首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study describes the characterization of epithelial cells in culture following their isolation from the thick ascending limb of Henle's loop of rabbit kidney, by enzymatic digestion and subsequent purification using density gradient centrifugation. In culture, these cells expressed a variety of morphological, enzymatic and functional parameters expected of such cells in vivo. These cells were polarised, formed tight junctions and exhibited considerable lateral interdigitation between adjacent cells. They also developed characteristically high levels of activity of Na,K-ATPase, comparable to those seen in freshly isolated cells, and also expressed the functionally important Na,K,Cl-co transport system. The development of these systems in culture, however, was not coincident and their activities were reduced upon extended culture. The ability of these cells to develop and express differentiated characteristics in culture indicates that cells derived from defined kidney cell populations should provide valuable models for the study of the factors involved in the development and regulation of kidney cell type-specific characteristics.  相似文献   

2.
The HNK-1 carbohydrate epitope is a 3-sulfo-glucuronyl residue attached to lactosamine structures on glycoproteins, proteoglycans, or glycolipids mostly expressed in the nervous system. Here, using monoclonal antibodies against the sulfated HNK-1 carbohydrate epitope, we first examined its distribution in developing and adult kidneys, then its expression in kidneys with tubular necrosis and renal neoplasms. This HNK-1 epitope was expressed in the human, rabbit, and rat, but not mouse kidney. It was detected within a subset of epithelial cells in the renal vesicle and in comma- and S-shaped bodies during early stages of nephrogenesis. In ureteral bud derivatives, the epitope was present transiently in the area where the collecting duct fused with the nephron. In the adult kidney, expression of the HNK-1 epitope became mainly restricted to the thin ascending loop of Henle where this epitope was carried by heparan- and chondro-proteoglycan. In pathological conditions, HNK-1 epitope expression increased dramatically in proximal epithelial tubule cells in kidneys with acute tubular necrosis. In tumors, the HNK-1 epitope was expressed in the epithelial component of nephroblastomas and in a subgroup of papillary renal cell carcinomas. These data suggest that molecules carrying the sulfated HNK-1 carbohydrate epitope may play an important role in critical stages of renal development and in the physiology of thin ascending loop of Henle.  相似文献   

3.
4.
The thin limbs of the loop of Henle   总被引:2,自引:0,他引:2  
  相似文献   

5.
Summary An ultrastructural study of the thin loops of Henle has been made in the renal papilla of the rabbit. Animals in different states of water balance were used but no morphological difference was observed in the loops obtained from animals in different experimental groupings. The cytoplasm of the squamous cells lining the limbs was characterised by a paucity of organelles. Descending and ascending limbs were distinguishable. A distinct morphological difference was seen in the junctional regions of cell processes of the descending and ascending thin limbs of the loop. The ascending limb processes were joined by continuous tight junctions whereas the descending limb junctional regions invariably showed a space of at least 70 Å between adjacent processes. It is suggested that there may be a correlation between the structure of these junctional regions and the different permeability characteristics of the two limbs. The thin ascending limb must, on physiological evidence, be relatively impermeable with reference to the thin descending limb.The author wishes to thank Professor F. R. Johnson for his advice and assistance, and Mr. R. F. Birchenough, Mr. P. L. Hyam and Mr. J. Manston for valuable technical assistance.  相似文献   

6.
Ultrastructure of the thick ascending limb of Henle in the rat kidney   总被引:2,自引:0,他引:2  
The thick ascending limb of Henle (TAL) in the rat until recently has been considered a morphologically homogeneous structure despite physiologic and biochemical evidence to the contrary. The present study was designed to examine the ultrastructural characteristics of the TAL in the inner cortex and the outer and inner stripes of the outer medulla using qualitative and quantitative transmission electron microscopy. Kidneys of male Sprague-Dawley rats were preserved by in vivo perfusion with glutaraldehyde for light and electron microscopy. The peritubular diameter and cell height were determined by direct measurements on tubule cross sections. Morphometric analyses were performed on montages of tubule cross sections. The peritubular diameter of the TAL was similar in the three regions under investigation, but the TAL cells were taller in the inner stripe than in the inner cortex and outer stripe. Morphometry revealed significant differences between the three regions with respect to the mean tubular cross-sectional area (AT), the surface density (SV), and the surface area per mm of tubule (ST) of apical and basolateral plasma membranes, and the volume density (VV) of mitochondria. The major morphologic division appeared to be between the inner stripe segment and the remainder of the TAL. These findings document the presence of significant morphologic heterogeneity of the rat TAL.  相似文献   

