首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Melatonin, which is able to enter all tissues and all compartments of the cell, acts in a highly pleiotropic fashion. Some melatonin effects are mediated by membrane receptors, others are receptor independent. Melatonin is produced in the pineal gland and various extrapineal organs of vertebrates, but is also found in invertebrates, angiosperms, and unicells. In mammals, melatonin elicits various secondary humoral responses, e.g., in the immune system via interleukin-4 and other cytokines and in the brain by modulation of NO formation. Melatonin is also a powerful radical scavenger, terminating free radical reaction chains initiated by photooxidants, hydroxyl or peroxyl radicals. The protective potency of this indoleamine is demonstrated by various experiments.  相似文献   

2.
Nitric Oxide: A Unique Endogenous Signaling Molecule in Vascular Biology   总被引:10,自引:0,他引:10  
The properties of nitric oxide as an endogenous cell signaling molecule in vascular biology are described.  相似文献   

3.
Nitric oxide (NO) has a highly diverse range of biological functions from physiological signaling and maintenance of homeostasis to serving as an effector molecule in the immune system. However, deleterious as well as beneficial roles of NO have been reported. Many of the dichotomous effects of NO and derivative reactive nitrogen species (RNS) can be explained by invoking precise interactions with different targets as a result of concentration and temporal constraints. Endogenous concentrations of NO span five orders of magnitude, with levels near the high picomolar range typically occurring in short bursts as compared to sustained production of low micromolar levels of NO during immune response. This article provides an overview of the redox landscape as it relates to increasing NO concentrations, which incrementally govern physiological signaling, nitrosative signaling and nitrosative stress-related signaling. Physiological signaling by NO primarily occurs upon interaction with the heme protein soluble guanylyl cyclase. As NO concentrations rise, interactions with nonheme iron complexes as well as indirect modification of thiols can stimulate additional signaling processes. At the highest levels of NO, production of a broader range of RNS, which subsequently interact with more diverse targets, can lead to chemical stress. However, even under such conditions, there is evidence that stress-related signaling mechanisms are triggered to protect cells or even resolve the stress. This review therefore also addresses the fundamental reactions and kinetics that initiate signaling through NO-dependent pathways, including processes that lead to interconversion of RNS and interactions with molecular targets.  相似文献   

4.
The interaction of the radicals OH?, t-BuO?, eaq?, CO2XXX and O2XXX with the copper oxidase. laccase. from Polyporus, has been studied by the pulse-radiolysis technique. Each of these radicals formed transient adducts with a broad absorption maximum around 310 nm. Analysis of the optical properties and of the very fast rates of formation of these compounds shows that each radical interacts with a limited number of sites on the polypeplide part of the protein amongst R-S-S-R. histidine and aromatic residues. Interaction with the carbonyl group of some of the peptide bonds is also possible. The few target sites are probably hit simultaneously and electron transfer between these sites may also occur. In all cases, in a subsequent step, intramolecular electron transfer from the polypeptide radical adducts leads to a partial reduction of the blue type-1 Cu2+ with rates varying between 103 and 104 s?1. Further reduction of the type-1 Cu2+ occurs through a slow intermolecular reaction between two laccase radical transient adducts. In the case of COXXX2 and OXXX2, this slow reduction could alternatively be due to an intermolecular reaction between laccase and COXXX2 or OXXX2. The oxidant radicals OH?. BrXXX2 and (SCN)XXX2, which formed radical adducts with fully ascorbate-reduced laccase, did not induce any type-1 copper reoxidation.  相似文献   

