is a protein motif of three consecutive amino acid residues with dihedral angles 1,2‐αRαL (RL nests) or 1,2‐αLαR (LR nests). Many nests form a depression in which an anion or δ‐negative acceptor atom is bound by hydrogen bonds from the main chain NH groups. We have determined the extent and nature of this bridging in a database of protein structures using a computer program written for the purpose. Acceptor anions are bound by a pair of bridging hydrogen bonds in 40% of RL nests and 20% of LR nests. Two thirds of the bridges are between the NH groups at Positions 1 and 3 of the motif (N1N3‐bridging)—which confers a concavity to the nest; one third are of the N2N3 type—which does not. In bridged LR nests N2N3‐bridging predominates (14% N1N3: 75% N2N3), whereas in bridged RL nests the reverse is true (69% N1N3: 25% N2N3). Most bridged nests occur within larger motifs: 45% in (hexapeptide) Schellman loops with an additional 4 → 0 hydrogen bond (N1N3), 11% in Schellman loops with an additional 5 → 1 hydrogen bond (N2N3), 12% in a composite structure including a type 1β‐bulge loop and an asx‐ or ST‐ motif (N1N3)—remarkably homologous to the N1N3‐bridged Schellman loop—and 3% in a composite structure including a type 2β‐bulge loop and an asx‐motif (N2N3). A third hydrogen bond is a previously unrecognized feature of Schellman loops as those lacking bridged nests have an additional 4 → 0 hydrogen bond. Proteins 2014; 82:3023–3031. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
A pentapeptide, Boc-Leu-Ac8c-Ala-Leu-Ac8c-OMe 1, an octapeptide, Boc-Leu-Ac8c-Ala-Leu-Ac8c-Ala-Leu-Ac8c-OMe 2 and a tripeptide, Boc-Aib-Ac8c-Aib-OMe 3 containing the 1-aminocyclooctane-1-carboxylic acid residue (Ac8c) were synthesized and conformationally characterized by x-ray diffraction studies in the crystal state. Peptides 1 and 2 were also studied by NMR in CDC13 solution. Peptide 1 adopts a purely 3(10)-helical conformation in crystals, stabilized by three intramolecular 1 <-- 4 hydrogen bonds. Peptide 2 in crystals is largely 3(10)-helical with distortion in the backbone at the N-terminus by the insertion of a water molecule between Ac8c (2) CO and Ala (6) NH groups. Peptide 3 forms a C10-ring structure, i.e. a type III (III') beta- turn conformation stabilized by an intramolecular 1 <-- 4 hydrogen bond. Five cyclooctane rings assume boat-chair conformations, whereas the sixth [Ac8c(8) in 2] is appreciably distorted, resembling a chiral intermediate in the pseudorotational pathway from the boat-chair to the twisted boat-chair conformation. Internal bond angles of the cyclooctane rings are appreciably distorted from the tetrahedral value, a characteristic feature of the cyclooctane ring. Peptide 1 crystallized in the space group P212121 with a = 11.900(4) A, b = 18.728(6) A, c = 20.471(3) A and Z = 4. The final R1 and wR2 values are 0.0753 and 0.2107, respectively, for 3901 observed reflections [Fo > or = 3 sigma (Fo)]. Peptide 2 crystallized in space group P21 with a = 12.961(5) A, b = 17.710(10) A, c = 15.101(7) A, beta = 108.45(4) degrees and Z = 2. The final R1 and wR2 values are 0.0906 and 0.1832, respectively, for 2743 observed reflections [Fo > or = 3sigma (Fo)]. 1H-NMR studies on both the peptides strongly suggest the persistence of 3(10)-helical conformations in solution. Peptide 3 crystallized in the space group P21/n, with a = 10.018(1) A, b = 20.725(1) A, c = 12.915(1) A and Z = 4. The final R1 and wR2 values are 0.0411 and 0.1105, respectively, for 3634 observed reflections [Fo > or = 4sigma (Fo)].  相似文献   

