首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
成骨分化特异性转录因子Cbfa1   总被引:1,自引:0,他引:1  
近年来随着Cbfa1基因的克隆及其功能的阐明,人们对成骨分化的分子机制有了初步了解,基因调皮除、基因突变等方法证实Cbfa1作为成骨分化的特异性转录因子,对成骨细胞分化、骨的发育和形成具有关键作用。  相似文献   

2.
为避免内质网中未折叠蛋白质的过度累积,真核细胞能激活一系列信号通路来维持内质网稳态,这个过程称为内质网应激。在骨生长发育中,适宜的内质网应激有助于成骨细胞、破骨细胞和软骨细胞的生长,可以促进骨髓间充质干细胞向成骨细胞分化。而过度的内质网应激会抑制成骨分化,严重的甚至导致骨质疏松、成骨不全等相关骨病的发生。内质网应激时可激活未折叠蛋白质反应,其主要是通过PERK/eIF2α/ATF4信号通路,上调转录激活因子4(ATF4)的表达。ATF4位于许多成骨分化调节因子的下游,是促进成骨分化的关键因子,在内质网应激对成骨分化的调节中发挥重要作用。在成骨分化过程中,适宜的内质网应激能通过激活PERK信号通路,诱导ATF4表达增加,进而上调骨钙素、骨涎蛋白等成骨所必需基因的表达,促进成骨分化。过度的内质网应激会激活ATF4/CHOP促凋亡途径,并导致Bax、胱天蛋白酶等凋亡信号分子的大量产生,进而导致细胞凋亡,抑制成骨分化。由于ATF4在ERS和成骨分化中的重要作用,ATF4在骨质疏松、成骨不全等骨相关疾病的治疗中具有重要意义。本文通过综述ATF4在内质网应激调控成骨分化中的作用机制,为相关骨性疾病治疗提供理论依据。  相似文献   

3.
为避免内质网中未折叠蛋白质的过度累积,真核细胞能激活一系列信号通路来维持内质网稳态,这个过程称为内质网应激。在骨生长发育中,适宜的内质网应激有助于成骨细胞、破骨细胞和软骨细胞的生长,可以促进骨髓间充质干细胞向成骨细胞分化。而过度的内质网应激会抑制成骨分化,严重的甚至导致骨质疏松、成骨不全等相关骨病的发生。内质网应激时可激活未折叠蛋白质反应,其主要是通过PERK/eIF2α/ATF4信号通路,上调转录激活因子4(ATF4)的表达。ATF4位于许多成骨分化调节因子的下游,是促进成骨分化的关键因子,在内质网应激对成骨分化的调节中发挥重要作用。在成骨分化过程中,适宜的内质网应激能通过激活PERK信号通路,诱导ATF4表达增加,进而上调骨钙素、骨涎蛋白等成骨所必需基因的表达,促进成骨分化。过度的内质网应激会激活ATF4/CHOP促凋亡途径,并导致Bax、胱天蛋白酶等凋亡信号分子的大量产生,进而导致细胞凋亡,抑制成骨分化。由于ATF4在ERS和成骨分化中的重要作用,ATF4在骨质疏松、成骨不全等骨相关疾病的治疗中具有重要意义。本文通过综述ATF4在内质网应激调控成骨分化中的作用机制,为相关骨性疾病治疗提供理论依据。  相似文献   

4.
目的:观察泽漆主要活性成分大戟苷(euphornin)对大鼠骨髓间充质干细胞(rMSC)成骨分化的影响。方法:从大鼠股骨中分离培养rMSC,并诱导其成骨分化。用MTT法检测细胞增殖情况,通过茜素红染色,碱性磷酸酶(ALP)活性检测和钙含量测定分别定性、定量地判断其在成骨分化中的效果。实时定量PCR(Q-PCR)检测主要成骨标志因子骨桥蛋白(OPN)和一型胶原蛋白(COL-Ⅰ)及主要转录因子骨形成蛋白2(BMP2)、Runt相关转录因子2(Runx2)和Osterix(Osx)mRNA的表达。结果:大戟苷能剂量依赖性地抑制rMSC成骨分化,并一定程度地抑制其细胞增殖。COL-Ⅰ和OPN的表达在第4、8天分别有显著下降。BMP2、Runx2和Osx等关键转录因子的表达也被明显抑制。结论:大戟苷能抑制rMSC成骨分化,其作用主要是通过抑制BMP通路相关因子的表达而实现的。  相似文献   