5.
Antitumor photodynamic therapy (PDT) employs a photosensitizing agent, molecular oxygen, and visible light to produce reactive oxygen species that can destroy tumor and tumor vasculature cells. NO produced by these cells could be procarcinogenic by inhibiting apoptosis and promoting angiogenesis and tumor growth. We recently showed that NO from a chemical donor or activated macrophages makes COH-BR1 breast tumor cells more resistant to photokilling sensitized by 5-aminolevulinic acid (ALA)-generated protoporphyrin IX (PpIX). Signaling events associated with this hyperresistance have now been examined. ALA-treated COH-BR1 cells containing mitochondria-localized PpIX died mainly by apoptosis after being irradiated. Underlying redox signaling associated with MAP kinase (ERK1/2, p38, JUN) phosphorylation–activation, and heme oxygenase-1 (HO-1) upregulation was studied using immunoprecipitation and Western blot methodology. ALA/light treatment resulted in activation of proapoptotic JNK and p38α, and deactivation of prosurvival p38β and ERK1/2. Involvement of both JNK and p38 in apoptosis was established by using a specific inhibitor for each. Spermine NONOate-derived NO, introduced immediately before irradiation, provided substantial protection against apoptosis. This was accompanied by greater HO-1 induction and a strong inhibition of each MAP kinase effect seen in the absence of NO. Downstream of JNK and p38α activation, a marked upregulation/activation of proapoptotic Bax and Bid was observed along with down-regulation of antiapoptotic Bcl-xL, each response being reversed by NO. These findings provide new insights into signaling activity associated with the intrinsic apoptotic pathway in ALA-PDT and how this activity can be modulated by NO.  相似文献   

6.
7.
Indoles are very common in the body and diet and participate in many biochemical processes. A total of twenty-nine indoles and analogs were examined for their properties as antioxidants and radical scavengers against 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) ABTS?+ radical cation. With only a few exceptions, indoles reacted nonspecifically and quenched this radical at physiological pH affording ABTS. Indoleamines like tryptamine, serotonin and methoxytryptamine, neurohormones (melatonin), phytohormones (indoleacetic acid and indolepropionic acid), indoleamino acids like l-tryptophan and derivatives (N-acetyltryptophan, l-abrine, tryptophan ethyl ester), indolealcohols (tryptophol and indole-3-carbinol), short peptides containing tryptophan, and tetrahydro-β-carboline (pyridoindole) alkaloids like the pineal gland compound pinoline, acted as radical scavengers and antioxidants in an ABTS assay-measuring total antioxidant activity. Their trolox equivalent antioxidant capacity (TEAC) values ranged from 0.66 to 3.9?mM, usually higher than that for Trolox and ascorbic acid (1?mM). The highest antioxidant values were determined for melatonin, 5-hydroxytryptophan, trp-trp and 5-methoxytryptamine. Active indole compounds were consumed during the reaction with ABTS?+ and some tetrahydropyrido indoles (e.g. harmaline and 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid ethyl ester) afforded the corresponding fully aromatic β-carbolines (pyridoindoles), that did not scavenge ABTS?+. Radical scavenger activity of indoles against ABTS?+ was higher at physiological pH than at low pH. These results point out to structural compounds with an indole moiety as a class of radical scavengers and antioxidants. This activity could be of biological significance given the physiological concentrations and body distribution of some indoles.  相似文献   

8.
A series of nitric oxide (NO) donating derivatives of hederacolchiside A1 bearing triterpenoid saponin motif were designed, synthesized and evaluated for their anticancer activity. All of the tested furoxan-based NO releasing compounds showed significant proliferation inhibitory activities. Especially compound 6a exhibited strong cytotoxicity (IC50 = 1.6–6.5 μM) against four human tumor cell lines (SMMC-7721, NCI-H460, U251, HCT-116) in vitro and the highest level of NO releasing. Furthermore, compound 6a was revealed low acute toxicity to mice and weak haemolytic activity with potent tumor growth inhibition against mice H22 hepatocellular cells in vivo (51.5%).  相似文献   

9.
Increased expression of inducible nitric oxide synthase has been shown in murine Venezuelan equine encephalitis (VEE) virus infection. In this experimental model, melatonin (MTL) treatment has shown to be beneficial. The aim of this study was to determine the effect of VEE virus on the nitric oxide (NO) production and lipid peroxidation in neuroblastoma cell cultures, and to investigate the role of MTL during cell-virus interaction. Neuroblastoma cells were co-cultured with VEE virus and treated with MTL at doses ranging from 0 to 1.8 mM, for 6, 12, 24 and 48 h. NO and lipid peroxidation were measured in culture supernatants and in the cellular content by nitrite concentration and thiobarbituric acid assay, respectively. Expression of inducible nitric oxide synthase (iNOS) was determined by indirect immunofluorescence. Increased production of NO and lipid peroxidation products were found in supernatants and cellular contents of VEE virus treated cultures. Both NO and lipid peroxidation were decreased by MTL treatment in a time dependent manner. Increased iNOS expression was observed in VEE virus infected cultures that was reduced by MTL treatment. These results could be related to the beneficial role of MTL in the VEE experimental disease and address the possible therapeutic potential of the hormone in human VEE virus infection.  相似文献   

