首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The artificial gene coding for anticoagulant hirudin was placed under the control of theGAL10 promoter and expressed in the galactokinase-deficient strain (Δgal1) ofSaccharomyces cereivisiae, which uses galactose only as a gratuitous inducer in order to avoid its consumption. For efficient production of recombinant hirudin, a carbon source other than galactose should be provided in the medium to support growth of the Δgal1 strain. Here we demonstrate the successful use of glucose in the fed-batch fermentation of the Δgal1 strain to achieve efficient production of recombinant hirudin, with a yield of up to 400 mg hirudin/L.  相似文献   

2.
Using cDNA microarray analysis, we found that the mRNA of YJL217W and several other genes related to cell wall organization and biogenesis were up-regulated by galactose in Saccharomyces cerevisiae early during the induction process. YJL217W is also known as REE1 (Regulation of Enolase I). Both the Gal4 regulatory region and the Mac1 binding domain were found on the upstream region of REE1, and the expression of REE1 was up-regulated by galactose but not by glucose. The up-regulation of REE1 by galactose was not observed in the Δgal4 strain. From the two-hybrid analysis, we found that Ree1 physically interacted with Gal83. Furthermore, from 2-D gel electrophoresis we found that the deletion of REE1 resulted in the up-regulation of Eno1. From Western blotting, we learned that the expression of Eno1 in the Δree1 strain was different from that in wild-type strains and that Eno1 expression was not changed by glucose stimulation. Taken together, these results suggest that Ree1p functions in the galactose metabolic pathway via the Gal83 protein and that it may control the level of Eno1p, which is also affected by the Snf1 complex, in S. cerevisiae.  相似文献   

3.
4.
5.
Gal1p carries out two functions in the galactose pathway of yeast. It activates Gal4p by interacting with Gal80p – a function that can also served by Gal3p – and it catalyzes the formation of galactose-1-phosphate. Recently, we and others have presented biochemical evidence for complex formation between Gal1p and Gal80p. Here, we extend these data and present genetic evidence for an interaction between Gal1p and Gal80p in vivo, using a two-hybrid assay. Interaction between Gal1p and Gal80p depends on the presence of galactose, but not on the catalytic activity of Gal1p. A new class of Kluyveromyces lactis mutants was isolated, designated Klgal1-m, which have lost the derepressing activity but retain galactokinase activity, indicating that the two Gal1p activities are functionally independent. The KlGal1-m proteins are defective in their ability to interact with Gal80p in a two-hybrid assay. The locations of gal1-m mutations identify putative interaction sites in Gal1p and Gal80p. A dominant mutation, KlGAL1-d, leads to a high level of constitutive expression of genes of the galactose pathway. The behavior of chimeric proteins consisting of Gal3p and KlGal1p sequences indicates that both the N-terminal and C-terminal halves of KlGal1p are involved in specific interaction with KlGal80p. Received: 12 November 1998 / Accepted: 18 December 1998  相似文献   

6.
7.
8.
9.
An efficient yeast gene expression system with GAL10 promoter that does not require galactose as an inducer was developed using Δgal80 mutant strain of Saccharomyces cerevisiae. We constructed several combinations of gal mutations (Δgal1, Δgal80, Δmig1, Δmig2, and Δgal6) of S. cerevisiae and tested for their effect on efficiency of recombinant protein production by GAL10 promoter using a lipase, Candida antarctica lipase B (CalB), as a reporter. While the use of Δgal1 mutant strain required the addition of a certain amount of galactose to the medium, Δgal80 mutant strain did not require galactose. Furthermore, it was found that the recombinant CalB could be produced more efficiently (1.6-fold at 5 L-scale fermentation) in Δgal80 mutant strain than in the Δgal1 mutant. The Δgal80 mutant strain showed glucose repressible mode of expression of GAL10 promoter. Using Δgal80 mutant strain of S. cerevisiae, CalB was efficiently produced in a glucose-only fermentation at volumes up to 500 L.  相似文献   

10.
11.
12.
The induction process of the galactose regulon has been intensively studied, but until now the nature of the inducer has remained unknown. We have analyzed a delta gal7 mutant of the yeast Kluyveromyces lactis, which lacks the galactotransferase activity and is able to express the genes of the Gal/Lac regulon also in the absence of galactose. We found that this expression is semiconstitutive and undergoes a strong induction during the stationary phase. The gal1-209 mutant, which has a reduced kinase activity but retains its positive regulatory function, also shows a constitutive expression of beta-galactosidase, suggesting that galactose is the inducer. A gal10 deletion in delta gal7 or gal1-209 mutants reduces the expression to under wild-type levels. The presence of the inducer could be demonstrated in both delta gal7 crude extracts and culture medium by means of a bioassay using the induction in gal1-209 cells. A mutation in the transporter gene LAC12 decreases the level of induction in gal7 cells, indicating that galactose is partly released into the medium and then retransported into the cells. Nuclear magnetic resonance analysis of crude extracts from delta gal7 cells revealed the presence of 50 microM galactose. We conclude that galactose is the inducer of the Gal/Lac regulon and is produced via UDP-galactose through a yet-unknown pathway.  相似文献   

