首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
HCV infection is a major risk factor for liver cancer and liver transplantation worldwide. Overstimulation of host lipid metabolism in the liver by HCV-encoded proteins during viral infection creates a favorable environment for virus propagation and pathogenesis. In this study, we hypothesize that targeting cellular enzymes acting as master regulators of lipid homeostasis could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with human Flaviviridae viruses such as hepatitis C virus (HCV), whose assembly and pathogenesis depend on interaction with lipid droplets (LDs). One such master regulator of cholesterol metabolic pathways is the host subtilisin/kexin-isozyme-1 (SKI-1)--or site-1 protease (S1P). SKI-1/S1P plays a critical role in the proteolytic activation of sterol regulatory element binding proteins (SREBPs), which control expression of the key enzymes of cholesterol and fatty-acid biosynthesis. Here we report the development of a SKI-1/S1P-specific protein-based inhibitor and its application to blocking the SREBP signaling cascade. We demonstrate that SKI-1/S1P inhibition effectively blocks HCV from establishing infection in hepatoma cells. The inhibitory mechanism is associated with a dramatic reduction in the abundance of neutral lipids, LDs, and the LD marker: adipose differentiation-related protein (ADRP)/perilipin 2. Reduction of LD formation inhibits virus assembly from infected cells. Importantly, we confirm that SKI-1/S1P is a key host factor for HCV infection by using a specific active, site-directed, small-molecule inhibitor of SKI-1/S1P: PF-429242. Our studies identify SKI-1/S1P as both a novel regulator of the HCV lifecycle and as a potential host-directed therapeutic target against HCV infection and liver steatosis. With identification of an increasing number of human viruses that use host LDs for infection, our results suggest that SKI-1/S1P inhibitors may allow development of novel broad-spectrum biopharmaceuticals that could lead to novel indirect-acting antiviral options with the current standard of care.  相似文献   

2.
3.
4.
5.
6.
7.
SREBP介导的基因表达的调控(英文)   总被引:1,自引:0,他引:1  
SREBP转录因子是脂类代谢的重要调节者。当细胞有脂类需求时,在内质网膜上的SREBP前体通过蛋白水解被激活。然后,氨基端的SREBP片段被运到细胞核内激活靶基因的转录。细胞培养和转基因小鼠模型的研究已经证明,SREBP的主要靶基因包括负责脂肪和胆固醇合成的酶,以及低密度脂蛋白受体。早期对SREBP的研究相当完善地揭示了其前体被激活的机理。最近的研究又使我们认识了细胞核内SREBP的调控机理。在细胞核中,SREBP会结合特定的转录辅助因子,刺激或抑制其靶基因的转录,这些转录辅助因子包括CBP/p300和Mediator蛋白复合体。此外,细胞核内SREBP的稳定性受磷酸化和乙酰化的调节。细胞核内SREBP的这种蛋白质相互作用和修饰,使细胞内外信号(如胰岛素或氧化应激)更好地控制脂类合成。在正常生理状态下,脂质动态平衡是严格保持着的,然而,在有些病理条件下,如肥胖、二型糖尿病、心血管疾病和脂肪肝,SREBP往往会失调。因此,SREBP的新调控机制可能对治疗代谢性疾病提供新的机遇。  相似文献   

8.
9.
10.
Elevated plasma low-density lipoprotein (LDL) cholesterol is considered as a risk factor for atherosclerosis. Because the hepatic LDL receptor (LDLR) uptakes plasma lipoproteins and lowers plasma LDL cholesterol, the activation of LDLR is a promising drug target for atherosclerosis. In the present study, we identified the naturally occurring alkaloid piperine, as an inducer of LDLR gene expression by screening the effectors of human LDLR promoter. The treatment of HepG2 cells with piperine increased LDLR expression at mRNA and protein levels and stimulated LDL uptake. Subsequent luciferase reporter gene assays revealed that the mutation of sterol regulatory element-binding protein (SREBP)-binding element abolished the piperine-mediated induction of LDLR promoter activity. Further, piperine treatments increased mRNA levels of several SREBP targets and mature forms of SREBPs. However, the piperine-mediated induction of the mature forms of SREBPs was not observed in SRD–15 cells, which lack insulin-induced gene–1 (Insig–1) and Insig–2. Finally, the knockdown of SREBPs completely abolished the piperine-meditated induction of LDLR gene expression in HepG2 cells, indicating that piperine stimulates the proteolytic activation of SREBP and subsequent induction of LDLR expression and activity.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Proteolytic activation of SREBPs during adipocyte differentiation   总被引:1,自引:0,他引:1  
A member of sterol regulatory element-binding protein (SREBP) family, SREBP-1, is a key regulator of adipocyte differentiation. Expression of the SREBP-1 gene is induced during adipocyte differentiation, but proteolytic activation of the synthesized precursor form of SREBP-1 has not been well analyzed. The proteolytic processing of SREBPs is severely suppressed in sterol loaded culture cells. Here we report that a splicing isoform, SREBP-1a, is predominantly expressed in 3T3-L1 preadipocytes and adipocytes, and that the nuclear active form of SREBP-1 protein increases in adipocyte differentiation. We further show that the amount of nuclear SREBP-2 protein also increases despite no increase in SREBP-2 mRNA, suggesting that proteolytic cleavage of SREBPs is induced in lipid loaded adipocytes. Northern blot analyses reveal that mRNA levels for SREBP cleavage-activating protein (SCAP), Site-1 protease (S1P), and Site-2 protease (S2P), which participate in the proteolytic processing of SREBPs, are relatively unaffected in adipogenesis. These results demonstrate that SREBP-2 appears to promote adipocyte differentiation as well as SREBP-1 and that the proteolytic activation of SREBPs may be induced by an as-yet unidentified mechanism in lipid loaded adipocytes.  相似文献   

18.
19.
SREBP transcription factors: master regulators of lipid homeostasis   总被引:41,自引:0,他引:41  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号