10.
Although early studies demonstrated that exogenous estrogen lowered a woman's risk of cardiovascular disease, recent trials indicate that HRT actually increases the risk of coronary heart disease or stroke. However, there is no clear explanation for this discrepancy. Is estrogen a helpful or a harmful hormone in terms of cardiovascular function? This review discusses some recent findings that propose a novel mechanism which may shed significant light upon this controversy. We propose that nitric oxide synthase (NOS) expressed within the vascular wall is a target of estrogen action. Under normal conditions in younger women, the primary product of estrogen action is NO, which produces a number of beneficial effects on vascular biology. As a woman ages, however, there is evidence for loss of important molecules essential for NO production (e.g., tetrahydrobiopterin, l-arginine). As these molecules are depleted, NOS becomes increasingly “uncoupled” from NO production, and instead produces superoxide, a dangerous reactive oxygen species. We propose that a similar uncoupling and reversal of estrogen response occurs in diabetes. Therefore, we propose that estrogen is neither “good” nor “bad”, but simply stimulates NOS activity. It is the biochemical environment around NOS that will determine whether estrogen produces a beneficial (NO) or deleterious (superoxide) product, and can account for this dual and opposite nature of estrogen pharmacology. Further, this molecular mechanism is consistent with recent analyses revealing that HRT produces salutary effects in younger women, but mainly increases the risk of cardiovascular dysfunction in older postmenopausal women.  相似文献   

11.
It has been proposed that the reduction of nitrite by red cells producing NO plays a role in the regulation of vascular tone. This hypothesis was investigated in rats by measuring the effect of nitrite infusion on mean arterial blood pressure (MAP), cerebral blood flow (CBF) and cerebrovascular resistance (CVR) in conjunction with the accumulation of red cell NO. The relative magnitude of the effects on MAP and CBF as well as the time dependent changes during nitrite infusion are used to distinguish between the effects on the peripheral circulation and the effects on the cerebral circulation undergoing cerebral autoregulation. The nitrite infusion was found to reverse the 96% increase in MAP and the 13% decrease in CBF produced by L-NAME inhibition of e-NOS. At the same time there was a 20-fold increase in oxygen stable red cell NO. Correlations of the red cell NO for individual rats support a role for red cell nitrite reduction in regulating vascular tone in both the peripheral and the cerebral circulation. Furthermore, data obtained prior to treatment is consistent with a contribution of red cell reduced nitrite in regulating vascular tone even under normal conditions.  相似文献   

12.
In mitochondrial apoptosis, the formation of cytochrome c-cardiolipin complex ([CL-cyt c]) with peroxidase properties is an early event in the cascade of reactions that leads to cell death. Herein, we report the synthesis of a new prodrug, (2-hydroxyamino-vinyl)-triphenyl-phosphonium (HVTP), which compartmentalizes exclusively into mitochondria, undergoes a [CL-cyt c]-catalyzed bioactivation to nitric oxide (NO), inhibits peroxidase activity, and protects cells from apoptosis.  相似文献   

13.
The role of the vascular endothelium in modulating the arterial system has been widely investigated, but poorly explored at the venous site. In the present work, primary cultures of venous endothelium from rat Vena Cava (VC) and Portal Vein (PV) were established, characterized and analyzed according to their growth pattern and ability to produce nitric oxide (NO) and prostanoids (PGF2 α and PGI2), at basal state and after stimulation with Angiotensin II (Ang II, 1 μmol/L). Basal NO was detected in all examined cells in culture. Pre-incubation with Ang II increased NO production in cells from VC (but not in PV cultures), through activation of both AT1 and AT2 receptors. Both cultures exhibited detectable levels of PGF2 α at resting conditions, which were similarly enhanced by Ang II. Basal PGI2 levels were higher in PV, but increased after Ang II treatment in VC, with no further effect on PV cells. We conclude that endothelial cells from VC and PV exhibit important properties and react to Ang II, probably influencing the whole circulatory system. This experimental cell model gives support to further studies concerning intracellular pathways of the venous endothelium, analyzed in separate from the vascular smooth muscle wall.  相似文献   

