首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Hexachlorobenzene (HCB) differs markedly from other chlorinated benzenes (CBs) as an inducer of cytochrome P-450 (P-450) isozymes as determined by radioimmunoassay and immunoblotting. At greater than 99% pure, HCB induced both the phenobarbital-inducible forms, cytochromes P-450b + e (70 chi), and the 3-methylcholanthrene-inducible forms, cytochromes P-450c (58 chi) and P-450d (8 chi), in rat liver microsomes. The concentration of P-450d was considerably greater than that of P-450c in HCB-induced rat liver. In contrast to HCB, all lower chlorinated benzenes tested were PB-type inducers. Hexachlorobenzene increased the amounts of translatable messenger RNAs (mRNAs) for P-450b, P-450c, and P-450d in rat liver polysomes, suggesting that it increases the synthesis of these proteins. Evidence that HCB interacted with the putative Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was equivocal. Western blots of liver microsomes from Ah-responsive C57BL/6J (B6) and nonresponsive DBA/2J (D2) mice demonstrated that HCB produced a large increase in P3-450 and a very small increase in P1-450 in the responsive strain. The increase in P1-450 was not observed after HCB administration to nonresponsive mice, but a small increase in P3-450 was noted. These findings suggested that HCB may act through the Ah receptor. However, HCB was at best a very weak competitor for specific binding of [3H]-TCDD to the putative receptor in rat or mouse hepatic cytosol in vitro, producing decreases in binding of [3H]-TCDD only at very high concentrations (10(-6) to 10(-5) M).  相似文献   

9.
The time course of induction of rat liver microsomal cytochromes P-450a, P-450b + P-450e, P-450c, and P-450d and epoxide hydrolase has been determined in immature male rats administered a single large dose [1500 mumol (500 mg)/kg body wt] of the polychlorinated biphenyl mixture Aroclor 1254. Differential regulation of these xenobiotic-metabolizing enzymes was indicated by their characteristic patterns of induction. The rate of induction of cytochrome P-450a and epoxide hydrolase was relatively slow, and steady-state levels of these enzymes were maintained from approximately Days 9 to 15 after Aroclor 1254 treatment. In contrast, cytochrome P-450c was maximally induced 2 days after Aroclor 1254 treatment and remained at a constant level through Day 15. Steady-state levels of cytochrome P-450d, beginning 1 week after Aroclor 1254 treatment, were preceded by a fairly rapid rate of induction and possibly by a small decline from maximal levels observed around Days 4 to 5. Like those of the other cytochrome P-450 isozymes and epoxide hydrolase, the levels of cytochromes P-450b + P-450e were constant from Day 9 to 15 after Aroclor 1254 treatment. However, an unexpected but reproducible decline (approximately 25%) in total cytochrome P-450 content observed between Days 4 and 9 after Aroclor 1254 treatment principally reflected a dramatic and totally unanticipated decrease (approximately 45%) in the level of cytochromes P-450b + P-450e. This transient decline in the level of cytochromes P-450b + P-450e was not due to an unusual effect of a mixture of polychlorinated biphenyls, since identical results were obtained with two individual congeners, namely 2,3,4,5,4'-penta- and 2,3,4,5,3',4'-hexachlorobiphenyl, that induced the same isozymes as Aroclor 1254. In contrast, when rats were treated with 2,4,5,2',4',5'-hexachlorobiphenyl, which induces cytochromes P-450a and P-450b + P-450e and epoxide hydrolase but not cytochromes P-450c or P-450d, maximal levels of cytochromes P-450b + P-450e were attained on Day 4 and no decrease was observed over the next 11 days. These results suggest that there may be an interaction in the regulation of induction of certain individual cytochrome P-450 isozymes.  相似文献   