7.
To determine the contribution of the juxtamedullary loop of Henle to magnesium reabsorption during magnesium deficiency, we performed two-phase micropuncture studies of end-descending limbs in a group of magnesium-deficient rats (n = 7) and in a pair-fed control group (n = 8) given MgCl2 in their drinking water. In the magnesium-deficient rats, daily excretion of magnesium fell to very low values (1.2 +/- 0.2 vs. 52 +/- 12 microM.day-1.100 g body weight-1, p less than 0.05). Plasma magnesium concentration and fractional magnesium excretion during the control phase were nearly 52 and 27%, respectively, of the values observed in pair-fed controls. Fractional magnesium delivery to the end-descending limb did not differ significantly between the two groups. During the acute magnesium repletion phase, fractional magnesium excretion and fractional magnesium delivery to the end-descending limb increased by a similar value in the two groups of rats, despite a lower filtered load of magnesium in the magnesium-deficient group. Absolute magnesium reabsorption upstream to the end-descending limb was lower in the magnesium-deficient rats but was otherwise tightly coupled to the filtered load of magnesium (Y = 0.91 + 0.37 x, r = 0.82, p less than 0.05). Similar observations were made with regards to whole kidney magnesium reabsorption. Our results suggest that, in young magnesium-deficient rats, magnesium reabsorption is tightly coupled to the filtered load of magnesium both in segments upstream to the juxtamedullary end-descending limb and in the whole kidney, and that a reabsorptive defect for magnesium is not evident in this setting.  相似文献   

8.
We used a simple mathematical model of rat thick ascending limb (TAL) of the loop of Henle to predict the impact of spatially inhomogeneous NaCl permeability, spatially inhomogeneous NaCl active transport, and spatially inhomogeneous tubular radius on luminal NaCl concentration when sustained, sinusoidal perturbations were superimposed on steady-state TAL flow. A mathematical model previously devised by us that used homogeneous TAL transport and fixed TAL radius predicted that such perturbations result in TAL luminal fluid NaCl concentration profiles that are standing waves. That study also predicted that nodes in NaCl concentration occur at the end of the TAL when the tubular fluid transit time equals the period of a periodic perturbation, and that, for non-nodal periods, sinusoidal perturbations generate non-sinusoidal oscillations (and thus a series of harmonics) in NaCl concentration at the TAL end. In the present study we find that the inhomogeneities transform the standing waves and their associated nodes into approximate standing waves and approximate nodes. The impact of inhomogeneous NaCl permeability is small. However, for inhomogeneous active transport or inhomogeneous radius, the oscillations for non-nodal periods tend to be less sinusoidal and more distorted than in the homogeneous case and to thus have stronger harmonics. Both the homogeneous and non-homogeneous cases predict that the TAL, in its transduction of flow oscillations into concentration oscillations, acts as a low-pass filter, but the inhomogeneities result in a less effective filter that has accentuated non-linearities.  相似文献   

