首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
As the principal components of the developing tooth enamel matrix, amelogenins play a significant role in tooth enamel formation and organization. In order to elucidate the structure and function of amelogenins in the evolution of enamel, we have selected the Iguana iguana as a squamate model organism. Here we report the first complete squamate amelogenin sequence available as of yet and document unique features of Iguana amelogenins and enamel. Transmission electron microscopy documented randomly oriented Iguana enamel crystals during the elongation phase compared with organized enamel crystal patterns at comparable stages in mammals. Sequencing of PCR amplified products revealed a full-length I. iguana amelogenin cDNA containing 877 nucleotides with a 564 nucleotide coding sequence encoding 187 amino acids. The homologies of the newly discovered I. iguana amelogenin amino acid sequence with the published mouse, caiman (Palaeosuchus), and snake (Elaphe) amelogenin were 41.3%, 53.5%, and 55.5%, respectively. On Western blots one major protein with a molecular weight of 24 kDa, and two minor proteins with molecular weights of 28 and 13.5 kDa, respectively, were detected based on the cross-reactivity of antisera against recombinant Rana pipiens amelogenin proteins. Sequence analysis revealed a moderate sequence homology between mammalian and reptilian amelogenin genes. A significant alteration was the deletion of the hydrophilic GSP sequence from exon 3 in the mouse sequence resulting in a conversion to a hydrophobic region in Iguana. Together, these findings identified a novel amelogenin cDNA sequence in the squamate reptilian I. iguana and functional implications for the evolution of amelogenins and enamel in squamates.  相似文献   

4.
5.
6.
Amelogenins are hydrophobic, proline-rich proteins that are the primary biosynthetic products of ameloblasts. These cells are responsible for the formation of tooth enamel, and amelogenins play an important role in the process of biomineralization. A cDNA, corresponding to the mouse 26-kDa amelogenin, has been molecularly cloned and sequenced. Southern blot analysis of genomic DNA from the mouse using this cDNA as a probe indicates that there is only one mouse amelogenin (Amel) gene. This paper describes restriction site variation for the Amel gene that we have identified between C57BL/6 and M. spretus and the segregation of that variation as an X-chromosome gene. The position of the amelogenin locus (Amel) relative to the loci for alpha-galactosidase (Ags), proteolipoprotein (Plp), and the random genomic probe DXWas31 has been determined. Amel is established as: (1) the most distal locus in the genetic map of the mouse X chromosome, (2) lying proximal to the X:Y pairing region, and (3) being restricted to the mouse X chromosome.  相似文献   

7.
8.
Amelogenins bind to GlcNAc of the dentine-enamel matrix proteins (Ravindranath, R. M. H., Moradian-Oldak, J., Fincham, A. G. (1999) J. Biol. Chem. 274, 2464-2471). The hypothesis that amelogenins may interact with the peptides that mimic GlcNAc is tested. GlcNAc-mimicking peptide (SFGSGFGGGY) but not its variants with single amino acid substitution at serine, tyrosine, or phenylalanine residues inhibited hemagglutination of amelogenins and the terminal tyrosine-rich amelogenin polypeptide (TRAP). The binding affinity of SFGSGFGGGY to amelogenins was confirmed by dosimetric binding of amelogenins or TRAP with [(3)H]peptide, specific binding in varying concentrations of the peptide, Scatchard plot analysis, and competitive inhibition with the unlabeled peptide. The ability of the peptide or GlcNAc to stoichiometrically inhibit TRAP binding of [(14)C]GlcNAc or [(3)H]peptide indicated that both the peptide and GlcNAc compete for a single binding site. Using different fragments of amelogenins, we have identified the peptide-binding motif in amelogenin to be the same as the GlcNAc-binding "amelogenin trityrosyl motif peptide." The GlcNAc-mimicking peptide failed to bind to the amelogenin trityrosyl motif peptide when the tyrosyl residues were substituted with phenylalanine or when the third proline was replaced with threonine, as in some cases of human X-linked amelogenesis imperfecta. This study documents that molecular mimicry may play a role in stability and organization of amelogenin during amelogenesis.  相似文献   

