首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many bacteria use quorum sensing (QS) as an intercellular signaling mechanism to regulate gene expression in local populations. Plant and algal hosts, in turn, secrete compounds that mimic bacterial QS signals, allowing these hosts to manipulate QS-regulated gene expression in bacteria. Lumichrome, a derivative of the vitamin riboflavin, was purified and chemically identified from culture filtrates of the alga Chlamydomonas as a QS signal-mimic compound capable of stimulating the Pseudomonas aeruginosa LasR QS receptor. LasR normally recognizes the N-acyl homoserine lactone (AHL) signal, N-3-oxo-dodecanoyl homoserine lactone. Authentic lumichrome and riboflavin stimulated the LasR receptor in bioassays and lumichrome activated LasR in gel shift experiments. Amino acid substitutions in LasR residues required for AHL binding altered responses to both AHLs and lumichrome or riboflavin. These results and docking studies indicate that the AHL binding pocket of LasR recognizes both AHLs and the structurally dissimilar lumichrome or riboflavin. Bacteria, plants, and algae commonly secrete riboflavin or lumichrome, raising the possibility that these compounds could serve as either QS signals or as interkingdom signal mimics capable of manipulating QS in bacteria with a LasR-like receptor.  相似文献   

2.
Bacteria utilize quorum sensing to regulate the expression of cell density-dependant phenotypes such as biofilm formation and virulence. Zoospores of the marine alga Ulva intestinalis exploit the acyl-homoserine lactone (AHL) quorum sensing system to identify bacterial biofilms for preferential settlement. Here, we demonstrate that AHLs act as strong chemoattractants for Ulva zoospores. Chemoattraction does not involve a chemotactic orientation towards the AHL source. Instead, it occurs through a chemokinesis in which zoospore swimming speed is rapidly decreased in the presence of AHLs. The chemoresponse to AHLs was dependant on the nature of the acyl side chain, with N-(3-oxododecanoyl)-homoserine lactone (30-C12-HSL) being the most effective signal molecule. Mean zoospore swimming speed decreased more rapidly over wild-type biofilms of the marine bacteria Vibrio anguillarum relative to biofilms of the vanM mutant, in which AHL synthesis is disrupted. These data implicate a role for AHL-mediated chemokinesis in the location and preferential settlement of Ulva zoospores on marine bacterial assemblages. Exposure to AHLs did not inhibit the negative phototaxis of Ulva zoospores, indicating that chemoattraction to bacterial biofilms does not preclude the response to a light stimulus in substrate location.  相似文献   

3.
4.
Eukaryotes such as plants and the unicellular green alga Chlamydomonas reinhardtii P. A. Dang. produce and secrete compounds that mimic N‐acyl homoserine lactone (AHL) bacterial quorum‐sensing (QS) signals and alter QS‐regulated gene expression in the associated bacteria. Here, we show that the set of C. reinhardtii signal‐mimic compounds that activate the CepR AHL receptor of Burkholderia cepacia are susceptible to inactivation by AiiA, an AHL lactonase enzyme of Bacillus. Inactivation of these algal mimics by AiiA suggests that the CepR‐stimulatory class of mimics produced by C. reinhardtii may have a conserved lactone ring structure in common with AHL QS signals. To examine the role of AHL mimic compounds in the interactions of C. reinhardtii with bacteria, the aiiA gene codon optimized for Chlamydomonas was generated for the expression of AiiA as a chimeric fusion with cyan fluorescent protein (AimC). Culture filtrates of transgenic strains expressing the fusion protein AimC had significantly reduced levels of CepR signal‐mimic activities. When parental and transgenic algae were cultured with a natural pond water bacterial community, a morphologically distinct, AHL‐producing isolate of Aeromonas veronii was observed to colonize the transgenic algal cultures and form biofilms more readily than the parental algal cultures, indicating that secretion of the CepR signal mimics by the alga can significantly affect its interactions with bacteria it encounters in natural environments. The parental alga was also able to sequester and/or destroy AHLs in its growth media to further disrupt or manipulate bacterial QS.  相似文献   