13.
光敏色素在细菌和植物发育中起着关键作用,但它们在真菌中的生物学功能尚不完全清楚。【目的】探究光敏色素基因PaPhy1PaPhy2Podospora anserina有性生殖和无性发育中的作用及其调控机制。【方法】利用同源重组方法对P.anserina中2个光敏色素基因PaPhy1PaPhy2进行定点敲除,获得光敏色素基因缺失菌株ΔPaPhy1和ΔPaPhy2,并通过遗传杂交构建双重突变体ΔPaPhy1ΔPaPhy2;分析突变型菌株和野生型菌株在不同光照下有性生殖、无性发育、生长速率和活性氧代谢等方面的差异,明确光敏色素基因在P.anserina中的主要功能。【结果】白光和蓝光诱导P.anserina子实体的形成,ΔPaPhy在光照下产生子实体的数量减少,ΔPaPhy的生命周期延长。【结论】光敏色素基因与P.anserina有性生殖密切相关;ΔPaPhy的衰老延迟和活性氧代谢有关。本研究的结果为进一步探索光照对丝状真菌繁殖调控机制以及抗衰老研究提供了新的思路。  相似文献   

14.
【背景】精胺在植物应对逆境胁迫、动物抵抗疲劳和衰老、真菌生长代谢等过程中发挥重要作用,但目前在昆虫病原真菌中的研究未见报道。【目的】在分子水平上探究罗伯茨绿僵菌精胺合成关键酶——精胺合成酶在昆虫血腔定殖中的作用机制。【方法】显微注射法测定Mrsps敲除株ΔMrsps的致病力变化,并观察血腔中ΔMrsps生长状态;收集ΔMrsps和野生型WT注射侵染30 h后的大蜡螟血淋巴进行转录组测序,分别与罗伯茨绿僵菌和大蜡螟参考基因组进行比对分析,并结合定量PCR进行验证。【结果】与WT和回补株ΔMrsps-cp相比较,ΔMrsps致病力显著下降,而且随着注射浓度的降低,ΔMrsps致病力下降越显著。侵染36 h后WT和ΔMrsps孢子都能正常萌发且开始以类酵母状态生长,60 h后,相较于WT,ΔMrsps的生长繁殖数量较少。转录组共检测到3 202个罗伯茨绿僵菌基因,其中1 769个基因在ΔMrsps中表达上调,922个基因表达下调;差异表达基因涉及碳水化合物代谢、运输、分解代谢、翻译和氨基酸代谢等多条途径;筛选出28个血腔致病相关基因全部在ΔMrsps中表达下调;定量PCR检测发现在整个血腔定殖阶段免疫逃避蛋白Mcl1基因和血腔定殖Colonization of hemocoel 1基因在WT和ΔMrsps-cp中的表达量高于ΔMrsps。共检测到13 249个大蜡螟基因,其中4 026个差异表达基因;KEGG注释分析显示大量差异表达基因富集到内分泌系统和免疫系统等途径;深入分析发现22个差异表达基因归属于Toll和Imd信号通路,其中18个基因在ΔMrsps侵染的大蜡螟中表达上调,表明ΔMrsps侵染大蜡螟过程中更易引起免疫系统的激活。【结论】揭示了Mrsps在罗伯茨绿僵菌血腔定殖阶段作用的分子机制,为进一步揭示精胺在真菌中的作用机理提供了理论基础。  相似文献   

15.
A native homoethanol pathway (pyruvate-to-acetyl-CoA-to-acetaldehyde-to-ethanol) was engineered in Escherichia coli B. The competing fermentation pathways were eliminated by chromosomal deletions of the genes encoding for fumarate reductase (frdABCD), lactate dehydrogenase (ldhA), acetate kinase (ackA), and pyruvate formate lyase (pflB). For redox balance and anaerobic cell growth, the pyruvate dehydrogenase complex (aceEF-lpd, a typical aerobically-expressed operon) was highly expressed anaerobically using a native anaerobic inducible promoter. The resulting strain SZ420 (ΔfrdBC ΔldhA ΔackA ΔfocA-pflB ΔpdhR::pflBp6-pflBrbs-aceEF-lpd) contains no foreign genes and/or promoters and efficiently ferments glucose and xylose into ethanol with a yield of 90% under anaerobic conditions.  相似文献   