9.
Heterogeneity of amelogenin mRNA in the bovine tooth germ   总被引:1,自引:0,他引:1  
The amelogenins are a complex mixture of hydrophobic proteins that are the major organic component of developing enamel. To study the molecular mechanisms underlying the heterogeneity of the amelogenins we isolated cDNA clones encoding these proteins. The clones were definitively identified by hybrid-selected translation experiments and by comparison of the DNA sequence with the protein-derived amino acid sequence. Southern hybridization of bovine genomic DNA indicated that amelogenin is a single copy gene. However, Northern hybridization experiments distinctly showed two major species of mRNA, each of which were sufficiently large enough to encode the highest known molecular weight species of amelogenin proteins. Furthermore, immunoprecipitation of hybrid-selected translation products using isolated amelogenin cDNA showed multiple, translated protein products. These data are supportive of a differential mRNA processing mechanism involved in generating a heterogeneous family of amelogenin matrix proteins from a single gene.  相似文献   

10.
At the secretory stage of tooth enamel formation the majority of the organic matrix is composed of amelogenin proteins that are believed to provide the scaffolding for the initial carbonated hydroxyapatite crystals to grow. The primary objective of this study was to investigate the interaction between amelogenins and growing apatite crystals. Two in vitro strategies were used: first, we examined the influence of amelogenins as compared to two other macromolecules, on the kinetics of seeded growth of apatite crystals; second, using transmission electron micrographs of the crystal powders, based on a particle size distribution study, we evaluated the effect of the macromolecules on the aggregation of growing apatite crystals. Two recombinant amelogenins (rM179, rM166), the synthetic leucine-rich amelogenin polypeptide (LRAP), poly(L -proline), and phosvitin were used. It was shown that the rM179 amelogenin had some inhibitory effect on the kinetics of calcium hydroxyapatite seeded growth. The inhibitory effect, however, was not as destructive as that of other macromolecules tested. The degree of inhibition of the macromolecules was in the order of phosvitin < LRAP < poly(L -proline) < rM179 < rM166. Analysis of particle size distribution of apatite crystal aggregates indicated that the full-length amelogenin protein (rM179) caused aggregation of the growing apatite crystals more effectively than other macromolecules. We propose that during the formation of hydroxyapatite crystal clusters, the growing apatite crystals adhere to each other through the molecular self-association of interacting amelogenin molecules. The biological implications of this adherence effect with respect to enamel biomineralization are discussed. © 1998 John Wiley & Sons, Inc. Biopoly 46: 225–238, 1998  相似文献   

11.
The amelogenin gene contributes the majority of tooth enamel proteins and plays a significant role in enamel biomineralization. While several mammalian and reptilian amelogenins have been cloned and sequenced, basal vertebrate amelogenin evolution remains to be understood. In order to start elucidating the structure and function of amelogenins in the evolution of enamel, the leopard frog (Rana pipiens) was used as a model. Tissues from Rana pipiens teeth were analyzed for enamel structure and RNA extracts were processed for sequence analysis. Electron microscopy revealed that Rana pipiens enamel contains long and parallel crystals similar to mammalian enamel, while immunoreactions confirmed the site-specific localization of cross-reactive amelogenins in Rana pipiens enamel. Sequencing of amelogenin PCR products revealed a 782bp cDNA with a 546-nucleotide coding sequence encoding 181 amino acids. The homology of the newly discovered Rana pipiens amelogenin nucleotide and amino acid sequence with the published mouse amelogenin was 38.6% and 45%, respectively. These findings report the first complete amelogenin cDNA sequence in amphibians and indicate a close homology between mammalian enamel formation and Rana pipiens enamel biomineralization.  相似文献   