9.
Previous studies have indicated that 20-hydroxyeicosatetraenoic acid (20-HETE) inhibits Na+ transport in the medullary thick ascending loop of Henle (mTALH), but the mechanisms involved remain uncertain. The present study compared the effects of 20-HETE with those of ouabain and furosemide on intracellular Na+ concentration ([Na+]i), Na+ -K+ -ATPase activity, and 86Rb+ uptake, an index of Na+ transport, in mTALH isolated from rats. Ouabain (2 mM) increased, whereas furosemide (100 microM) decreased, [Na+]i in the mTALH of rats. Ouabain and furosemide inhibited 86Rb+ uptake by 91 and 30%, respectively. 20-HETE (1 microM) had a similar effect as ouabain and increased [Na+]i from 19 +/- 1 to 30 +/- 1 mM. 20-HETE reduced Na+ -K+ -ATPase activity by 30% and 86Rb+ uptake by 37%, but it had no effect on 86Rb+ uptake or [Na+]i in the mTALH of rats pretreated with ouabain. 20-HETE inhibited 86Rb+ uptake by 12% and increased [Na+]i by 19 mM in mTALH pretreated with furosemide. These findings indicate that 20-HETE secondarily inhibits Na+ transport in the mTALH of the rat, at least, in part by inhibiting the Na+ -K+ -ATPase activity and raising [Na+]i.  相似文献   

10.
The transient receptor potential (TRP) channels are implicated in various cellular processes, including sensory signal transduction and electrolyte homeostasis. We show here that the GTL-1 and GON-2 TRPM channels regulate electrolyte homeostasis in the C. elegans intestine. GON-2 is responsible for a large outwardly rectifying current of intestinal cells, and its activity is tightly regulated by intracellular Mg(2+) levels, while GTL-1 mainly contributes to appropriate Mg(2+) responsiveness of the outwardly rectifying current. We also used nickel cytotoxicity to study the function of these channels. Both GON-2 and GTL-1 are necessary for intestinal uptake of nickel, but GTL-1 is continuously active while GON-2 is inactivated at higher Mg(2+) levels. This type of differential regulation of intestinal electrolyte absorption ensures a constant supply of electrolytes through GTL-1, while occasional bursts of GON-2 activity allow rapid return to normal electrolyte concentrations following physiological perturbations.  相似文献   

11.
A homogeneous population of single cells from the thick ascending limb of Henle's loop (TALH) has been isolated from the rabbit kidney medulla. A total medullary cell suspension was prepared by a series of collagenase, hyaluronidase, and trypsin digestions and separated on a Ficoll gradient (2.6-30.7% wt/wt). Morphologically, the cells isolated from the TALH were homogeneous and showed polarity within their plasma membrane structure, with a few blunt microvilli on their apical surface and deep infoldings of the basal-lateral membrane. Biochemically, the TALH cells were highly enriched in calcitonin-sensitive adenylate cyclase and Na, K-ATPase. Alkaline phosphatase and arginine vasopressin- sensitive adenylate cyclase, highly concentrated in proximal tubule and collecting duct, were present only in low concentrations in the TALH cells. Additionally, furosemide, a diuretic inhibiting sodium chloride transport in the TALH in vivo, inhibited oxygen consumption of the TALH cells in a dose-dependent manner. The TALH cells were viable, as judged by morphological appearance, trypan blue exclusion, the response of oxygen consumption to 2,4-dinitrophenol, succinate and ouabain, and the cellular Na, K and ATP levels.  相似文献   

12.
The thick ascending limb of Henle's loop (TALH) is normally exposed to variable and often very high osmotic stress and involves different mechanisms to counteract this stress. ER resident calcium binding proteins especially calreticulin (CALR) play an important role in different stress balance mechanisms. To investigate the role of CALR in renal epithelial cells adaptation and survival under osmotic stress, two-dimensional fluorescence difference gel electrophoresis combined with mass spectrometry and functional proteomics were performed. CALR expression was significantly altered in TALH cells exposed to osmotic stress, whereas renal inner medullary collecting duct cells and interstitial cells exposed to hyperosmotic stress showed no significant changes in CALR expression. Moreover, a time dependent downregulation of CALR was accompanied with continuous change in the level of free intracellular calcium. Inhibition of the calcium release, through IP3R antagonist, prevented CALR expression alteration under hyperosmotic stress, whereas the cell viability was significantly impaired. Overexpression of wild type CALR in TALH cells resulted in significant decrease in cell viability under hyperosmotic stress. In contrast, the hyperosmotic stress did not have any effect on cells overexpressing the CALR mutant, lacking the calcium-binding domain. Silencing CALR with siRNA significantly improved the cell survival under osmotic stress conditions. Taken together, our data clearly highlight the crucial role of CALR and its calcium-binding role in TALH adaptation and survival under osmotic stress.  相似文献   

