首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A physical map of the P. aeruginosa bacteriophage phi kF77 has been constructed using the restriction endonucleases SalI, HindIII, EcoRI, EcoRV, MuI, XbaI, ClaI. The phi kF77 DNA is resistant to cleavage by the restriction endonucleases BamHI, BglII, HpaI, PstI, PvuII, SmaI, XhoI.  相似文献   

2.
A physical map has been constructed for P. putida bacteriophage tf DNA containing single-strand breaks (nicks). Localization of cleavage sites for EcoRI, HindIII, HpaI ClaI, BamHI, SalI, XbaI and XhoI restriction endonucleases was determined. Position of single-strand breaks was mapped by electrophoretic analysis of denatured tf DNA and electron microscopy of partially denatured DNA samples. The tf genome is characterized by the presence of two classes of nicks differing in the frequency of their presence in population of bacteriophage DNA molecules.  相似文献   

3.
A physical map of the 32.4-kb chromosome of the Haemophilus influenzae bacteriophage Hp1c1 has been constructed, using the cleavage sites of eight restriction endonucleases. Two temperature-sensitive mutations have also been localized on the phage chromosome. The phage DNA exhibited an affinity for the specific DNA receptor of Haemophilus transformation approx. 1.5-fold higher than that obtained with bulk chromosomal DNA of H. influenzae.  相似文献   

4.
Properties of a mutant bacteriophage T2 DNA [N:(6)-adenine] methyltransferase (T2 Dam MTase) have been investigated for its potential utilization in RecA-assisted restriction endonuclease (RARE) cleavage. Steady-state kinetic analyses with oligonucleotide duplexes revealed that, compared to wild-type T4 Dam, both wild-type T2 Dam and mutant T2 Dam P126S had a 1.5-fold higher k(cat) in methylating canonical GATC sites. Additionally, T2 Dam P126S showed increased efficiencies in methylation of non-canonical GAY sites relative to the wild-type enzymes. In agreement with these steady-state kinetic data, when bacteriophage lambda DNA was used as a substrate, maximal protection from restriction nuclease cleavage in vitro was achieved on the sequences GATC, GATN and GACY, while protection of GACR sequences was less efficient. Collectively, our data suggest that T2 Dam P126S can modify 28 recognition sequences. The feasibility of using the mutant enzyme in RARE cleavage with BCL:I and ECO:RV endonucleases has been shown on phage lambda DNA and with BCL:I and DPN:II endonucleases on yeast chromosomal DNA embedded in agarose.  相似文献   

5.
The cyclic permutation and terminal redundancy were found in the genomes of Erwinia carotovora temperate bacteriophage 59 by electron microscopic studies. The headful mechanism for bacteriophage DNA cleavage and packaging during the phage morphogenesis was confirmed by the restriction analysis technique. Restriction map of the bacteriophage 59 DNA was constructed for restriction endonucleases BamHI, Bg1II, Eco31, Sa1I, SmaI, EcoRI.  相似文献   

6.
Summary The order of the fragments derived from bacteriophage M2 DNA by digesting it with restriction endonucleases Xba1, HindIII, and EcoRI has been determined. The locus of each representative mutation in 13 cistrons of the M2 genome has been determined by transfection/marker rescue with the individual restriction enzyme-digested fragments derived from wild-type M2 DNA.  相似文献   

7.
It was demonstrated for the first time that filamentous bacteriophage Cflt, which contains single-stranded DNA, can incorporate its genome into that of its host. Evidence in support of the incorporation was obtained from a Southern blot hybridization analysis of DNA isolated from Cflt-lysogenized cells. DNAs from different Cflt-lysogenized cells were purified, and the integration patterns were compared. Because all integration patterns were identical and only one fragment in Cflt replicative-form DNA was missing, it appears that the integration was site specific. Only one complement of viral DNA was integrated per host chromosome. To determine the attachment site on the viral DNA, the physical map of EcoRI, XhoI, SstII, and BglII on Cflt DNA was constructed. Based on this physical map and a Southern blot hybridization analysis of lysogen DNA with these restriction endonucleases, we demonstrated that DNA sequences from all regions of the Cflt genome were represented in the integrated viral sequences. The attachment site on the viral genome was located at 69.2 to 73.8 min on the Cflt DNA.  相似文献   

8.
The technique of localized in vitro mutagenesis in the cohesive ends of plasmid pBR322 DNA has been elaborated (separately for BamHI and HindIII sites). Plasmid DNA digested by restriction endonucleases has been treated with sodium bisulphite deaminating cytosine to form uracil in single stranded DNA (cohesive ends of the plasmid). The mutagenized plasmid DNA, free of mutagen, has been treated with bacteriophage T4 ligase. E. coli C600 cells were subsequently transformed by the ligated DNA preparation. The clones having tetracycline gene mutagenized represented 4.0-11.1% and 1.2-3.1% among HindIII and BamHI mutants, respectively, selected as TcR----TcS transformants. Selection of mutagenized DNA by the second endonuclease restriction has increased the mutant yields up to 55.6-78.0% and 10.0-75.4%, respectively. The yield of TcS mutations in the control DNA treated at all stages of experiment, except for mutagen treatment, has reached 0.06% and 0.2%, respectively.  相似文献   

