首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R Bravo 《FEBS letters》1984,169(2):185-188
Quantitative two-dimensional gel electrophoretic analysis (IEF) of the nuclear polypeptide cyclin together with autoradiographic studies have revealed a coordinate synthesis of cyclin and DNA after serum stimulation of quiescent 3T3 cells. These results strengthen the notion that cyclin may be a central component of the pathway(s) that regulate cell proliferation.  相似文献   

2.
The major heat-inducible protein of transformed human amnion cells (AMA) has been identified as the proliferation-sensitive polypeptide IEF14 (Mr 66 kDa; HeLa protein catalogue). From its mobility in two-dimensional gels (Mr and pI) as well as from the fact that this protein is immunoprecipitated by mAb C92 F3-5 (W. J. Welch, and J. P. Suhan, (1986) J. Cell Biol. 103, 2035-2052), we concluded that this polypeptide is either closely related or identical to the 72 kDa inducible stress human protein hs X 70 (H. R. B. Pelham (1986) Cell 46, 959-961). It is further shown that in AMA cells the rate of synthesis of this protein increases preferentially during mitosis. These results provide further evidence suggesting that the levels of hs X 70 can be modulated by mechanisms independent of heat shock.  相似文献   

3.
《The Journal of cell biology》1983,97(5):1429-1434
Analysis by means of two-dimensional gel electrophoresis (IEF) of [32P]orthophosphate-labeled proteins from mitotic and interphase transformed amnion cells (AMA) has shown that keratins IEF 31 (Mr = 50,000; Hela protein catalogue number), 36 (Mr = 48,500), 44 (Mr = 44,000), 46 (Mr = 43,500), as well as vimentin (IEF 26; Mr = 54,000) are phosphorylated above their interphase level during mitosis. Similar studies of normal human amnion epithelial cells (AF type) confirmed the above observations except in the case of keratin IEF 44 whose relative proportion was too low to be analyzed. Immunofluorescent staining of methanol/acetone-treated mitotic transformed amnion cells with a mouse polyclonal antibody elicited against human keratin IEF 31 showed a dotted staining (with a fibrillar background) in all of the cells in late anaphase/early telophase (characteristic "domino" pattern) and in a sizeable proportion of the cells in other stages of mitosis. Normal mitotic amnion cells on the other hand showed a fine fibrillar staining of keratins at all stages of mitosis. Similar immunofluorescent staining of normal and transformed mitotic cells with vimentin antibodies revealed a fibrillar distribution of vimentin in both cell types. Taken together the results indicate that the transformed amnion cells may contain a factor(s) that modulates the organization of keratin filaments during mitosis. This putative factor(s), however, is most likely not a protein kinase as transformed amnion cells and amnion keratins are modified to similar extents. It is suggested that in general the preferential phosphorylation of intermediate-sized filament proteins during mitosis may play a role in modulating the various proposed associations of these filaments with organelles and other cellular structures.  相似文献   

4.
The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine?s effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation.  相似文献   

5.
J E Celis  R Bravo 《FEBS letters》1984,165(1):21-25
Quantitative two-dimensional gel electrophoretic analysis (IEF) of the nuclear polypeptide cyclin in normal human skin biopsies, growing and senescent fibroblasts and morphologically transformed skin fibroblasts (limited life span) has revealed a direct correlation between the levels of this protein and proliferative state of the cells. These results strengthen the notion that cyclin may be a key component of the pathway(s) that control cell proliferation.  相似文献   

6.
氢分子对多种疾病具有良好的治疗或改善效果,并且使用简便无副作用,多项实验结果也证明氢分子对肿瘤的防治具有良好的效果。从细胞增殖、细胞成瘤、细胞活性、细胞周期和凋亡、细胞转移侵袭等方面研究了氢分子对宫颈癌细胞HeLa的作用效果,结果显示:克隆球实验中,加入氢分子后,HeLa细胞集落数显著降低,集落的直径也明显减小。平板克隆形成中,加入氢分子后,细胞克隆的数量和直径均显著降低。细胞活性实验显示,氢分子对HeLa细胞活性具有明显抑制效果,对细胞内中间丝波形蛋白的表达具有一定的抑制作用。此外,氢分子对HeLa细胞周期的影响显著,且具有促凋亡的作用和抑制细胞迁移与浸润的效果。研究结果表明,氢分子抑制了细胞波形蛋白的表达,降低了HeLa细胞的增殖速率,同时抑制了细胞侵袭及迁移的能力,为氢分子对宫颈癌的防治提供了一定的实验基础。  相似文献   