7.
Dissolution of alpha-cyclodextrin (alpha-CD) in 9:1 water-nitromethane smoothly generates the title compound, which crystallizes as the pentahydrate in the orthorhombic space group P2(1)2(1)2(1) with a = 9.452(4), b = 14.299(3), c = 37.380(10) A, and Z = 4. Its crystal structure analysis revealed the alpha-CD macrocycle in an unstrained conformation stabilized through a ring of O-2...O-3' hydrogen bonds between five of the six adjacent glucose residues. The nitromethane is located in the alpha-CD cavity in an orientation parallel to the plane of the macrocycle, and assumes two sites of equal population with the nitro group in excessive thermal motion; the guest is held by van der Waals contacts and C-H...O-type hydrogen bonds to the pyranose H-3 and H-5 protons. The packing of the macrocycles in the crystal lattice is of cage herringbone-type with an extensive intra- and intermolecular hydrogen bonding network. The ready formation of a nitromethane inclusion complex in aqueous nitromethane, and the subtleties of its molecular structure amply demonstrate the ease with which water is expelled from the alpha-CD cavity by a more hydrophobic co-solvent.  相似文献   

8.
The conformational equilibrium between 3(10)- and alpha-helical structure has been studied via high-resolution NMR spectroscopy by Millhauser and coworkers using the MW peptide Ac-AMAAKAWAAKA AAARA-NH2. Their 750-MHz nuclear Overhauser effect spectroscopy (NOESY) spectra were interpreted to reflect appreciable populations of 3(10)-helix throughout the peptide, with the greatest contribution at the N and C termini. The presence of simultaneous alphaN(i,i + 2) and alphaN(i,i + 4) NOE cross-peaks was proposed to represent conformational averaging between 3(10)- and alpha-helical structures. In this study, we describe 25-nsec molecular dynamics simulations of the MW peptide at 298 K, using both an 8 A and a 10 A force-shifted nonbonded cutoff. The ensemble averages of both simulations are in reasonable agreement with the experimental helical content from circular dichroism (CD), the (3)J(HNalpha) coupling constants, and the 57 observed NOEs. Analysis of the structures from both simulations revealed very little formation of contiguous i --> i + 3 hydrogen bonds (3(10)-helix); however, there was a large population of bifurcated i --> i + 3 and i --> i + 4 alpha-helical hydrogen bonds. In addition, both simulations contained considerable populations of pi-helix (i --> i + 5 hydrogen bonds). Individual turns formed over residues 1-9, which we predict contribute to the intensities of the experimentally observed alphaN(i,i + 2) NOEs. Here we show how sampling of both folded and unfolded structures can provide a structural framework for deconvolution of the conformational contributions to experimental ensemble averages.  相似文献   

9.
The effect of insertion of lactic acid (Lac) residues into peptide helices has been probed using specifically designed sequences. The crystal structures of 11-residue and 14-residue depsipeptides Boc-Val-Val-Ala-Leu-Val-Lac-Leu-Aib-Val-Ala-Leu-OMe (1) and Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-Val-Lac-Leu-Aib-Val-Ala-Leu-OMe (3), containing centrally positioned Lac residues, have been determined. The structure of an 11-residue peptide Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-Aib-Val-Ala-Leu-OMe (2), analog of a which is an amide previously determined Lac-containing depsipeptide, Boc-Val-Ala-Leu-Aib-Val-Lac-Leu-Aib-Val-Ala-Leu-OMe I. L. Karle, C. Das, and P. Balaram, Biopolymers, Vol. 59, (2001) pp. 276-289], is also reported. Peptide 1 adopts a helical fold, which is stabilized by mixture of 4-->1 and 5-->1 hydrogen bonds. Peptide 2 adopts a completely alpha-helical conformation stabilized by eight successive 5-->1 hydrogen bonds. Peptide 3 appears to be predominately alpha-helical, with seven 5-->1 hydrogen bonds and three 4-->1 interaction interspersed in the sequence. In the structure of peptide 3 in addition to water molecules in the head-to-tail region, hydration at an internal segment of the helix is also observed. A comparison of five related peptide helices, containing a single Lac residue, reveals that the hydroxy acid can be comfortably accommodated at interior positions in the helix, with the closest C=O...O distances lying between 2.8 and 3.3 A.  相似文献   

