首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutants of Escherichia coli having reduced levels of exonuclease VII activity have been isolated by a mass screening procedure. Nine mutants, five of which are known to be of independent origin, were obtained and designated xse. The defects in these strains lie at two or more loci. One of these loci, xseA, lies in the interval between purG and purC; it is 93 to 97% co-transducible with guaA. The order of the genes in this region is purG-xseA guaA,B-purC. The available data do not allow xseA to be ordered with respect to guaA,B. Exonuclease VII purified from E. coli KLC3 xseA3 is more heat labile than exonuclease VII purified from the parent, E. coli PA610 xse+. Therefore, xseA is the structural gene for exonuclease VII. Mutants with defects in the xseA gene show increased sensitivity to nalidixic acid and have an abnormally high frequency of recombination (hyper-Rec phenotype) as measured by the procedure of Konrad and Lehlman (1974). The hyper-Rec character of xseA strains is approximately one-half that of the polAex1 mutant defective in the 5' leads to 3' hydrolytic activity of deoxyribonucleic acid polymerase I. The double mutant, polAex1 xseA7, is twice as hyper-Rec as the polAex1 mutant alone. The xseA- strains are slightly more sensitive to ultraviolet irradiation than the parent strain. Bacteriophages T7, fd, and lambdared grow normally in xseA- strains.  相似文献   

2.
Subunit structure of Escherichia coli exonuclease VII   总被引:5,自引:0,他引:5  
Exonuclease VII has been purified 7,500-fold to 87% homogeneity from Escherichia coli K12 using a new purification procedure. The enzyme has been shown to be composed of two nonidentical subunits of 10,500 and 54,000 daltons. This has been confirmed by restoration of exonuclease VII activity after renaturation of denatured and purified subunits. The structure of the native enzyme consists of one large subunit and four small subunits. We have previously isolated exonuclease VII mutant strains containing defects which map at two distinct loci. Subunit-mixing experiments utilizing wild type enzyme and temperature-sensitive enzyme produced by an xseB mutant strain have shown that the xseB gene codes for the small subunit of the enzymes.  相似文献   

3.
We have determined the sequence of the gene encoding the large subunit of Escherichia coli exonuclease VII (xseA) and the amino acid sequence of the protein it encodes. The coding region of the xseA gene is 1368 base pairs. The protein encoded by the gene contains 456 amino acids and has a calculated molecular weight of 51,823. The promoter for xseA is close to that for guaB, and these two genes are transcribed in opposite directions: xseA clockwise and guaB counterclockwise on the standard E. coli genetic map. The cloned xseA gene can complement an xseA deletion mutant strain. In an xseA+ genetic background production of large quantities of the xseA gene product appeared to decrease the amount of exonuclease VII activity in cell extracts. In fact, no exonuclease VII activity at all could be detected following induction of strains in which the xseA gene was under lambda pL regulation. These observations suggest that the proper ratio of the large and small exonuclease VII subunits must be maintained in order to produce active enzyme.  相似文献   

4.
A series of Escherichia coli strains deficient in the 5'----3' exonuclease activity associated with deoxyribonucleic acid (DNA) polymerase I (exonuclease VI) and exonuclease VII has been constructed. Both of these enzymes are capable of pyrimidine dimer excision in vitro. These strains were examined for conditional lethality, sensitivity to ultraviolet (UV) and X-irradiation, postirradiation DNA degradation, and ability to excise pyrimidine dimers. It was found that strains deficient in both exonuclease VI (polAex-) and exonuclease VII (xseA-) are significantly reduced in their ability to survive incubation at elevated temperature (43 degrees C) beyond the reduction previously observed for the polAex single mutants. The UV and X-ray sensitivity of the exonuclease VI-deficient strains was not increased by the addition of the xseA7 mutation. Mutants deficient in both enzymes are about as efficient as wild-type strains at excising dimers produced by up to 40 J/m2 UV. At higher doses strains containing only polAex- mutations show reduced ability to excise dimers; however, the interpretation of dimer excision data at these doses is complicated by extreme postirradiation DNA degradation in these strains. The additional deficiency in the polAex xseA7 double-mutant strains has no significant effect on either postirradiation DNA degradation or the apparent deficiency in dimer excision at high UV doses observed in polAex single mutants.  相似文献   