10.
11.
The genetic trait of "responsiveness," which refers to the capacity for induction of cytochrome P-448 and numerous monooxygenase activities by certain aromatic hydrocarbons, is known to segregate almost exclusively as a single autosomal dominant gene among progeny of appropriate crosses originating from the responsive C57BL/6 and the nonresponsive DBA/2 inbred mouse strains. In this report the allele for responsiveness is shown to be associated with (a) increases in the apparent KS values for metyrapone bound to reduced P-450; (b) increases in the ethylisocyanide difference ratio (deltaA455-490/deltaA430-490);(c) increases in the deltaA455-490 per mg of microsomal protein but not in the deltaA430-490 per mg of protein from the reduced P-450-ethylisocyanide complex; (d) an approximately 2-nm hypsochromic shift in the spectral maximum in the 446 nm region for the reduced P-450-metyrapone complex; (e) an approximately 2-nm hypsochromic shift of the absorption maximum in the 455 nm region, but not of the maximum in the 430 nm region, for the reduced P-450-ethylisocyanide complex; and (f) larger increases in the deltaA455-490 than in the deltaA430-490 per mg of microsomal protein for the reduced P450-ethylisocyanide complex as a function of increasing pH. All of these phenomena are felt to be associated with the genetically regulated induction of liver microsomal cytochrome P-448 by polycyclic aromatic compounds. Whereas increases in the total hepatic P-450 content appear to be expressed almost exclusively as a single autosomal dominant trait, the increase in apparent KS value for metyrapone bound to reduced P-450 appears to be expressed additively. The reason for this finding is unclear. The increase in apparent KS value for metyrapone in 3-methylcholanthrene-treated rats is known to occur even when the induction process is presumably blocked by treating the rat concomitantly with cycloheximide. Several lines of evidence in this report indicate that, although total P-450 content does not increase in C57BL/6N mice treated with 3-methylcholanthrene plus cycloheximide, hepatic P-448 induction does occur; P-448 induction does not occur in DBA/2N mice under these same conditions. These results indicate that cytochrome P-448 induction is relatively resistant to the inhibition of protein synthesis and that a responsive animal treated with 3-methylcholanthrene plus cycloheximide cannot be considered experimentally the same as a genetically nonresponsive animal treated with 3-methylcholanthrene alone.  相似文献   

12.
13.
14.
The interaction of isosafrole, 3,4,5,3',4',5'-hexabromobiphenyl (HBB) and hexachlorobiphenyl (HCB) with cytochrome P-450d was evaluated by characterization of estradiol 2-hydroxylase activity. Displacement of the isosafrole metabolite from microsomal cytochrome P-450d derived from isosafrole-treated rats resulted in a 160% increase in estradiol 2-hydroxylase. The increase was fully reversed by incubation with 1 microM HBB. Although isosafrole is capable of forming a complex with many different cytochrome P-450 isozymes, it appears to bind largely to cytochrome P-450d in vivo as was demonstrated by measuring the enzymatic activity of microsomal cytochromes P-450b, P-450c, and P-450d from isosafrole-treated rats. When estradiol 2-hydroxylase was measured in rats treated with increasing doses of HCB, there was a gradual decrease in microsomal enzyme activity despite a 20-fold increase in cytochrome P-450d. The ability of cytochrome P-450d ligands to stabilize the enzyme was investigated in two ways. First, cytochromes P-450c and P-450d were quantitated immunochemically in microsomes from rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), at a dose which maximally induced total cytochrome P-450, followed by a single dose of a second inducer. The specific content of cytochrome P-450d was significantly increased when isosafrole or HCB was the second inducer but not when 3-methylcholanthrene was the second inducer. Second, the relative turnover of cytochrome P-450d was measured by the dual label technique. Following TCDD treatment, microsomal protein was labeled in vivo with [3H]leucine, the second inducer was given and protein was again labeled 3 days later with [14C]leucine. A higher ratio of 3H/14C in the cytochrome P-450d from isosafrole + TCDD- and HCB + TCDD-treated rats relative to TCDD (control)-treated rats suggested that isosafrole and HCB were able to retard the degradation of cytochrome P-450d, presumably by virtue of being tightly bound to the enzyme.  相似文献   