7.
8.
The incorporation of radioactive selenium into cellular proteins and the effect of selenite on proliferation were examined in human (HeLa, HT-29, and IMR-90) and mouse (3T3 and CMT-93) cell lines. Proteins incorporating selenium were detected by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Major polypeptide subunits at 60, 23, 21, 19, and 16 kD were detected in the two tumorigenic and one normal human cell lines. The 23 kD polypeptide migrated to the same position on the gel as the major subunit of human erythrocyte glutathione peroxidase. In the mouse cells, the 60 kD polypeptide was almost entirely absent; four other major selenoproteins were detected, with molecular weights similar to those in the human cells. In both mouse and human cells, the same pattern of selenoproteins was observed irrespective of whether the cells were grown in medium containing 10% fetal bovine serum or in defined medium supplemented with 0.1 or 1 microM selenite, or with 1% serum. The effect of selenite on proliferation of HeLa, HT-29, and CMT-93 cells in medium supplemented with 10% fetal bovine serum and in serum-free medium was examined. At concentrations up to about 1 microM, selenite stimulated proliferation of the human cells slightly in serum-free medium but not in serum-supplemented medium. At concentrations of about 5 microM and higher selenite significantly inhibited proliferation of all cells in both types of media. In CMT-93 cells, this inhibition was greater in serum-free medium, but there were no significant differences in this regard in the human cells. These results demonstrate that selenium is stably incorporated into several polypeptides in human and mouse cells, that there are no significant differences in this regard among several cell lines, and slight differences between human and mouse cells. They further confirm that selenium can have a slight stimulatory effect on cell growth, and a much larger inhibitory effect, depending on its concentration.  相似文献   

9.
The saponin ginsenoside Rd (1), isolated from Panax notoginseng, is used for the treatment of cardiovascular diseases, inflammation, different body pains, trauma, and internal and external bleeding due to injury. In this study, we report that 1 inhibits the cell growth of human cervical cancer (HeLa) cells in a concentration- and time-dependent manner, with an IC(50) value of 150.5+/-0.8 mcirog/ml after 48 h of incubation. The drug-treated cells displayed features of apoptosis, including typical morphological characteristics and formation of DNA ladders, as evident from agarose-gel electrophoresis. Flow-cytometric analysis showed that the cell-cycle distribution of HeLa cells exposed to 1 is characterized by a decrease of the G(0)/G(1)-phase and an increase of the S-phase cells, respectively, in a dose-dependent manner. The apoptotic rate of HeLa cells treated for 48 h with 210 microg/ml of 1 was 35.8%. Further, 1 was found to increase the expression of Bax and to decrease the expression of Bcl-2 proteins, respectively, and to lower the mitochondrial transmembrane potential of HeLa cells. The caspase-3 inhibitor DEVD-CHO (at 2 microM) increased the viability of HeLa cells treated with 1. Taken together, our study suggests that ginsenoside Rd (1) significantly inhibits HeLa cell proliferation, and induces cell apoptosis through down-regulating Bcl-2 expression, up-regulating Bax expression, lowering the mitochondrial transmembrane potential, and activating the caspase-3 pathway. Thus, 1 could serve as a lead to develop novel chemotherapeutic or chemopreventive agents against human cervical cancer.  相似文献   