10.
Karle IL  Urry DW 《Biopolymers》2005,77(4):198-204
Tropoelastin is a complex polymeric protein composed primarily of repeating segments of Val-Pro-Gly-Gly, Val-Pro-Gly-Val-Gly, and Ala-Pro-Gly-Val-Gly-Val that occurs in connective tissue and arteries. It has rubber-like extensible properties. A synthetic cyclic dodecapeptide, with a double repeat of the hexapeptide sequence, has been shown to undergo a reversible inverse temperature transition; that is, crystals grow at 60 degrees C and dissolve in the mother liquor upon cooling. An x-ray crystal structure analysis established that the cyclic backbone formed an elongated loop with a Pro-Gly, type II beta turn at both ends. Six internal cross strand NH...OC hydrogen bonds form between six NH donors and four O=C acceptors where two of the carbonyl O atoms are bifurcated acceptors. As a result, the molecule is pulled up into a corrugated profile. The corrugated loops form extended beta-sheets by additional intermolecular hydrogen bonds. An analysis of the dome region in a corrugated sheet suggests a reversible mechanism for extending and contracting the length of the whole molecule, akin to the motion of opening and closing an umbrella, caused by the motion of a water molecule with its associated hydrogen bonds acting as spokes. Crystal parameters: C44H72N12O12.3H2O, sp. gr. P2(1)2(1)2(1), a = 9.212 angstroms, b = 19.055 angstroms, c = 32.247 angstroms, d = 1.157 g/cm3.  相似文献   

11.
Massarigenin A (1) and papyracillic acids A (2) and B (3) were isolated from the endophytic fungus Microsphaeropsis sp. Their structures were elucidated by multidimensional nuclear magnetic resonance spectroscopy; the structure of massarigenin A (1) was also confirmed by X-ray crystallography. The absolute configuration of massarigenin A (1) was established by means of circular dichroism (CD) spectroscopy and time-dependent density functional theory (TDDFT) calculations. The impact of intermolecular hydrogen bonds detected in the crystal packing of 1 on CD spectra measured in the solid state was also investigated.  相似文献   

12.
Peng Y  He Q  Rohani S  Jenkins H 《Chirality》2012,24(5):349-355
During the resolution of 2-chloromandelic acid with (R)-(+)-N-benzyl-1-phenylethylamine, the crystals of the less soluble salt were grown, and their structure were determined and presented. The chiral discrimination mechanism was investigated by examining the weak intermolecular interactions (such as hydrogen bond, CH/π, and van der Waals interactions) and molecular packing mode in crystal structure of the less soluble diastereomeric salt. A one-dimensional double-chain hydrogen-bonding network and a "lock-and-key" supramolecular packing mode are disclosed. The investigation demonstrates that hydrophobic layers with corrugated surfaces can fit into the grooves of one another to realize a compact packing, when the molecular structure of resolving agent is much larger than that of the racemate. This "lock-and-key" assembly is recognized to be another characteristic of molecular packing contributing to the chiral discrimination, in addition to the well-known sandwich-like packing by hydrophobic layers with planar boundary surfaces.  相似文献   

13.
Murayama K  Ozaki Y 《Biopolymers》2002,67(6):394-405
The molten globule-like states of ovalbumin (OVA) in acid aqueous solutions are investigated by generalized two-dimensional (2D) Fourier transform near-IR (FT-NIR) correlation spectroscopy. This new method allows us to explore the changes in hydration and the secondary structure simultaneously. FT-NIR spectra are measured for OVA aqueous solutions with concentrations of 1, 2, 3, 4, and 5 wt % over a pH range of 2.4-5.4. Concentration-perturbed 2D correlation spectra are calculated for the spectra in the 4850-4200 and 7500-5350 cm(-1) regions at different pH values. The 2D NIR synchronous spectrum in the 4850-4200 cm(-1) region shows a significant change upon going from pH 5.4 to 3.6. An autopeak at 4265 cm(-1) that is due to a combination of a symmetric CH(2) stretching mode and a CH(2) bending mode of side chains seen at pH 5.0 disappears completely in the synchronous spectrum at pH 3.6. This suggests that some amino acid residues of OVA are subjected to microenvironmental changes with decreasing pH. More remarkable changes are observed in the synchronous spectra at pHs below 2.8. A band near 4600 cm(-1) arising from a combination of amide B and amide II modes (amide B/II) shifts downward with considerable broadening between pH 3.0 and 2.4, suggesting that the strength of the hydrogen bonds of amide groups of OVA changes significantly. The synchronous and asynchronous spectra in the 4850-4200 cm(-1) region show that the intensities of the bands attributable to amide groups and side chains of OVA and that of the band near 4800 cm(-1) arising from water change in phase with the increase in the concentration above pH 2.8, but they vary out of phase below pH 2.8. The 2D synchronous map in the 7500-5350 cm(-1) region also shows marked changes upon going from pH 2.8 to 2.6. A broad autopeak at around 6950 cm(-1) assigned to free water and bound water with weak hydrogen bonds becomes very weak in the synchronous spectrum at pH 2.6, while broad autopeaks around 6450 cm(-1) suddenly appear that are due to bound water with several hydrogen bonds and the first overtone of an NH stretching mode of the amide groups of OVA. Therefore, it is very likely that protein hydration and the hydrogen bonds of amide groups change simultaneously in a narrow pH region of 2.8-2.6. It is probably that below pH 2.6 the protein assumes a molten globule-like state in which the whole molecule is very flexible, and side chains (but not the backbone chain) fluctuate significantly.  相似文献   