5.
Quorum sensing, mediated by acylated homoserine lactones (AHLs), is well described for pure culture bacteria, but few studies report detection of AHL compounds in natural bacterial habitats. In this study, we detect AHL production during a degradation process in soil by use of whole-cell biosensor technology and flow cytometry analysis. An indigenous soil bacterium, belonging to the family of Enterobacteriaceae, was isolated and transformed with a low-copy plasmid harboring a gene encoding an unstable variant of the green fluorescent protein (gfpASV) fused to the AHL-regulated PluxI promoter originating from Vibrio fischeri. This resulted in a whole-cell biosensor, responding to the presence of AHL compounds. The biosensor was introduced to compost soil microcosms amended with nettle leaves. After 3 days of incubation, cells were extracted and analyzed by flow cytometry. All microcosms contained induced biosensors. From these microcosms, AHL producers were isolated and further identified as species previously shown to produce AHLs. The results demonstrate that AHL compounds are produced during degradation of litter in soil, indicating the presence of AHL-mediated quorum sensing in this environment.  相似文献   

6.
Zoospores of the eukaryotic green seaweed Ulva respond to bacterial N-acylhomoserine lactone (AHL) quorum sensing signal molecules for the selection of surface sites for permanent attachment. In this study we have investigated the production and destruction of AHLs in biofilms of the AHL-producing marine bacterium, Vibrio anguillarum and their stability in seawater. While wild type V. anguillarum NB10 was a strong attractor of zoospores, inactivation of AHL production in this strain by either expressing the recombinant Bacillus lactonase coding gene aiiA, or by mutating the AHL biosynthetic genes, resulted in the abolition of zoospore attraction. In seawater, with a pH of 8.2, the degradation of AHL molecules was temperature-dependent, indicating that the AHLs produced by marine bacterial biofilms have short half-lives. The Ulva zoospores sensed a range of different AHL molecules and in particular more zoospores settled on surfaces releasing AHLs with longer (>six carbons) N-linked acyl chains. However, this finding is likely to be influenced by the differential diffusion rates of AHLs from the experimental surface matrix. Molecules with longer N-acyl chains, such as N-(3-oxodecanoyl)- L-homoserine lactone, diffused more slowly than those with shorter N-acyl chains such as N-(3-hydroxy-hexanoyl)- L-homoserine lactone. Image analysis using GFP-tagged V. anguillarum biofilms revealed that spores settle directly on bacterial cells and in particular on microcolonies which we show are sites of concentrated AHL production.  相似文献   

7.
Aims: To assess the diversity in production of acylated homoserine lactones (AHLs) among Vibrio spp and related species. Methods and Results: A total of 106 isolates, with representatives of 28 Vibrio spp and related species, were investigated for the production of AHLs. For this, a rapid method for the screening of AHLs was developed based on the use of bacterial biosensors using a double‐layer microplate assay. At least one bacterial biosensor was activated in 20 species, Agrobacterium tumefaciens being the most frequently activated biosensor. One isolate of Vibrio anguillarum, Vibrio rotiferianus and Vibrio metschnikovii activated the Chromobacterium violaceum biosensor, which is not common among the Vibrionaceae family. For those species with more than one isolate, the biosensor activation profile was the same except for two species, V. anguillarum and V. metschnikovii, which varied among the different isolates. Conclusions: AHL production was observed in the majority of the studied species, with a diverse biosensor activation profile. Significance and Impact of the Study: The high diversity in AHL production is in consistence with the high diversity in ecological niches of the Vibrionaceae family. The absence of AHL detection in eight species warrants further work on their quorum‐sensing systems.  相似文献   

8.
9.
10.
细菌群体感应信号分子N-酰基高丝氨酸内酯的检测   总被引:1,自引:0,他引:1  
群体感应是细菌生长到一定密度时相互感应,并进行基因表达及调控产生的独特、多样的群体行为现象。N-酰基高丝氨酸内酯(AHL)类化合物是革兰阴性菌群体感应中最重要的一类信号分子,调控许多生理特性基因的表达。快速、简便、有效地检测细菌能否产生AHL或产生何种信号分子,成为深入研究和了解细菌群体感应的重要手段。我们就细菌群体感应信号分子AHL检测的基本原理和方法及国内外研究进展进行了总结。  相似文献   