5.
韧带成纤维细胞成骨分化与强直性脊柱炎等多种异位骨化相关性疾病有关,但其机制尚不清楚.本研究目的在于观察韧带成纤维细胞在成骨分化过程中microRNA和mRNA的表达谱变化,以期为揭示成纤维细胞成骨分化机制提供研究基础.原代培养韧带成纤维细胞、地塞米松、抗坏血酸和β 磷酸甘油体外诱导其成骨分化, RT-PCR检测成骨标志物骨钙素和Runx2的表达.采用表达谱基因芯片分析诱导0、7、14 d后韧带成纤维细胞的microRNAs和mRNAs表达,并用实时定量PCR(RT-qPCR)和Western印迹方法验证生物信息学分析结果.结果显示,与未诱导前相比,成骨分化第7 d有66个microRNAs和640个mRNA表达上调,94个microRNAs和744个mRNA表达下调;成骨分化第14 d有58个microRNAs和781个mRNA表达上调,96个microRNAs和603个mRNA表达下调.实时定量PCR和Western印迹验证结果显示,miR-29b在成骨分化过程中表达上调,TGFβ3表达水平降低,与芯片结果一致,miR-29b通过抑制TGFβ3蛋白的翻译来促进Runx2的表达,从而促进韧带成纤维细胞向成骨细胞分化.韧带成纤维细胞成骨分化过程中,microRNA调控基因及mRNA差异表达基因除涉及BMPs、Wnt和Ihh等信号通路外,在成纤维细胞成骨分化过程中可能还存在其它的新机制.  相似文献   

6.
骨形态发生蛋白2通过Smad途径上调Osterix的表达   总被引:2,自引:0,他引:2  
Osterix(Osx)是一种重要的调控成骨细胞分化的具有锌指结构的转录因子.骨形态发生蛋白2(bone morphogenetic protein 2, BMP2)能够上调Osx的表达,但其分子机制并不清楚.采用实时定量RT-PCR方法检测到BMP2诱导成骨相关细胞C3H10T1/2, MC3T3-E1, C2C12中Osx的转录水平显著上调,并且与成骨分化指标Col1a1, osteocalcin具有相似的表达动力学特征.而且,在C3H10T1/2细胞中过表达负显性(dominant negative, DN)Osx基因,能够有效抑制BMP2诱导的成骨分化.过表达BMP/Smad信号通路抑制蛋白Smad6,能够抑制Osx转录水平的上调.但是通过荧光素酶报告载体对Osx的启动子-1254~+85区域进行分析后未发现接受BMP通路调控的启动子区域.上述结果表明,BMP2能够通过Smad途径上调Osx的表达,并对成骨分化的过程具有十分重要的作用.  相似文献   

7.
目前从骨髓中成功分离、鉴定BMSCs的方法较为成熟。新发现一些物质能诱导BMSCs向成骨细胞分化因子,其中对BMP研究较多。其机制可能是通过结合Ⅰ、Ⅱ型BMP受体后激活Smad信号通路诱导成骨。其诱导方法主要包括直接应用天然BMP或者将BMP及其协同基因转入BMSCs,通过靶细胞的持续表达BMP促进新骨形成。本文将近10年BMP诱导BMSCs向成骨分化的研究现状及发展趋势做一综述。  相似文献   

8.
Cbfa1/Runx2与成骨细胞分化调控   总被引:9,自引:0,他引:9  
成骨细胞是由间充质干细胞经骨原细胞和前成骨细胞分化而来的。近年来已鉴定转录因子Cbfal(core binding factor α1)是成骨细胞分化和骨形成的关键调控因子。在成骨细胞分化的过程中,Cbfal通过调控成骨细胞特异性细胞外基质蛋白基因的表达和成骨细胞周期参与成骨细胞的分化过程。新近发现Cbfal能通过自身的PST序列区域与Smads结合形成复合物共同参与成骨细胞的分化调控。  相似文献   

9.
间充质干细胞具有分化成骨的潜能,已逐渐成为骨损伤临床治疗的种子细胞。研究表明,生物化学试剂和物理因素均可诱导间充质干细胞的成骨分化,并且一些配体蛋白和转录因子参与了此过程。该文综述了近十年来关于间充质干细胞成骨分化调控蛋白的研究,以期为间充质干细胞成骨分化的临床应用提供理论依据和科学指导。  相似文献   

10.
骨髓间充质干细胞是一类具有自我复制和多向分化潜能的成体干细胞,可以通过定向诱导分化为成骨细胞、软骨细胞、脂肪细胞等,是目前骨再生医学和细胞治疗研究最多的理想种子细胞。在骨缺损的修复过程中,骨髓间充质干细胞内成软骨相关基因表达升高进而分化为软骨细胞,后期随着成骨细胞和破骨细胞的形成及血管长入,软骨基质逐步降解并被骨基质所替换。软骨细胞参与了骨缺损前期的修复过程,调控软骨形成的信号通路及相关因子不仅调控骨髓间充质干细胞成软骨细胞分化,同时在成骨细胞分化过程中也发挥着重要的作用。对调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的调控作用和研究现状进行了总结,以期为临床寻找更好的治疗骨缺损的方法提供理论依据和研究方向。  相似文献   