15.
16.
Two methylenedioxyphenyl compounds, isosafrole (5-propenyl-1,3-benzodioxole) and an analog, 5-t-butyl-1,3-benzodioxole (BD), differ markedly as inducers of cytochrome P-450 isozymes in rat liver microsomes. Isosafrole is a mixed-type inducer, inducing P-450b, P-450c, and P-450d. In contrast, BD is a phenobarbital-type inducer, increasing P-450b, but producing little or no increase in P-450c or P-450d. Similarly, isosafrole increases the amount of translatable mRNA for P-450b, c and d, while BD induces only the mRNA for P-450b. Dimethylation of the methylene bridge carbon of BD to give 2,2-dimethyl-5-t-butyl-1,3-benzodioxole (DBD) blocks the formation of NADPH-reduced Type III metabolite-P-450 complexes in vitro, and diminishes but does not abolish the ability of the compound to induce P-450b. Western blots of microsomes from isosafrole and BD-treated rat livers confirm that in contrast to isosafrole, BD does not induce P-450d or P-450c. However, the antibody to P-450d recognizes two new polypeptides (approximately 50K Mr) from sodium dodecyl sulfate-polyacrylamide gels of liver microsomes from BD-treated rats. These polypeptides are not observed in control, isosafrole, 3-methylcholanthrene (3-MC), or DBD-treated rats. They are intensified by coadministration of 3-MC with BD and may represent either modified isozyme-metabolite adducts or degradation products of P-450d. However, the polypeptides could not be generated in vitro by addition of BD to 3-MC-induced microsomes with NADPH under conditions which produced spectral metabolite complexes, or in a reconstituted system with P-450d. The two methylenedioxyphenyl compounds do not form stable metabolite complexes with the same P-450 isozymes. BD formed distinct spectral metabolite complexes in vitro with both P-450b and P-450c but not with P-450d in a reconstituted system. In contrast, isosafrole forms metabolite complexes with all three isozymes. Coadministration of 3-MC with BD blocked induction of P-450b by 80% and produced a similar repression of its translatable mRNA. This finding indicates that 3-MC type inducers not only induce certain cytochrome P-450 isozymes, but also repress synthesis of other isozymes.  相似文献   

17.
Hexachlorobenzene (HCB) differs markedly from other chlorinated benzenes (CBs) as an inducer of cytochrome P-450 (P-450) isozymes as determined by radioimmunoassay and immunoblotting. At > 99% pure, HCB induced both the phenobarbital-inducible forms, cytochromes P-450b + e (70X), and the 3-methylcholanthrene-inducible forms, cytochromes P-450c (58X) and P-450d (8X), in rat liver microsomes. The concentration of P-450d was considerably greater than that of P-450c in HCB-induced rat liver. In contrast to HCB, all lower chlorinated benzenes tested were PB-type inducers. Hexachlorobenzene increased the amounts of translatable messenger RNAs (mRNAs) for P-450b, P-450c, and P-450d in rat liver polysomes, suggesting that it increases the synthesis of these proteins. Evidence that HCB interacted with the putative Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was equivocal. Western blots of liver microsomes from Ahresponsive C57BL/6J (B6) and nonresponsive DBA/2J (D2) mice demonstrated that HCB produced a large increase in P3-450 and a very small increase in P1-450 in the responsive strain. The increase in P1-450 was not observed after HCB administration to nonresponsive mice, but a small increase in P3-450 was noted. These findings suggested that HCB may act through the Ah receptor. However, HCB was at best a very weak competitor for specific binding of [3H]-TCDD to the putative receptor in rat or mouse hepatic cytosol in vitro, producing decreases in binding of [3H]-TCDD only at very high concentrations (10?6 to 10?5 M).  相似文献   

18.
Theophylline metabolism has been studied in a reconstituted monooxygenase system with purified forms of cytochrome P-450: P-450a, P-450b, P-450d and P-450k as well as in liver microsomes of control and 3-methylcholanthrene-induced rats. Cytochrome P-450 isoforms, P-450a and P-450b, had no effect on theophylline metabolism, whereas forms P-450d and P-450k induced the synthesis of 1.3-dimethyluric acid (1.3-DMA) at the rates of 900 and 330 pmol/min/nmol of protein, respectively. The catalytic activity of these isoforms was fully inhibited by homologous monospecific antibodies. P-450c catalyzed the formation of a nonidentified metabolite. In microsomes of control animals antibodies specifically directed to cytochrome P-450k suppressed the rate of 1.3-DMA synthesis by 73%, whereas antibodies specifically raised against P-450c+d--by 11%. In microsomes of methylcholanthrene-induced animals the rate of 1.3-DMA synthesis was increased two-fold. This activity was inhibited by 61% by antibodies to cytochrome P-450k and by 18% by anti-P-450c+d antibodies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号