11.
Bacteria express certain of their characteristics especially, pathogenicity factors at high cell densities. The process is termed as quorum sensing (QS). QS operates via signal molecules such as acylhomoserine lactones (AHLs). Other bacteria inhibit QS through the inactivation of AHL signals by producing enzymes like AHL-lactonases and -acylases. Comparative genomic analysis has revealed the multiplicity of genes for AHL lactonases (up to 12 copies per genome) among Bacillus spp. and that of AHL-acylases (up to 5 copies per genome) among Pseudomonas spp. This genetic evolution can be envisaged to enable host to withstand the attacks from bacterial population, which regulates its functioning through QS.  相似文献   

12.
Certain bacteria can coordinate group behaviors via a chemical communication system known as quorum sensing (QS). Gram-negative bacteria typically use N-acyl l-homoserine lactone (AHL) signals and their cognate intracellular LuxR-type receptors for QS. The opportunistic pathogen Pseudomonas aeruginosa has a relatively complex QS circuit in which two of its LuxR-type receptors, LasR and QscR, are activated by the same natural signal, N-(3-oxo)-dodecanoyl l-homoserine lactone. Intriguingly, once active, LasR activates virulence pathways in P. aeruginosa, while activated QscR can inactivate LasR and thus repress virulence. We have a limited understanding of the structural features of AHLs that engender either agonistic activity in both receptors or receptor-selective activity. Compounds with the latter activity profile could prove especially useful tools to tease out the roles of these two receptors in virulence regulation. A small collection of AHL analogs was assembled and screened in cell-based reporter assays for activity in both LasR and QscR. We identified several structural motifs that bias ligand activation towards each of the two receptors. These findings will inform the development of new synthetic ligands for LasR and QscR with improved potencies and selectivities.  相似文献   

13.
Pseudomonas corrugata is a phytopathogenic bacterium, causal agent of tomato pith necrosis, yet it is an ubiquitous bacterium that is part of the microbial community in the soil and in the rhizosphere of different plant species. Although it is a very heterogeneous species, all the strains tested were able to produce short chain acyl homoserine lactone (AHL) quorum sensing signal molecules. The main AHL produced was N-hexanoyl-L-homoserine lactone (C(6)-AHL). An AHL quorum sensing system, designated PcoI/PcoR, was identified and characterized. The role of the quorum sensing system in the expression of a variety of traits was evaluated. Inactivation of pcoI abolished the production of AHLs. The pcoR mutant, but not the pcoI mutant, was impaired in swarming, unable to cause a hypersensitivity response on tobacco and resulted in a reduced tomato pith necrosis phenotype. The pcoI mutant showed a reduced antimicrobial activity against various fungi and bacteria when assayed on King's B medium. These results demonstrate that the AHL quorum sensing in Ps. corrugata regulates traits that contribute to virulence, antimicrobial activity and fitness. This is the first report of genes of Ps. corrugata involved in the disease development and biological control activity.  相似文献   

14.
N-acylhomoserine lactones (AHLs) are used as signal molecules by many quorum-sensing Proteobacteria. Diverse plant and animal pathogens use AHLs to regulate infection and virulence functions. These signals are subject to biological inactivation by AHL-lactonases and AHL-acylases. Previously, little was known about the molecular details underlying the latter mechanism. An AHL signal-inactivating bacterium, identified as a Ralstonia sp., was isolated from a mixed-species biofilm. The signal inactivation encoding gene from this organism, which we call aiiD, was cloned and successfully expressed in Escherichia coli and inactivated three AHLs tested. The predicted 794-amino-acid polypeptide was most similar to the aculeacin A acylase (AAC) from Actinoplanes utahensis and also shared significant similarities with cephalosporin acylases and other N-terminal (Ntn) hydrolases. However, the most similar homologues of AiiD are deduced proteins of undemonstrated function from available Ralstonia, Deinococcus and Pseudomonas genomes. LC-MS analyses demonstrated that AiiD hydrolyses the AHL amide, releasing homoserine lactone and the corresponding fatty acid. Expression of AiiD in Pseudomonas aeruginosa PAO1 quenched quorum sensing by this bacterium, decreasing its ability to swarm, produce elastase and pyocyanin and to paralyze nematodes. Thus, AHL-acylases have fundamental implications and hold biotechnological promise in quenching quorum sensing.  相似文献   