10.
A monoclonal antibody that reacts specifically with the proliferation-sensitive nuclear proteins, isoelectric focusing (IEF) 8Z30 and 8Z31 (molecular weight (MW), 76,000 charge variants, HeLa protein catalogue number) has been characterized. As determined by indirect immunofluorescence, the antibody stains the nucleolus and nucleoplasm of interphase-cultured cells of primate origin, but does not react with cells of other species. Proteins having similar MWs and isoelectric points as the human or monkey (primates) proteins were not observed in cultured cells of the following species: aves, bat, dog, dolphin, goat, hamster, mink, mouse, pisces, potoroo, rabbit and rat. Quantitative two-dimensional (2D) gel electrophoretic analysis of [35S]methionine-labeled proteins synthesized by normal (quiescent, proliferating) and SV40-transformed human MRC-5 fibroblasts revealed significant differences in the levels of synthesis of both IEF 8Z30 and 8Z31. In quiescent cells the main labelled product corresponded to IEF 8Z31 (ratio IEF 8Z31/8Z30, 2.3), while in the transformed cells the major product was IEF 8Z30 (ratio, 0.62). Normal proliferating fibroblasts exhibited similar levels of both proteins (ratio, 1.21). Combined levels of synthesis of both proteins were 1.50 and 1.20 times as high in the transformed cells as in the quiescent and proliferating cells, respectively. Similar results were observed in other pairs of normal and transformed human cells, such as WI38/WI38 SV40 and amnion/AMA. Modulation of the levels of synthesis of these proteins may play a role in cell proliferation.  相似文献   

11.
Mouse polyclonal antibodies have been raised against two human proteins (IEF [isoelectric focusing] 31, Mr = 50,000; IEF 46, Mr = 43,500) that have previously been shown to be present in HeLa cytoskeletons enriched in intermediate-sized filaments. Immunoprecipitation studies show that both proteins share common antigenic determinants with each other and with the putative human keratins IEF 36 and 44, also present in HeLa cytoskeletons. Indirect immunofluorescence studies showed that both antibodies revealed similar filamentous networks in various cultured epithelial cells of human origin. These included AMA (transformed amnion), HeLa (cervical carcinoma), normal amnion cells, Fl-amnion (transformed amnion), WISH-amnion (transformed amnion), Chang liver (liver), and Detroid-98 (sternal marrow). Human cells that did not react with both antibodies included skin fibroblasts, lung fibroblasts (WI-38), SV40-transformed lung fibroblasts, Molt 4 (leukemia), lymphocytes, and monocytes. These results were in complete agreement with the presence or absence of both proteins in two-dimensional gels of the different cell types. Exposure of AMA cells to demecolcine (24 h; 10 micrograms/ml) caused the total collapse of vimentin filaments but, as seen by indirect immunofluorescence, caused only a partial redistribution of the IEF 31 and 46 filaments. These results are taken to suggest that both proteins are components of the intermediate-sized filaments of the "keratin" type. The antibodies could be clearly differentiated by staining human bladder carcinoma EJ 19 cells, as only the IEF 46 antibody stained a filamentous network in these cells The occurrence of keratins IEF 31, 36, 44, and 46 in different cultured human epithelial cells has been studied using two-dimensional gel electrophoresis.  相似文献   

12.
13.
Mitotic cells have been detergent extracted under conditions that support microtubule assembly. When HeLa cells are lysed in the presence of brain tubulin, mitotic-arrested cells nucleate large asters and true metaphase cells yield spindles that remain enclosed within a roughly spherical cage of filamentous material. Detergent-extracted mitotic Chinese hamster ovary (CHO) cells show a similar, insoluble cage but the mitotic apparatus is only occasionally stabilized. In later stages of mitosis, HeLa cages are observed in elongated and furrowed configurations. In the terminal stages of cell division, two daughter filamentous networks are connected by the intercellular bridge. When observed in the electron microscope the cages include fibers 7-11 nm in diameter. The polypeptide composition of cages isolated from mitotic HeLa cells is complex, but the major polypeptides are a group with mol wt ranging from 43,000-60,000 daltons and a high molecular weight polypeptide. CHO cells contain a subset of these proteins which includes a major 58,000-dalton and a high molecular weight polypeptide. Two different antisera directed against the vimentin-containing intermediate filaments bind to polypeptides in the electrophoretic profiles of isolated HeLa and CHO cages and stain the cages, as visualized by indirect immunofluorescence. These results suggest that the HeLa and CHO cages include intermediate filaments of the vimentin type. The polypeptide composition of HeLa cages suggests that they also contain tonofilaments. The cages apparently form as the cells enter mitosis. We propose that these filamentous cages maintain the structural continuity of the cytoplasm while the cell is in mitosis.  相似文献   