9.
Bacteriophage phiX174 DNA was labeled in vivo with [methyl-(3)H]methionine. The methyl-labeled progeny DNA was extracted from purified bacteriophage phiX174 particles and was used as template for in vitro synthesis of the complementary strand in the presence of the nucleoside triphosphates and Escherichia coli polymerase I. The resultant replicative form DNA was then cleaved, in separate experiments, with restriction endonucleases from Haemophilus influenzae and H. aegyptius. The DNA fragments were analyzed by polyacrylamide gel electrophoresis. It is concluded that the single methylcytosine in the viral DNA is located in a specific region of the phiX174 genome, very likely in gene H.  相似文献   

10.
In Escherichia coli, RecBCD processes double-stranded DNA breaks during the initial stages of homologous recombination. RecBCD contains helicase and nuclease activities, and unwinds and digests the blunt-ended DNA until a specific eight-nucleotide sequence, Chi, is encountered. Chi modulates the nuclease activity of RecBCD and results in a resected DNA end, which is a substrate for RecA during subsequent steps in recombination. RecBCD also acts as a defence mechanism against bacteriophage infection by digesting linear viral DNA present during virus replication or resulting from the action of restriction endonucleases. To avoid this fate, bacteriophage lambda encodes the gene Gam whose product is an inhibitor of RecBCD. Gam has been shown to bind to RecBCD and inhibit its helicase and nuclease activities. We show that Gam inhibits RecBCD by preventing it from binding DNA. We have solved the crystal structure of Gam from two different crystal forms. Using the published crystal structure of RecBCD in complex with DNA we suggest models for the molecular mechanism of Gam-mediated inhibition of RecBCD. We also propose that Gam could be a mimetic of single-stranded, and perhaps also double-stranded, DNA.  相似文献   

11.
Molecular masses of cholera bacteriophages 493, 7226 and Eltor II were defined by electron microscopic technique. DNA of these bacteriophages was digested by the restriction endonucleases PstI, BglI, MluI and SalI. The number and molecular masses of the obtained restricts were identified. The physical map of bacteriophage 493 was constructed using three restriction endonucleases. The obtained data can be used for classification and molecular biology research of cholera bacteriophages.  相似文献   

12.
A covalently closed circular form of unintegrated viral DNA obtained from NIH 3T3 cells freshly infected with Moloney murine leukemia virus (M-MLV) and a port of the endogenous M-MLV from the BALB/Mo mouse strain have been cloned in bacteriophage lambda. The unintegrated viral DNA was cleaved with restriction endonuclease HindIII and inserted into the single HindIII site of lambda phage Charon 21A. Similarly high-molecular-weight DNA from BALB/Mo mice ws cleaved sequentially with restriction endonucleases EcoRI and HindIII and separated on the basis of size, and one of the two fractions which reacted with an M-MLV-specific complementary DNA was inserted into the HindIII site of Charon 21A. Recombinant clones containing M-MLV-reacting DNA were analyzed by restriction endonuclease mapping, heteroduplexing, and infectivity assays. The restriction endonuclease map of the insert derived from unintegrated viral DNA, lambda x MLV-1, was comparable to published maps. Electron microscope analysis of the hybrid formed between lambda x MLV-1 DNA and 35S genomic M-MLV RNA showed a duplex structure. The molecularly cloned lambda x MLV-1 DNA contained only one copy of the long terminal repeat and was not infectious even after end-to-end ligation of the insert DNA. The insert DNA derived from endogenous M-MLV, lambda x MLVint-1, contained a DNA stretch measuring 5.4 kilobase pairs in length, corresponding to the 5' part of the genomic viral RNA, and cellular mouse DNA sequences measuring 3.5 kilobase pairs in length. The viral part of the insert showed the typical restriction pattern of M-MLV DNA except that a single restriction site, PvuII, in the 5' long terminal repeat was missing. Reconstructed genomes containing the 5' half derived from the integrated viral DNA and the 3' half derived from the unintegrated viral DNA were able to induce XC plaques after transfection in uninfected mouse fibroblasts.  相似文献   

13.
The DNA of bacteriophage T3 was characterized by cleavage with seven restriction endonucleases. AvaI, XbaI, BglII, and HindIII each cut T3 DNA at 1 site, KpnI cleaved it at 2 sites, MboI cleaved it at 9 sites, and HpaI cleaved it at 17 sites. The sizes of the fragments produced by digestion with these enzymes were determined by using restriction fragments of T7 DNA as molecular weight standards. As a result of this analysis, the size of T3 DNA was estimated to be 38.74 kilobases. The fragments were ordered with respect to each other and to the genetic map to produce a restriction map of T3 DNA. The location and occurrence of the restriction sites in T3 DNA are compared with those in the DNA of the closely related bacteriophage T7.  相似文献   