12.
Dynamic light scattering (DLS) analysis together with atomic force microscopy (AFM) imaging was applied to investigate the supramolecular self-assembly properties of a series of recombinant amelogenins. The overall objective was to ascertain the contribution of certain structural motifs in amelogenin to protein-protein interactions during the self-assembly process. Mouse amelogenins lacking either amino- or carboxy-terminal domains believed to be involved in self-assembly and amelogenins having single or double amino acid mutations identical to those found in cases of amelogenesis imperfecta were analyzed. The polyhistidine-containingfull-length recombinant amelogenin protein [rp(H)M180] generated nanospheres with monodisperse size distribution (hydrodynamic radius of 20.7 +/- 2.9 nm estimated from DLS and 16.1 +/- 3.4 nm estimated from AFM images), comparable to nanospheres formed by full-length amelogenin rM179 without the polyhistidine domain, indicating that this histidine modification did not interfere with the self-assembly process. Deletion of the N-terminal self-assembly domain from amelogenin and their substitution by a FLAG epitope ("A"-domain deletion) resulted in the formation of assemblies with a heterogeneous size distribution with the hydrodynamic radii of particles ranging from 3 to 38 nm. A time-dependent dynamic light scattering analysis of amelogenin molecules lacking amino acids 157 through 173 and containing a hemagglutinin epitope ("B"-domain deletion) resulted in the formation of particles (21.5 +/- 6.8 nm) that fused to form larger particles of 49.3 +/- 4.3 nm within an hour. Single and double point mutations in the N-terminal region resulted in the formation of larger and more heterogeneous nanospheres. The above data suggest that while the N-terminal A-domain is involved in the molecular interactions for the formation of nanospheres, the carboxy-terminal B-domain contributes to the stability and homogeneity of the nanospheres, preventing their fusion to larger assemblies. These in vitro findings support the notion that the proteolytic cleavage of amelogenin at amino- and carboxy-terminii occurring during enamel formation influences amelogenin to amelogenin interactions during self-assembly and hence alters the structural organization of the developing enamel extracellular matrix, thus affecting enamel biomineralization.  相似文献   

13.
14.
We recently demonstrated that the reuptake of full-length amelogenin protein results in increased levels of amelogenin mRNA through enhanced mRNA stabilization (Xu, L., Harada, H., Tamaki, T. Y., Matsumoto, S., Tanaka, J., and Taniguchi, A. (2006) J. Biol. Chem. 281, 2257-2262). Here, we examined the molecular mechanism of enhanced amelogenin mRNA stabilization. To identify the cis-regulatory region within amelogenin mRNA, we tested various reporter systems using a deletion series of reporter plasmids. A deletion at exon 6ABC of amelogenin mRNA resulted in a 2.5-fold increase in the amelogenin mRNA expression level when compared with that of full-length mRNA, indicating that a cis-element exists in exon 6ABC of amelogenin mRNA. Furthermore, Northwestern analysis demonstrated that amelogenin protein binds directly to its mRNA in vitro, suggesting that amelogenin protein acts as a trans-acting protein that specifically binds to this cis-element. Moreover, recombinant mouse amelogenin protein extended the half-life of full-length amelogenin mRNA but did not significantly alter the half-life of exon 6ABC-deletion mutant mRNA. The splice products produced by deletion of exon 6ABC are known as leucine-rich amelogenin peptides and have signaling effects on cells. Our findings also suggest that the regulation of full-length amelogenin protein expression differs from the regulation of leucine-rich amelogenin peptide expression.  相似文献   

15.
Amelogenin self-assembles to form an extracellular protein matrix, which serves as a template for the continuously growing enamel apatite crystals. To gain further insight into the molecular mechanism of amelogenin nanosphere formation, we manipulated the interactions between amelogenin monomers by altering pH, temperature, and protein concentration to create isolated metastable amelogenin oligomers. Recombinant porcine amelogenins (rP172 and rP148) and three different mutants containing only a single tryptophan (Trp(161), Trp(45), and Trp(25)) were used. Dynamic light scattering and fluorescence studies demonstrated that oligomers were metastable and in constant equilibrium with monomers. Stable oligomers with an average hydrodynamic radius (R(H)) of 7.5 nm were observed at pH 5.5 between 4 and 10 mg · ml(-1). We did not find any evidence of a significant increase in folding upon self-association of the monomers into oligomers, indicating that they are disordered. Fluorescence experiments with single tryptophan amelogenins revealed that upon oligomerization the C terminus of amelogenin (around residue Trp(161)) is exposed at the surface of the oligomers, whereas the N-terminal region around Trp(25) and Trp(45) is involved in protein-protein interaction. The truncated rP148 formed similar but smaller oligomers, suggesting that the C terminus is not critical for amelogenin oligomerization. We propose a model for nanosphere formation via oligomers, and we predict that nanospheres will break up to form oligomers in mildly acidic environments via histidine protonation. We further suggest that oligomeric structures might be functional components during maturation of enamel apatite.  相似文献   