11.
12.
Current osteoinductive protein therapy utilizes bolus administration of large doses of bone morphogenetic proteins (BMPs), which is costly, and may not replicate normal bone healing. The limited in vivo biologic activity of BMPs requires the investigation of growth factors that may enhance this activity. In this study, we utilized the C3H10T1/2 murine mesenchymal stem cell line to test the hypotheses that osteoactivin (OA) has comparable osteoinductive effects to bone morphogenetic protein-2 (BMP-2), and that sustained administration of either growth factor would result in increased osteoblastic differentiation as compared to bolus administration. Sustained release biodegradable hydrogels were designed, and C3H10T1/2 cells were grown on hydrogels loaded with BMP-2 or OA. Controls were grown on unloaded hydrogels, and positive controls were exposed to bolus growth factor administration. Cells were harvested at several time points to assess osteoblastic differentiation. Alkaline phosphatase (ALP) staining and activity, and gene expression of ALP and osteocalcin were assessed. Treatment with OA or BMP-2 resulted in comparable effects on osteoblastic marker expression. However, cells grown on hydrogels demonstrated osteoblastic differentiation that was not as robust as cells treated with bolus administration. This study shows that OA has comparable effects to BMP-2 on osteoblastic differentiation using both bolus administration and continuous release, and that bolus administration of OA has a more profound effect than administration using hydrogels for sustained release. This study will lead to a better understanding of appropriate delivery methods of osteogenic growth factors like OA for repair of fractures and segmental bone defects.  相似文献   

13.
Clinical trials on fracture repair have challenged the effectiveness of bone morphogenetic proteins (BMPs) but suggest that delivery of mesenchymal stem cells (MSCs) might be beneficial. It has also been reported that BMPs could not increase mineralization in several MSCs populations, which adds ambiguity to the use of BMPs. However, an exogenous supply of MSCs combined with vascular endothelial growth factor (VEGF) and BMPs is reported to synergistically enhance fracture repair in animal models. To elucidate the mechanism of this synergy, we investigated the osteoblastic differentiation of cloned mouse bone marrow derived MSCs (D1 cells) in vitro in response to human recombinant proteins of VEGF, BMPs (-2, -4, -6, -9) and the combination of VEGF with BMP-6 (most potent BMP). We further investigated ectopic bone formation induced by MSCs pre-conditioned with VEGF, BMP-6 or both. No significant increase in mineralization, phosphorylation of Smads 1/5/8 and expression of the ALP, COL1A1 and osterix genes was observed upon addition of VEGF or BMPs alone to the cells in culture. The lack of CD105, Alk1 and Alk6 expression in D1 cells correlated with poor response to BMPs indicating that a greater care in the selection of MSCs is necessary. Interestingly, the combination of VEGF and BMP-6 significantly increased the expression of ALP, COL1A1 and osterix genes and D1 cells pre-conditioned with VEGF and BMP-6 induced greater bone formation in vivo than the non-conditioned control cells or the cells pre-conditioned with either VEGF or BMP-6 alone. This enhanced bone formation by MSCs correlated with higher CADM1 expression and OPG/RANKL ratio in the implants. Thus, combined action of VEGF and BMP on MSCs enhances osteoblastic differentiation of MSCs and increases their bone forming ability, which cannot be achieved through use of BMPs alone. This strategy can be effectively used for bone repair.  相似文献   

14.
Bone is a common metastatic site for many cancers. Tumor cells located in the bone marrow cavity disturb the natural balance (bone remodelling) established between new bone formation performed by osteoblasts and bone resorption carried out by osteoclasts. Tumor cells produce many factors including growth factors and cytokines (PTHrP, ET-1, BMPs, others...) that stimulate either ostoclast activity leading to osteolytic lesions or osteoblast activity generating osteosclerotic bone metastases. Growth factors released from resorbed bone matrix or throughout osteoblastic bone formation sustain tumor growth. Therefore, bone metastases are the site of vicious cycles wherein tumor growth and bone metabolism sustain each other.  相似文献   

15.
Bone morphogenetic protein signaling in prostate cancer cell lines   总被引:6,自引:0,他引:6  
Prostate cancer is the most commonly diagnosed malignancy in men and is often associated with bone metastases. Prostate cancer bone lesions can be lytic or schlerotic, with the latter predominating. Bone morphogenetic proteins (BMPs) are a family of growth factors, which may play a role in the formation of prostate cancer osteoblastic bone metastases. This study evaluated the effects of BMPs on prostate cancer cell lines. We observed growth inhibitory effects of BMP-2 and -4 on LNCaP, while PC-3 was unaffected. Flow cytometric analysis determined that LNCaP cell growth was arrested in G(1) after bone morphogenetic protein-2 treatment. Treatment of LNCaP and PC-3 with BMP-2 and -4 activated downstream signaling pathways involving SMAD-1, up-regulation of p21(CIP1/WAF1) and changes in retinoblastoma (Rb) phosphorylation. Interestingly, bone morphogenetic protein-2 treatment stimulated a 2.7-fold increase in osteoprotegerin (OPG), a molecule, which inhibits osteoclastogenesis, production in PC-3.  相似文献   