14.
A small circular supercoiled DNA molecule species with a molecular weight of about 5.4 × 106 has been isolated from the extreme thermophile Thermus thermophilus HB8. This plasmid (pTT1) has a G plus C content of 68%, similar to that of the host chromosome. The superhelix density is the same as that of bacteriophage PM2 DNA. A physical map of the plasmid has been obtained using restriction endonucleases.  相似文献   

15.
We analyzed, by restriction endonuclease mapping and electron microscopy, the genome of the lytic Rhodopseudomonas sphaeroides-specific bacteriophage RS1 and characterized it as a linear molecule of approximately 60 to 65 kilobases. When the DNA from purified phage particles was examined by several independent methods, considerable size heterogeneity was apparent in the RS1 DNA. This size heterogeneity was concluded to be of biological origin, was independent of the specific host strain used to propagate virus, and was not due to the presence of host DNA within or nonspecifically associated with purified virions. In addition, treatment of RS1 DNA with either BAL 31 nuclease or DNA polymerase I Klenow fragment revealed that several distinct regions exist within the viral chromosome which contain free 3' hydroxyl groups. A restriction endonuclease map of the RS1 genome was constructed by using the restriction endonucleases EcoRI, ClaI, KpnI, BamHI, MluI, SmaI, and BclI; thereby allowing the positioning of some 40 restriction sites within the viral genome. The results are discussed in terms of the significance and the possible biological origin of the unique features discovered within the phage RS1 DNA.  相似文献   

16.
A rapid and efficient procedure for purifying bacteriophage λ DNA is described. This small-scale purification involves isolation of bacteriophage particles on cesium chloride gradients. Using an Airfuge ultracentrifuge, the centrifugation step can be readily achieved in 90 minutes. The method allows a 1-day purification of up to 12 independent λ DNA (20–40 μg each). The recovered DNA, essentially devoid of RNA and DNA contaminants, is efficiently cut by restriction endonucleases and can serve as starting material for the ligation of DNA fragments in other cloning vehicles.  相似文献   

17.
J Ito 《Journal of virology》1978,28(3):895-904
The location of the protein bound to bacteriophage phi29 DNA has been studied with restriction endonucleases, exonucleases, and polynucleotide kinase. The protein is invariably associated with the two terminal DNA fragments generated by restriction endonucleases. The phi29 DNA prepared with or without proteinase K treatment is resistant to the action of the 5'-terminal-specific exonucleases, lambda-exonuclease and T7 exonuclease. The phi29 DNA is also inaccessible to phosphorylation by polynucleotide kinase even after treatment with alkaline phosphatase. On the other hand, phi29 DNA is sensitive to exonuclease III, and the 3' termini of the DNA can be labeled by incubating with alpha-[32P]ATP and terminal deoxynucleotidyl transferase. The protein remains associated with the phi29 DNA after treatment with various chaotropic agents, including 8 M urea, 6 M guanidine-hydrochloride, 4 M sodium perchlorate, 2 M sodium thiocyanate, and 2 M LiCl. These results are consistent with the notion that the protein is linked covalently to the 5' termini of the phi29 DNA.  相似文献   

18.
The reactions of the EcoRi and other restriction endonucleases.   总被引:6,自引:0,他引:6       下载免费PDF全文
The reaction of the EcoRI restriction endonuclease was studied with both the plasmid pMB9 and DNA from bacteriophage lambda as the substrates. With both circular and linear DNA molecules, the only reaction catalysed by the EcoRI restriction endonuclease was the hydrolysis of the phosphodiester bond within one strand of the recognition site on the DNA duplex. The cleavage of both strands of the duplex was achieved only after two independent reactions, each involving a single-strand scission. The reactivity of the enzyme for single-strand scissions was the same for both the first and the second cleavage within its recognition site. No differences were observed between the mechanism of action on supercoiled and linear DNA substrates. Other restriction endonucleases were tested against plasmid pMB9. The HindIII restriction endonuclease cleaved DNA in the same manner as the EcoRI enzyme. However, in contrast with EcoRI, the Sa/I and the BamHI restriction endonucleases appeared to cleave both strands of the DNA duplex almost simultaneously. The function of symmetrical DNA sequences and the conformation of the DNA involved in these DNA--protein interactions are discussed in the light of these observations. The fact that the same reactions were observed on both supercoiled and linear DNA substrates implies that these interactions do not involve the unwinding of the duplex before catalysis.  相似文献   

19.
The aim of the present paper was to study the specific character of interaction of peptide antibiotic bacitracin with DNA and to estimate the interaction constant. The influence of bacitracin on bacteriophage DNA restriction by HindIII and SmaI endonucleases was studied. The possibility of arranging the polynucleotide template by small ligands was shown.  相似文献   

20.
Summary The 2 micron circular DNA from S. cerevisiae has been cloned on bacteriophage . The two forms of circular DNA which exist in equilibrium due to recombination between inverted repeat sequences were separated as stable clones, and a map of the targets for restriction endonucleases EcoRI, HindIII and HpaI was constructed. The circular DNAs isolated from a particular oligomycin resistant strain and its parent oligomycin sensitive strain were compared by restriction endonuclease analysis, and no difference was detected. The potential uses of cloned 2 micron DNA in determining the possible biological role of these plasmids are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号