16.
17.
Enamel is the unique and highly mineralized extracellular matrix that covers vertebrate teeth. Amelogenin proteins represent the predominate subfamily of gene products found in developing mammalian enamel, and are implicated in the regulation of the formation of the largest hydroxyapatite crystals in the vertebrate body. Previous attempts to isolate, purify and characterize amelogenins extracted from developing matrix have proven difficult. We now have determined the DNA sequence for a cDNA for the 26-kDa class of murine amelogenin and deduced its corresponding amino acid sequence. The murine amino acid sequence is homologous to bovine or porcine amelogenins extracted from developing enamel matrices. However, an additional 10-residues were found at the carboxy terminus of the murine amelogenin. This is the most complete sequence database for amelogenin peptides and the only DNA sequence for enamel specific genes.  相似文献   

18.
 Amelogenins are the most abundant constituent in the enamel matrix of developing teeth. Recent investigations of rodent incisors and molar tooth germs revealed that amelogenins are expressed not only in secretory ameloblasts but also in maturation ameloblasts, although in relatively low levels. In this study, we investigated expression of amelogenin in the maturation stage of porcine tooth germs by in situ hybridization and immunocytochemistry. Amelogenin mRNA was intensely expressed in ameloblasts from the differentiation to the transition stages, but was not detected in maturation stage ameloblasts. C-terminal specific anti-amelogenin antiserum, which only reacts with nascent amelogenin molecules, stained ameloblasts from the differentiation to the transition stages. This antiserum also stained the surface layer of immature enamel at the same stages. At the maturation stage, no immunoreactivity was found within the ameloblasts or the immature enamel. These results indicate that, in porcine tooth germs, maturation ameloblasts do not express amelogenins, suggesting that newly secreted enamel matrix proteins from the maturation ameloblast are not essential to enamel maturation occurring at the maturation stage. Accepted: 14 January 1999  相似文献   

19.
The amelogenins are the most abundant secreted proteins in developing dental enamel. Enamel from amelogenin (Amelx) null mice is hypoplastic and disorganized, similar to that observed in X-linked forms of the human enamel defect amelogenesis imperfecta resulting from amelogenin gene mutations. Both transgenic strains that express the most abundant amelogenin (TgM180) have relatively normal enamel, but strains of mice that express a mutated amelogenin (TgP70T), which leads to amelogenesis imperfecta in humans, have heterogeneous enamel structures. When Amelx null (KO) mice were mated with transgenic mice that produce M180 (TgM180), the resultant TgM180KO offspring showed evidence of rescue in enamel thickness, mineral density, and volume in molar teeth. Rescue was not observed in the molars from the TgP70TKO mice. It was concluded that a single amelogenin protein was able to significantly rescue the KO phenotype and that one amino acid change abrogated this function during development.  相似文献   

20.
The amelogenins are secreted by the ameloblast cells of developing teeth; they constitute about 90% of the enamel matrix proteins and play an important role in enamel biomineralization. Recent evidence suggests that amelogenin may also be involved in the regeneration of the periodontal tissues and that different isoforms may have cell-signalling effects. During enamel development and mineralization, the amelogenins are lost from the tissue due to sequential degradation by specific proteases, making isolation of substantial purified quantities of full-length amelogenin challenging. The aim of the present study was to express and characterize a recombinant human amelogenin protein in the eukaryotic baculovirus system in quantities sufficient for structural and functional studies. Human cDNA coding for a 175 amino acid amelogenin protein was subcloned into the pFastBac HTb vector (Invitrogen), this system adds a hexa-histidine tag and an rTEV protease cleavage site to the amino terminus of the expressed protein, enabling effective one-step purification by Ni2+-NTA affinity chromatography. The recombinant protein was expressed in Spodoptera frugiperda (Sf9) insect cells and the yield of purified his-tagged human amelogenin (rHAM+) was up to 10 mg/L culture. Recombinant human amelogenin (rHAM+) was characterized by SDS-PAGE, Western blot, ESI-TOF spectrometry, peptide mapping, and MS/MS sequencing. Production of significant amounts of pure, full-length amelogenin opened up the possibility to investigate novel functions of amelogenin. Our recent in vivo regeneration studies reveal that the rHAM+ alone could bring about regeneration of the periodontal tissues; cementum, periodontal ligament, and bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号