5.
Viswanathan M  Lanjuin A  Lovett ST 《Genetics》1999,151(3):929-934
There are three known single-strand DNA-specific exonucleases in Escherichia coli: RecJ, exonuclease I (ExoI), and exonuclease VII (ExoVII). E. coli that are deficient in all three exonucleases are abnormally sensitive to UV irradiation, most likely because of their inability to repair lesions that block replication. We have performed an iterative screen to uncover genes capable of ameliorating the UV repair defect of xonA (ExoI-) xseA (ExoVII-) recJ triple mutants. In this screen, exonuclease-deficient cells were transformed with a high-copy E. coli genomic library and then irradiated; plasmids harvested from surviving cells were used to seed subsequent rounds of transformation and selection. After several rounds of selection, multiple plasmids containing the rnt gene, which encodes RNase T, were found. An rnt plasmid increased the UV resistance of a xonA xseA recJ mutant and uvrA and uvrC mutants; however, it did not alter the survival of xseA recJ or recA mutants. RNase T also has amino acid sequence similarity to other 3' DNA exonucleases, including ExoI. These results suggest that RNase T may possess a 3' DNase activity capable of substituting for ExoI in the recombinational repair of UV-induced lesions.  相似文献   

6.
7.
Excision of deoxyribose-phosphate residues from enzymatically incised abasic sites in double-stranded DNA is required prior to gap-filling and ligation during DNA base excision-repair, and a candidate deoxyribophosphodiesterase (dRpase) activity has been identified in E. coli. This activity is shown here to be a function of the E. coli RecJ protein, previously described as a 5'-->3' single-strand specific DNA exonuclease involved in a recombination pathway and in mismatch repair. Highly purified preparations of dRpase contained 5'-->3' exonuclease activity for single-stranded DNA, and homogeneous RecJ protein purified from an overproducer strain had both 5'-->3' exonuclease and dRpase activity. Moreover, E. coli recJ strains were deficient in dRpase activity. The hydrolytic dRpase function of the RecJ protein requires Mg2+; in contrast, the activity of E. coli Fpg protein, that promotes the liberation of 5'-->3'Rp residues from DNA by beta-elimination, is suppressed by Mg2+. Several other E. coli nucleases, including exonucleases I, III, V, and VII, endonucleases I, III and IV and the 5'-->3' exonuclease function of DNA polymerase I, are unable to act as a dRpase. Nevertheless, E. coli fpg recJ double mutants retain capacity to repair abasic sites in DNA, indicating the presence of a back-up excision function.  相似文献   

8.
Xrn1p of Saccharomyces cerevisiae is a major cytoplasmic RNA turnover exonuclease which is evolutionarily conserved from yeasts to mammals. Deletion of the XRN1 gene causes pleiotropic phenotypes, which have been interpreted as indirect consequences of the RNA turnover defect. By sequence comparisons, we have identified three loosely defined, common 5'-3' exonuclease motifs. The significance of motif II has been confirmed by mutant analysis with Xrn1p. The amino acid changes D206A and D208A abolish singly or in combination the exonuclease activity in vivo. These mutations show separation of function. They cause identical phenotypes to that of xrn1Delta in vegetative cells but do not exhibit the severe meiotic arrest and the spore lethality phenotype typical for the deletion. In addition, xrn1-D208A does not cause the severe reduction in meiotic popout recombination in a double mutant with dmc1 as does xrn1Delta. Biochemical analysis of the DNA binding, exonuclease, and homologous pairing activity of purified mutant enzyme demonstrated the specific loss of exonuclease activity. However, the mutant enzyme is competent to promote in vitro assembly of tubulin into microtubules. These results define a separable and specific function of Xrn1p in meiosis which appears unrelated to its RNA turnover function in vegetative cells.  相似文献   

9.
In recBCD sbcB sbcC(D) mutants of Escherichia coli homologous recombination proceeds via RecF pathway, which is thought to require RecQ, UvrD and HelD helicases at its initial stage. It was previously suggested that depletion of all three helicases totally abolishes the RecF pathway. The present study (re)examines the roles of these helicases in transductional recombination, and in recombinational repair of UV-induced DNA damage in the RecF pathway. The study has employed the ΔrecBCD ΔsbcB sbcC201 and ΔrecBCD sbcB15 sbcC201 strains, carrying combinations of mutations in recQ, uvrD, and helD genes. We show that in ΔrecBCD ΔsbcB sbcC201 strains, recombination requires exclusively the RecQ helicase. In ΔrecBCD sbcB15 sbcC201 strains, RecQ may be partially substituted by UvrD helicase. The HelD helicase is dispensable for recombination in both backgrounds. Our results also suggest that significant portion of recombination events in the RecF pathway is independent of RecQ, UvrD and HelD. These events are initiated either by RecJ nuclease alone or by RecJ nuclease associated with an unknown helicase. Inactivation of exonuclease VII by a xseA mutation further decreases the requirement for helicase activity in the RecF pathway. We suggest that elimination of nucleases acting on 3' single-strand DNA ends reduces the necessity for helicases in initiation of recombination.  相似文献   