16.
In Escherichia coli cellular levels of pppGpp and ppGpp, collectively called (p)ppGpp, are maintained by the products of two genes, relA and spoT. Like E. coli, Vibrio cholerae also possesses relA and spoT genes. Here we show that similar to E. coli, V. cholerae ΔrelA cells can accumulate (p)ppGpp upon carbon starvation but not under amino acid starved condition. Although like in E. coli, the spoT gene function was found to be essential in V. cholerae relA + background, but unlike E. coli, several V. cholerae ΔrelA ΔspoT mutants constructed in this study accumulated (p)ppGpp under glucose starvation. The results suggest a cryptic source of (p)ppGpp synthesis in V. cholerae, which is induced upon glucose starvation. Again, unlike E. coli ΔrelA ΔspoT mutant (ppGpp0 strain), the V. cholerae ΔrelA ΔspoT mutants showed certain unusual phenotypes, which are (a) resistance towards 3-amino-1,2,4-triazole (AT); (b) growth in nutrient poor M9 minimal medium; (c) ability to stringently regulate cellular rRNA accumulation under glucose starvation and (d) initial growth defect in nutrient rich medium. Since these phenotypes of ΔrelA ΔspoT mutants could be reverted back to ΔrelA phenotypes by providing SpoT in trans, it appears that the spoT gene function is crucial in V. cholerae. Part of this work was presented at the International Symposium on Chemical Biology, Kolkata, India, 7–9 March 2007.  相似文献   

17.
18.
陈绮艺  李晓  杜文珍  申令  刘刚  谢宁 《微生物学报》2023,63(3):1072-1087
作为生物体必需的营养元素之一,磷在物质代谢、信号传导和能量储存中起着关键作用。【目的】研究丝状真菌Podospora anserina中调控磷酸盐代谢相关转录因子的作用,可进一步阐明真核微生物中磷元素吸收的调控机制。【方法】利用同源重组的方法定点敲除P.anserina中2个磷代谢相关转录因子PaPho1和PaPho2,遗传杂交构建双重突变体ΔPaPho1ΔPaPho2;通过表型分析、无机磷含量测定和酸性磷酸酶活性测定分析各突变菌株的变化;利用实时定量聚合酶链反应(real-time quantitative polymerase chain reaction,RT-qPCR)分析磷代谢相关基因的表达情况。【结果】在无机磷作为唯一磷来源的培养基上,ΔPaPho1ΔPaPho2无法生长;在添加有机磷的培养基中,ΔPaPho1ΔPaPho2和野生型菌株生长无显著性差异。在同时添加有机磷和无机磷的培养基中,ΔPaPho1ΔPaPho2的无机磷含量和酸性磷酸酶活性比野生型菌株的分别下降了25.0%和61.9%,ΔPaPho1ΔPaPho2中无机磷酸盐转运蛋白基因的表达水平显著降低。【结论】在P...  相似文献   

19.
It is shown that the deletion of BGL2 gene leads to increase in chitin content in the cell wall of Saccharomyces cerevisiae. A part of the additional chitin can be removed from the bgl2Δ cell wall by alkali or trypsin treatment. Chitin synthase 1 (Chs1) activity was increased by 60 % in bgl2Δ mutant. No increase in chitin synthase 3 (Chs3) activity in bgl2Δ cells was observed, while they became more sensitive to Nikkomycin Z. The chitin level in the cell walls of a strain lacking both BGL2 and CHS3 genes was higher than that in chs3Δ and lower than that in bgl2Δ strains. Together these data indicate that the deletion of BGL2 results in the accumulation and abnormal incorporation of chitin into the cell wall of S. cerevisiae, and both Chs1 and Chs3 take part in a response to BGL2 deletion in S. cerevisiae cells. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The exopolysaccharide (EPS) is an extracellular molecule that in Bradyrhizobium japonicum affects bacterial efficiency to nodulate soybean. Culture conditions such as N availability, type of C-source, or culture age can modify the amount and composition of EPS. To better understand the relationship among these conditions for EPS production, we analyzed their influence on EPS in B. japonicum USDA 110 and its derived mutant ΔP22. This mutant has a deletion including the 3′ region of exoP, exoT, and the 5′ region of exoB, and produces a shorter EPS devoid of galactose. The studies were carried out in minimal media with the N-source at starving or sufficient levels, and mannitol or malate as the only C-source. Under N-starvation there was a net EPS accumulation, the levels being similar in the wild type and the mutant with malate as the C-source. By contrast, the amount of EPS diminished in N-sufficient conditions, being poyhydroxybutyrate accumulated with culture age. Hexoses composition was the same in both N-situations, either with mannitol or malate as the only C-source, in contrast to previous observations made with different strains. This result suggests that the change in EPS composition in response to the environment is not general in B. japonicum. The wild type EPS composition was 1 glucose:0.5 galactose:0.5 galacturonic acid:0.17 mannose. In ΔP22 the EPS had no galactose but had galacturonic acid, thus indicating that it was not produced from oxidation of UDP-galactose. Infectivity was lower in ΔP22 than in USDA 110. When the mutant infectivity was compared between N-starved or N-sufficient cultures, the N-starved were not less infective, despite the fact that the amounts of altered EPS produced by this mutant under N-starvation were higher than in N-sufficiency. Since this altered EPS does not bind soybean lectin, the interaction of EPS with this protein was not involved in increasing ΔP22 infectivity under N-starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号