13.
14.
15.
Atriopeptins are biologically active peptides with potent natriuretic, diuretic, and vasorelaxant activities. Manipulation of an animal's salt and water intake influences the synthesis, storage, and release of atriopeptin. In addition to its direct effects on fluid and electrolyte balance, atriopeptin influences other volume regulatory hormones, including renin, aldosterone, and vasopressin. Atriopeptin, by its direct actions and its effects on hormone systems, provides a means for delicate hormonal control of fluid and electrolyte homeostasis.  相似文献   

16.
Summary In the kidney of the Syrian hamster the descending thin limbs of both the short and long loops of Henle are not spatially separated from each other and descend between the vascular bundles.Ultrastructurally, five different epithelial types are distinguished in the thin limbs of the short and long loops of Henle. Short loops possess only a descending thin limb with a simply organized epithelium (type 1). Long loops comprise an upper and a lower part of the descending thin limb and the ascending thin limb. The upper part of the long descending thin limb is equipped with a complex and highly interdigitating epithelium with shallow junctions (type 2), which gradually transforms into the simple noninterdigitating type-3 epithelium of the lower part. In a minor portion of long descending thin limbs, however, the upper part begins with an even more complexly organized epithelium (type 2a) than type 2. Type-2a epithelium is conspicuously thicker and possesses a more elaborate mode of cellular interdigitation. Along the descent of this tubular part through the inner stripe of the outer medulla, type-2a epithelium transforms into type-2 epithelium. It is suggested that the long descending thin limbs, which start with type-2a epithelium, belong to the longest loops. The type-4 epithelium of the ascending thin limbs is characterized by flat and extensively interdigitating cells with shallow junctions.The unique pattern of the type-2 a epithelium favors the assumption that solute secretion essentially contributes to the increase in concentration of tubular fluid in long descending thin limbs.This investigation was supported by the Deutsche Forschungsgemeinschaft; project Kr 546 Henlesche Schleife  相似文献   

17.
18.
Summary Intraacinar distribution of succinate dehydrogenase (SDH), malate dehydrogenase (MDH), NADP-dependent isocitrate dehydrogenase (IDH), glutamate dehydrogenase (GluDH), lactate dehydrogenase (LDH) and NADH-tetrazolium dehydrogenase (TR) was studied in rat liver cryostat sections by multipositional microphotometric activity determinations. By statistical evaluation, activity of individual enzymes could be related to the acinar topography. Activity was evaluated with regard to distance of measuring position either from afferent (portal) or efferent (hepatic) vessels. Two independent distribution curves were obtained for each enzyme. Acinar distribution of all the enzymes studied followed sigmoid courses with maximal activity of SDH, MDH and LDH in zone 1 (periportal) and GluDH, IDH, TR in zone 3 (pericentral). For all enzymes, maximum activity gradients were confined to zone 2 of the acinus. Data were also evaluated as ratios of activities in zone 1 and zone 3. The following ratios zone 1/zone 3 were obtained: SDH=1.9, MDH=1.7, IDH=0.5, GluDH=0.5, LDH=1.3 and TR=0.6.  相似文献   

19.
Introduction: regulation of lymphocyte homeostasis   总被引:1,自引:0,他引:1  
  相似文献   

20.
A tubular loop batch fermentor has been designed and constructed, and was found to behave in a similar manner to a conventional stirred tank reactor. It appeared that foaming could be greatly reduced as no air ever encountered the impeller. The fluid mechanics of pipe flow are considerably simpler than tank flow patterns. On this basis a design procedure for a large scale tubular fermentor was outlined, which had considerable advantages over the more complex scale-up problems of a tank fermentor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号