14.
《Theriogenology》2016,86(9):1562-1567
Poor uterine perfusion has been proposed as a cause of infertility in mares. The objective of this study was to investigate the effect of isosorbide dinitrate (ISDN), a nitric oxide donor, on uterine and ovarian blood flow resistance during diestrus and early pregnancy in mares. Six Trotter mares, aged 7 to 14 years, were examined daily during the first 11 days of three diestrous periods, and five of those mares were also examined during the first 11 days of two pregnancies. Six mares randomly received a placebo, a low dose (30 mg, ISDN30), or a high dose of ISDN (60 mg, ISDN60) through three nonconsecutive cycles. The treatments were administered orally, every 12 hours from Day 1 to 11 of the cycle (Day 0 = ovulation). Five of the 6 mares received a placebo or 60 mg of ISDN orally every 12 hours from Day 1 to 11 of pregnancy. The mares were short cycled on Day 12 of each trial. Transrectal color Doppler was used to determine blood flow resistance semiquantitatively and expressed as pulsatility index. Mean pulsatility index of both uterine arteries combined and of the dominant (ipsilateral to the CL) ovarian artery was lower (treatment effects: P ≤ 0.01; time effects: P ≤ 0.002) in mares receiving 30 mg or 60 mg of ISDN compared with placebo-treated mares. Blood flow resistance in the dominant ovarian artery was lower in ISDN-treated pregnant mares than in placebo-treated pregnant and cycling mares (treatment effect: P = 0.04; time effect: P = 0.003). Isosorbide dinitrate increases uterine and ovarian perfusion in cycling mares and ovarian perfusion in early pregnant mares. Further studies are needed to investigate these effects in relation to fertility of the mare.  相似文献   

15.
Activation of inducible nitric oxide (NO) synthase (iNOS) and resulting high-output NO release is known to depend on the action of cytokines. We investigated in vitro production of NO by resident peritoneal macrophages from mice and rats, and secretion of cytokines by these cells as well as by human peripheral blood mononuclear cells (PBMC). The cells were cultured in the presence of a selected group of acyclic nucleoside phosphonates that have previously been shown to possess immunobiological potential. Several of the compounds enhanced production of NO in animal macrophages. This activity was associated with stimulatory effects on secretion of cytokines such as TNF-alpha in all mouse and rat macrophages and human PBMC, and IL-10 in mouse and human cells. Statistically highly significant correlation between the range of NO biosynthesis in rodent cells and extent of cytokine stimulation in human PBMC has been observed. It is suggested that the NO assay may be regarded as an efficient, economical and relatively reliable tool in primary screening for intrinsic immunostimulatory activity of compounds in human cell system, at least from the point of view of cytokine secretion.  相似文献   

16.
Having shown a decrease in serotonin2A receptors in the dorsolateral prefrontal cortex (DLPFC) from schizophrenic subjects, we have now determined if this change was reflective of widespread changes in neurochemical markers in DLPFC in schizophrenia. In Brodmann's area (BA) 9 from 19 schizophrenic and 19 control subjects, we confirmed a decrease in the density of [3H]ketanserin binding to serotonin2A receptors in tissue from the schizophrenic subjects [39 +/- 3.3 vs. 60 +/- 3.6 fmol/mg estimated tissue equivalents (ETE); p < 0.005]. In addition, the density of [3H]muscimol binding to GABA(A) receptors was increased in the schizophrenic subjects (526 +/- 19 vs. 444 +/- 28 fmol/mg ETE; p < 0.02). [3H]YM-09151-2, N-[1-(2-thienyl)cyclohexyl]-3,4-[3H]piperidine, [3H]SCH 23390, [3H]mazindol, and N(G)-nitro-L-[3H]arginine binding to BA 9 did not differ between groups, and there was no specific binding of [3H]raclopride or 7-hydroxy-2-(di-n-[3H]propylamino)tetralin to BA 9 from either cohort of subjects. This suggests the density of dopamine D1-like and NMDA receptors, the dopamine transporter, and nitric oxide synthase activity are not altered in BA 9 from schizophrenic subjects. The selective nature of the changes in serotonin2A and GABA(A) receptors in DLPFC could indicate that these changes are involved in the pathology of schizophrenia.  相似文献   