14.
HeLa cells synthesize a particular heat shock protein that is induced only by heat shock at 42 degrees C, and not at 45 degrees C or by other stresses that induce major heat shock proteins (Hatayama et al. (1986) Biochem. Biophys. Res. Commun. 137, 957-963). We further characterized the 42 degrees C-specific protein. This protein was induced in mouse FM 3A cells as well as in human HeLa cells. In both cell lines, the protein was resolved into two spots, a basic polypeptide and an acidc one. The mRNA of the protein was induced during the incubation of these cells at 42 degrees C, and the in vitro translation product of mRNA corresponded to the basic, not to the acidic, polypeptide. During the chase period for cells that were labeled with [35S]-methionine, the basic polypeptide of the protein decreased, and the acidic one increased, indicating that the protein was synthesized as the basic polypeptide and then somehow modified to become the acidic one. The 42 degrees C-specific protein was found only in the cytosol fraction, and not in the nuclear or other particulate fractions, in both HeLa and FM 3A cells. The results suggested that the 42 degrees C-specific protein may have some function in the cytoplasm of mammalian cells during mild heat shock.  相似文献   

15.
To examine the hypothesis that p53 protein may play a central role in regulating reproduction of mammalian cells, we compared the absolute amounts and relative rates of synthesis of p53 protein in two pseudonormal cell lines, 3T3 and C3H 10T1/2, during quiescence, during log proliferation, and in quiescent cells stimulated with serum. The absolute amount of p53 protein per cell was found to be severalfold lower in quiescent cells than in log-phase cells. The ratio of the rate of synthesis of p53 protein to the rate of synthesis of total protein was slightly higher in quiescent cells than the same ratio in log-phase cells. Thus, entry into quiescence is not accompanied by a differential switch-off of synthesis of p53 protein. In quiescent cells stimulated with serum the amount of p53 protein per cell and its rate of synthesis increase, but only in proportion to the increase in total protein per cell and the increase in rate of total protein synthesis. Similarly, 12-14 h after serum stimulation, the time of the G1 to S transition, the accumulated increase in p53 protein per cell is about what would be expected for a short-lived protein whose rate of synthesis has increased in proportion to the increase in rate of synthesis of total protein. The results are not those expected for a protein that functions specifically in release from quiescence or in transition from G1 to S.  相似文献   

16.
A study was made of the regulation of total protein synthesis in cells of the mouse hybridoma producing monoclonal antibodies (McAb) against lambda phage, and in the course of hybridoma growth and at the change of fetal bovine serum (FBS) concentration. FBS strictly affected proliferation of hybridoma cells, the specific production of McAb per cell being unchanged. The rate of total cellular protein synthesis does depend on FBS concentration in the medium, whereas the rates of protein degradation and secretion do not. Evidence is presented that the reduction in the protein-synthesis rate, after the removal of FBS from the medium, is caused by a coordinated decrease in both the rate of protein synthesis initiation and the rates of polypeptide chain elongation and translation termination. The decrease in the protein synthesis rate at the stationary phase of cell growth was shown to be related to the three main factors: 1) a 15-25% decrease in ribosome content per cell; 2) a two-fold decrease of the ribosome portion involved in mRNA translation; 3) a 5 to 15% decrease in the rate of mRNA translation. Evidence is presented that the decrease in the portion of mRNA translating ribosomes is due to the decrease in the rate of protein synthesis initiation.  相似文献   

17.
CXCL3 belongs to the CXC-type chemokine family and is known to play a multifaceted role in various human malignancies. While its clinical significance and mechanisms of action in uterine cervical cancer (UCC) remain unclear. This investigation demonstrated that the UCC cell line HeLa expressed CXCL3, and strong expression of CXCL3 was detected in UCC tissues relative to nontumor tissues. In addition, CXCL3 expression was strongly correlated with CXCL5 expression in UCC tissues. In vitro, HeLa cells overexpressing CXCL3, HeLa cells treated with exogenous CXCL3 or treated with conditioned medium from WPMY cells overexpressing CXCL3, exhibited enhanced proliferation and migration activities. In agreement with these findings, CXCL3 overexpression was also associated with the generation of HeLa cell tumor xenografts in athymic nude mice. Subsequent mechanistic studies demonstrated that CXCL3 overexpressing influenced the expression of extracellular signal-regulated kinase (ERK) signaling pathway associated genes, including ERK1/2, Bcl-2, and Bax, whereas the CXCL3-induced proliferation and migration effects were attenuated by exogenous administration of the ERK1/2 blocker PD98059. The data of the current investigation support that CXCL3 appears to hold promise as a potential tumor marker and interference target for UCC.  相似文献   