15.
目的利用指示菌紫色杆菌CV026菌株,建立和优化稳定的细菌菌群传感效应信号分子高丝氨酸内酯平板分析方法。方法优化受测铜绿假单胞菌高丝氨酸内酯的提取方法,分析铜绿假单胞菌培养时间对信号分子检测的影响。另一方面,优化指示菌株CV026的培养基成分,并优化紫色菌素的提取方法,以完善信号分子的检测反应。结果恒温水浴挥发法可有效提取高丝氨酸内酯,并且发现当铜绿假单胞菌的培养时间为3d时,高丝氨酸内酯最易被检出。进一步,试验结果显示添加L-Try可提高指示菌株紫色菌素的产量,并利于高丝氨酸内酯的检测。此外,比较发现采用乙醇溶解紫色菌素的方法可更高效的测定紫色菌素的量。结论本课题建立的检测方法将更有效的检测细菌菌群传感系统信号分子高丝氨酸内酯,将有利于细菌菌群传感机制研究和抑制细菌菌群传感药物的开发工作。  相似文献   

16.
植物伴生细菌数量应答系统的研究进展*   总被引:5,自引:0,他引:5  
N-酰基高丝氨酸内酯(AHLs)作为信号分子介导的细菌数量应答系统参与许多生物学功能的调节,当侵染动植物寄主组织的病原菌繁殖到一定量时,细菌本身产生的AHLs积累到临界浓度,AHLs与胞内特异受体结合,启动致病因子的表达。利用AIRs降解酶和AHLs类似物的特性,干扰和破坏病原菌的AHLs数量应答系统,将为利用现代生物技术防治细菌病害开辟了一条全新的途径。  相似文献   

17.
华癸根瘤菌中自体诱导物的初步研究   总被引:9,自引:1,他引:8  
群体感应 (Quorumsensing)是细菌通过产生可扩散的小分子量自体诱导物信号分子感知细胞群体密度变化 ,进行基因表达调控的生理行为。将根癌土壤杆菌 (Agrobacteriumtumefaciens)构建为超量表达群体感应调节蛋白TraR的检测菌株JZA1,试验证明该检测菌株能检测纳摩尔浓度的自体诱导物 ,利用该菌株对 3株不同华癸根瘤菌(Mesorhizobiumhuakuii)进行自体诱导物活性检测 ,发现该 3株华癸根瘤菌均能产生自体诱导物 ,其表达量与菌体密度成正相关 ,但 3株菌在相同培养条件下自体诱导物的表达量存在差异 ,结果表明自体诱导物在种内水平上存在一定的多样性 ;同时发现高pH条件能大大降低自体诱导物的稳定性 ,为进一步研究群体感应调节在共生固氮上的作用提供理论及实践依据  相似文献   

18.
19.
20.
Marine sponges are hosts to diverse and dense bacterial communities and thus provide a potential environment for quorum sensing. Quorum sensing, a key factor in cell–cell communication and bacterial colonization of higher animals, might be involved in the symbiotic interactions between bacteria and their sponge hosts. Given that marine Proteobacteria are known to produce N -acyl homoserine lactone (AHL) signal molecules, we tested the production of AHLs by Alpha - and Gammaproteobacteria isolated from marine sponges Mycale laxissima and Ircinia strobilina and the surrounding water column. We used three different AHL biodetection systems in diffusion assays: Chromobacterium violaceum , Agrobacterium tumefaciens and Sinorhizobium meliloti with optimal sensitivity to short-chain (C4–C6), moderate-chain (C8–C12) and long-chain (≥ C14) AHLs respectively. Thirteen of 23 isolates from M. laxissima and five of 25 isolates from I. strobilina were found to produce AHLs. Signals were detected from two of eight proteobacterial strains from the water column. Thin-layer chromatographic assays based on the A. tumefaciens reporter system were utilized to determine the AHL profiles of the positive isolates. The types and amounts of AHLs synthesized varied considerably among the strains. Small ribosomal rRNA gene sequencing revealed that the AHL-producing alphaproteobacterial isolates were mainly from the Silicibacter–Ruegeria subgroup of the Roseobacter clade. Two-dimensional gel electrophoresis (2DGE)-based proteomic analyses were congruent with phylogenetic relationships but provided higher resolution to differentiate these closely related AHL-producing strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号