17.
Abstract: Nitric oxide (NO), liberated from the photoactive donor Roussin's black salt (RBS), was investigated for its ability to release tritium from [3H]dopamine-loaded rat striatal slices. Our results show that illumination of RBS-pretreated striatal slices caused an increase in basal dopamine release, which was reduced by ∼73% in the presence of oxyhaemoglobin (10 µ M ), indicating that it was mediated by liberation of NO. The release was insensitive to removal of extracellular calcium yet was not due to gross cellular damage of the tissue, as there was no detectable increase in lactate dehydrogenase release. Chelation of intracellular calcium with 1,2-bis( o -aminophenoxy)ethane- N,N,N',N' -tetraacetic acid tetra(acetoxymethyl) ester (BAPTA-AM; 10 µ M ) had no effect on the dopamine release stimulated by illumination of RBS-pretreated slices. The concentration of BAPTA-AM was adequate to chelate intracellular calcium because it inhibited release evoked by the calcium ionophore ionomycin (10 µ M ). Superfusion with zaprinast (10 µ M ) had no effect on RBS-induced dopamine release, suggesting that a mechanism independent of cyclic GMP is involved. This study indicates that NO has a stimulatory effect on striatal dopamine release in vitro that is independent of calcium.  相似文献   

18.
In this study we calculate the half-life of ·NO in its reactions with superoxide and with oxygen under various conditions using the known rate constants for these reactions. The measured half-life of ·NO in biological systems is 3–5 s, which agrees well with the calculated value for intracellular ·NO, but not for extracellular ·NO under normal physiological conditions. The autoxidation of ·NO to yield NO2 as a final product cannot be responsible for such a short measured half-life under normal as well as pathologic conditions. Therefore, if there is direct evidence for the occurrence of the reaction of ·NO with O2 in the medium, one has to assume that the steady state concentrations of free ·NO are much lower than those measured. The very low concentrations of free ·NO in biological systems may result from its reversible strong binding to biological molecules. Simulation of the mechanism of the autoxidation of ·NO indicates that the binding constants of ·NO to O2 or to another ·NO are too small to account for the very low concentration of free ·NO in biological systems. Nevertheless, the reaction of ·NO with oxygen cannot be neglected in biological systems if the intermediate ONOO· reacts rapidly with a biological target. The biological damage caused by ONOO′ is expected to be due to the radical itself and to peroxynitrite, which is most probably formed via the reaction of ONOO· with the biological molecule.  相似文献   

19.
Circulating red blood cells (RBCs) undergo aging, a fundamental physiological phenomenon that regulates their turnover. We show that treatment with beta amyloid peptide 1–42 (Aβ) accelerates the occurrence of morphological and biochemical aging markers in human RBCs and influences the cell metabolism leading to intracellular ATP depletion. The morphological pattern has been monitored using Atomic Force Microscopy (AFM) imaging and measuring the RBCs' plasma membrane roughness employed as a morphological parameter capable to provide information on the structure and integrity of the membrane-skeleton. Results evidence that Aβ boosts the development of crenatures and proto-spicules simultaneously to acceleration in the weakening of the cell-cytoskeleton contacts and to the induction of peculiar nanoscale features on the cell membrane. Incubation in the presence of glucose can remove all but the latter Aβ-induced effects.Biochemical data demonstrate that contemporaneously to morphological and structural alterations, Aβ and glucose depletion trigger a complex signaling pathway involving caspase 3, protein kinase C (PKC) and nitric oxide derived metabolites.As a whole, the collected data revealed that, the damaging path induced by Aβ in RBC provide a sequence of morphological and functional intermediates following one another along RBC life span, including: (i) an acceleration in the development of shape alteration typically observed along the RBC's aging; (ii) the development of characteristic membrane features on the plasma membrane and (iii) triggering a complex signaling pathway involving caspase 3, PKC and nitric oxide derived metabolites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号