18.
tNOX, a tumor-associated NADH oxidase, is a growth-related protein present in transformed cells. In this study, we employed RNA interference (RNAi)-mediated down-regulation of tNOX protein expression to explore the role of tNOX in regulating cell growth in human cervical adenocarcinoma (HeLa) cells. In this first reported use of RNAi to decrease tNOX expression, we found that HeLa cell growth was significantly inhibited by shRNA-knockdown of tNOX. Furthermore, cell migration and membrane association of Rac were decreased concomitantly with the reduction in tNOX protein expression. These results indicate that shRNA targeting of tNOX inhibits the growth of cervical cancer cells, and reduces cell migration via a decrease in the membrane association of Rac. We propose that tNOX is a potential upstream mediator of Rho activation that plays a role in regulating cell proliferation, migration, and invasion.  相似文献   

19.
The creatine kinase (CK) system is essential for cellular energetics in tissues or cells with high and fluctuating energy requirements. Creatine itself is known to protect cells from stress-induced injury. By using an siRNA approach to silence the CK isoenzymes in human keratinocyte HaCaT cells, expressing low levels of cytoplasmic CK and high levels of mitochondrial CK, as well as HeLa cancer cells, expressing high levels of cytoplasmic CK and low levels of mitochondrial CK, we successfully lowered the respective CK expression levels and studied the effects of either abolishing cytosolic brain-type BB-CK or ubiquitous mitochondrial uMi-CK in these cells. In both cell lines, targeting the dominant CK isoform by the respective siRNAs had the strongest effect on overall CK activity. However, irrespective of the expression level in both cell lines, inhibition of the mitochondrial CK isoform generally caused the strongest decline in cell viability and cell proliferation. These findings are congruent with electron microscopic data showing substantial alteration of mitochondrial morphology as well as mitochondrial membrane topology after targeting uMi-CK in both cell lines. Only for the rate of apoptosis, it was the least expressed CK present in each of the cell lines whose inhibition led to the highest proportion of apoptotic cells, i.e., downregulation of uMi-CK in case of HeLaS3 and BB-CK in case of HaCaT cells. We conclude from these data that a major phenotype is linked to reduction of mitochondrial CK alone or in combination with cytosolic CK, and that this effect is independent of the relative expression levels of Mi-CK in the cell type considered. The mitochondrial CK isoform appears to play the most crucial role in maintaining cell viability by stabilizing contact sites between inner and outer mitochondrial membranes and maintaining local metabolite channeling, thus avoiding transition pore opening which eventually results in activation of caspase cell-death pathways.  相似文献   

20.
Transformed and tumoral cells share the characteristic of being able to proliferate even when external calcium concentration is very low. We have investigated whether Human Embryonic Kidney 293 cells, human hepatoma cell Huh-7 and HeLa cells were able to proliferate when kept 72 h in complete culture medium without external calcium. Our data showed that cell proliferation rate was similar over a range of external calcium concentration (2 μM to 1.8 mM). Incubation in the absence of external calcium for 72 h had no significant effect on endoplasmic reticulum (ER) Ca2 + contents but resulted in a significant decrease in cytosolic free calcium concentration in all 3 cell types. Cell proliferation rates were dependent on Orai1 and Orai3 expression levels in HEK293 and HeLa cells. Silencing Orai1 or Orai3 resulted in a 50% reduction in cell proliferation rate. Flow cytometry analysis showed that Orai3 induced a small but significant increase in cell number in G2/M phase. RO-3306, a cdk-1 inhibitor, induced a 90% arrest in G2/M reversible in less than 15 min. Our data showed that progression through G2/M phase after release from RO-3306-induced cell cycle arrest was slower in both Orai1 and Orai3 knock-downs. Overexpressing Orai1, Orai3 and the dominant negative non-permeant mutants E106Q-Orai1 and E81Q-Orai3 induced a 50% increase in cell proliferation rate in HEK293 cells. Our data clearly demonstrated that Orai1 and Orai3 proteins are more important than calcium influx to control cell proliferation in some cell lines and that this process is probably independent of ICRAC and Iarc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号