16.
Distraction osteogenesis is a form of in vivo tissue engineering in which the gradual separation of cut bone edges results in the generation of new bone. In this study, the temporal and spatial expression of bone morphogenetic proteins (BMPs) 2, 4, and 7 was examined in a rabbit model of mandibular distraction osteogenesis. Fourteen skeletally mature male rabbits were studied. After osteotomy, a distractor was applied to one side of the mandible. After 1 week of latency, distraction was initiated at 0.25 mm every 12 hours for 3 weeks (distraction period), followed by a 3-week consolidation period. Two animals were killed each week after surgery. The generate bone was analyzed for the expression of BMP-2, -4, and -7 by using standard bone histological and immunohistochemical techniques. BMP-2 and -4 were highly expressed in osteoblastic cells during the distraction period and in chondrocytes during the consolidation period. BMP-7 demonstrated relatively minor expression in osteoblastic cells during the distraction period. All BMPs were strongly expressed in vascularized connective tissue during the distraction period. These data indicate that BMPs participate in the translation of mechanical stimuli into a biological response during mandibular distraction osteogenesis.  相似文献   

17.
18.
Cell differentiation under the influence of rh-BMP-2.   总被引:2,自引:0,他引:2  
Bioactive bone growth factors will likely play an important role in the regeneration of bone. BMP-2 is known to promote osteoblastic cell differentiation and osteogenesis. Whether the BMPs act on human osteoblastic cells by increasing immature cell growth and/or differentiation is unknown. The goal of this study was to analyse possible effects of rhBMP-2 on cell differentiation using a human bone marrow cell culture. rhBMP-2 was added to the culture medium once. Fourteen days after addition of rhBMP-2 the cells were incubated with monoclonal antibodies. The cells were counted and analysed in a fluorescence-activating cell sorter (FACS). Compared to the controls there was an increasing effect on granulocytes, B cells and stem cells. The T-cells and monocytes show no increase or decrease after rhBMP-2 treatment.  相似文献   

19.
Functional interactions between cancer cells and the bone microenvironment contribute to the development of bone metastasis. Although the bone metastasis of prostate cancer is characterized by increased ossification, the molecular mechanisms involved in this process are not fully understood. Here, the roles of bone morphogenetic proteins (BMPs) in the interactions between prostate cancer cells and bone stromal cells were investigated. In human prostate cancer LNCaP cells, BMP-4 induced the production of Sonic hedgehog (SHH) through a Smad-dependent pathway. In mouse stromal MC3T3-E1 cells, SHH up-regulated the expression of activin receptor IIB (ActR-IIB) and Smad1, which in turn enhanced BMP-responsive reporter activities in these cells. The combined stimulation with BMP-4 and SHH of MC3T3-E1 cells cooperatively induced the expression of osteoblastic markers, including alkaline phosphatase, bone sialoprotein, collagen type II α1, and osteocalcin. When MC3T3-E1 cells and LNCaP cells were co-cultured, the osteoblastic differentiation of MC3T3-E1 cells, which was induced by BMP-4, was accelerated by SHH from LNCaP cells. Furthermore, LNCaP cells and BMP-4 cooperatively induced the production of growth factors, including fibroblast growth factor (FGF)-2 and epidermal growth factor (EGF) in MC3T3-E1 cells, and these may promote the proliferation of LNCaP cells. Taken together, our findings suggest that BMPs provide favorable circumstances for the survival of prostate cancer cells and the differentiation of bone stromal cells in the bone microenvironment, possibly leading to the osteoblastic metastasis of prostate cancer.  相似文献   

20.
The activities of three bone morphogenetic proteins (BMPs), BMP-1, BMP-2 and BMP-3, on alkaline phosphatase activity, collagen synthesis and DNA synthesis were studied in cultured osteoblastic cells, MC3T3-E1. Treatment of cells with BMP-2 for 48 h induces an increase in cellular alkaline phosphatase activity. This stimulatory effect is evident at a concentration as low as 20 ng/ml of BMP-2 and becomes greater with increasing doses of BMP-2. The BMP-2-induced increase in alkaline phosphatase activity is enhanced by the presence of beta-estradiol, dexamethasone or 1 alpha, 25(OH)2D3. BMP-2 and BMP-3 slightly but significantly stimulate collagen synthesis. None of the BMPs stimulates DNA synthesis in MC3T3-E1 cells at doses tested. These results indicate that BMPs act directly on osteoblastic cells and stimulate the expression of the osteoblastic phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号