14.
Here, we report the crystal structure of d-psicose, C(6)H(12)O(6), one of the rare sugars. The compound crystallizes as the beta-anomer with rarely observed in pyranose carbohydrate structures trans-gauche orientation of the hydroxymethyl group relative to the pyranosyl ring. The crystal system is orthorhombic, space group P2(1)2(1)2(1), Z=4, with cell dimensions a=7.727(2), b=8.672(2), c=11.123(3)A, V=745.3(3)A(3). The pyranosyl ring adopts chair (2)C(5) conformation. The crystal structure at 100(2)K is stabilized by three-dimensional network of O-Hcdots, three dots, centeredO and C-Hcdots, three dots, centeredO intermolecular hydrogen bonds.  相似文献   

15.
In the course of investigation of 8-alkylamino substituted adenosines, the title compounds were synthesized as potential partial agonists for adenosine receptors. The structure determination of these compounds was carried out with the X-ray crystallography study. Crystals of 8-(2-hydroxyethylamino)adenosine are monoclinic, space group P 2(1); a = 7.0422(2), b = 11.2635(3), c = 8.9215(2) A, beta = 92.261(1) degrees, V = 707.10(3) A3, Z = 2; R-factor is 0.0339. The nucleoside is characterized by the anti conformation; the ribose ring has the C(2')-endo conformation and gauche-gauche form across C(4')-C(5') bond. The molecular structure is stabilized by intramolecular hydrogen bond of N-HO type. Crystals of 8-(pyrrolidin-1-yl)adenosine are monoclinic, space group C 2; a = 19.271(1), b = 7.3572(4), c = 11.0465(7) A, beta = 103.254(2), V = 1524.4(2) degrees A3, Z = 4; R-factor is 0.0498. In this compound, there is syn conformation of the nucleoside; the ribose has the C(2')-endo conformation and gauche -gauche form across C(4')- C(5') bond. The molecular structure is stabilized by intramolecular hydrogen bond of O-HN type. For both compounds, the branching net of intermolecular hydrogen bonds occur in the crystal structures.  相似文献   

16.
Two new chiral stationary phases, 3-[5-chloro-1,3-dicyano-2,4-[2'-(N'-1,3-dinitrobenzoyl-D-phenylglycinyl) aminoethyl]aminophen-1-yl] aminopropyl silica (CSP-1) and 3-[5-chloro-1,3-dicyano-2,4-[2'-(N'-1,3-dinitrobenzoyl-L-leucinyl) aminoethyl] aminophen-1-yl] aminopropyl silica (CSP-2), were prepared by solid-phase synthesis. They comprise chiral unit, 3,5-dinitrobenzoyl derivative of the amino acid, D-PhGly or L-Leu, bound via spacer 1,2-diaminoethane to 2,4-positions of the persubstituted benzene ring, derived from compound 1, and possess pseudo-C2 symmetry. Preparation of model compounds 6 and 7 confirmed the structure of chiral selectors, which comprise pi-donor persubsituted aromatic ring and two strong pi-acceptor 3,5-dinitrobenzoyl amido units. CD spectra of model selectors 6 and 7, run in DMSO above 250 nm, exhibit negative exciton coupling (EC) between pi-acceptor and pi-donor chromophores, C(1) symmetric model compound 8 exhibited much weaker EC and 9, devoid of pi-donor unit, does not exhibit any significant CD. Combined pi-donor and pi-acceptor properties enable the new CSPs to separate a broad range of racemates. The columns with CSP-1 and CSP-2 were tested for the separation of 22 racemates by HPLC with two different mobile phase systems and the results are compared with those obtained by using a structurally related commercial column.  相似文献   

17.
Hydrogen bonding in globular proteins.   总被引:17,自引:0,他引:17  
A global census of the hydrogen bonds in 42 X-ray-elucidated proteins was taken and the following demographic trends identified: (1) Most hydrogen bonds are local, i.e. between partners that are close in sequence, the primary exception being hydrogen-bonded ion pairs. (2) Most hydrogen bonds are between backbone atoms in the protein, an average of 68%. (3) All proteins studied have extensive hydrogen-bonded secondary structure, an average of 82%. (4) Almost all backbone hydrogen bonds are within single elements of secondary structure. An approximate rule of thirds applies: slightly more than one-third (37%) form i----i--3 hydrogen bonds, almost one-third (32%) form i----i--4 hydrogen bonds, and slightly less than one-third (26%) reside in paired strands of beta-sheet. The remaining 5% are not wholly within an individual helix, turn or sheet. (5) Side-chain to backbone hydrogen bonds are clustered at helix-capping positions. (6) An extensive network of hydrogen bonds is present in helices. (7) To a close approximation, the total number of hydrogen bonds is a simple function of a protein's helix and sheet content. (8) A unique quantity, termed the reduced number of hydrogen bonds, is defined as the maximum number of hydrogen bonds possible when every donor:acceptor pair is constrained to be 1:1. This quantity scales linearly with chain length, with 0.71 reduced hydrogen bond per residue. Implications of these results for pathways of protein folding are discussed.  相似文献   

18.
19.
A novel conformational structure of bilirubin is presented which obtains maximum stabilization through a system of four intramolecular hydrogen bonds. Two hydrogen bonds link oxygen and nitrogen atoms of each end ring to the contralateral carboxyl group. The proposed structure can explain a variety of uncommon features of bilirubin, and reconciles many seemingly contradictory hypotheses by accommodating them in individual structures which are mesomeric forms of one resonance hybrid. In the light of this newly conceived structure the following characteristics of bilirubin are re-evaluated: the stability of the compound, its reaction with diazomethane, the conformational behaviour of its dimethyl ester, its spectral properties, the chirality of the compound when complexed to serum albumin, and the structure of its metal chelates.  相似文献   

20.
Helices are important structural/recognition elements in proteins and peptides. Stability and conformational differences between helices composed of α‐ and β‐amino acids as scaffolds for mimicry of helix recognition has become a theme in medicinal chemistry. Furthermore, helices formed by β‐amino acids are experimentally more stable than those formed by α‐amino acids. This is paradoxical because the larger sizes of the hydrogen‐bonding rings required by the extra methylene groups should lead to entropic destabilization. In this study, molecular dynamics simulations using the second‐generation force field, AMOEBA (Ponder, J.W., et al., Current status of the AMOEBA polarizable force field. J Phys Chem B, 2010. 114 (8): p. 2549–64.) explored the stability and hydrogen‐bonding patterns of capped oligo‐β‐alanine, oligoalanine, and oligoglycine dodecamers in water. The MD simulations showed that oligo‐β‐alanine has strong acceptor+2 hydrogen bonds, but surprisingly did not contain a large content of 312‐helical structures, possibly due to the sparse distribution of the 312‐helical structure and other structures with acceptor+2 hydrogen bonds. On the other hand, despite its backbone flexibility, the β‐alanine dodecamer had more stable and persistent <3.0 Å hydrogen bonds. Its structure was dominated more by multicentered hydrogen bonds than either oligoglycine or oligoalanine helices. The 31 (PII) helical structure, prevalent in oligoglycine and oligoalanine, does not appear to be stable in oligo‐β‐alanine indicating its competition with other structures (stacking structure as indicated by MD analyses). These differences are among the factors that shape helical structural preferences and the relative stabilities of these three oligopeptides. Proteins 2014; 82:3043–3061. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号