10.
The recA mutants of Escherichia coli exhibit an abnormal DNA degradation that starts at sites of double-strand DNA breaks (DSBs), and is mediated by RecBCD exonuclease (ExoV). This “reckless” DNA degradation occurs spontaneously in exponentially growing recA cells, and is stimulated by DNA-damaging agents. We have previously found that the xonA and sbcD mutations, which inactivate exonuclease I (ExoI) and SbcCD nuclease, respectively, markedly suppress “reckless” DNA degradation in UV-irradiated recA cells. In the present work, we show that inactivation of exonuclease VII (ExoVII) by an xseA mutation contributes to attenuation of DNA degradation in UV-irradiated recA mutants. The xseA mutation itself has only a weak effect, however, it acts synergistically with the xonA or sbcD mutations in suppressing “reckless” DNA degradation. The quadruple xseA xonA sbcD recA mutants show no sign of DNA degradation during post-irradiation incubation, suggesting that ExoVII, together with ExoI and SbcCD, plays a crucial role in regulating RecBCD-catalyzed chromosome degradation. We propose that these nucleases act on DSBs to create blunt DNA ends, the preferred substrates for the RecBCD enzyme. In addition, our results show that in UV-irradiated recF recA+ cells, the xseA, xonA, and sbcD mutations do not affect RecBCD-mediated DNA repair, suggesting that ExoVII, ExoI and SbcCD nucleases are not essential for the initial targeting of RecBCD to DSBs. It is possible that the DNA-blunting activity provided by ExoVII, ExoI and SbcCD is required for an exchange of RecBCD molecules on dsDNA ends during ongoing “reckless” DNA degradation.  相似文献   

11.
DNA exonucleases are critical for DNA replication, repair, and recombination. In the bacterium Escherichia coli there are 14 DNA exonucleases including exonucleases I-IX (including the two DNA polymerase I exonucleases), RecJ exonuclease, SbcCD exonuclease, RNase T, and the exonuclease domains of DNA polymerase II and III. Here we report the discovery and characterization of a new E. coli exonuclease, exonuclease X. Exonuclease X is a member of a superfamily of proteins that have homology to the 3'-5' exonuclease proofreading subunit (DnaQ) of E. coli DNA polymerase III. We have engineered and purified a (His)(6)-exonuclease X fusion protein and characterized its activity. Exonuclease X is a potent distributive exonuclease, capable of degrading both single-stranded and duplex DNA with 3'-5' polarity. Its high affinity for single-strand DNA and its rapid catalytic rate are similar to the processive exonucleases RecJ and exonuclease I. Deletion of the exoX gene exacerbated the UV sensitivity of a strain lacking RecJ, exonuclease I, and exonuclease VII. When overexpressed, exonuclease X is capable of substituting for exonuclease I in UV repair. As we have proposed for the other single-strand DNA exonucleases, exonuclease X may facilitate recombinational repair by pre-synaptic and/or post-synaptic DNA degradation.  相似文献   

12.
13.
14.
A Diaz  M E Pons  S A Lacks    P Lopez 《Journal of bacteriology》1992,174(6):2014-2024
The Streptococcus pneumoniae polA gene was altered at various positions by deletions and insertions. The polypeptides encoded by these mutant polA genes were identified in S. pneumoniae. Three of them were enzymatically active. One was a fused protein containing the first 11 amino acid residues of gene 10 from coliphage T7 and the carboxyl-terminal two-thirds of pneumococcal DNA polymerase I; it possessed only polymerase activity. The other two enzymatically active proteins, which contained 620 and 351 amino acid residues from the amino terminus, respectively, lacked polymerase activity and showed only exonuclease activity. These two polymerase-deficient proteins and the wild-type protein were hyperproduced in Escherichia coli and purified. In contrast to the DNA polymerase I of Escherichia coli but similar to the corresponding enzyme of Thermus aquaticus, the pneumococcal enzyme appeared to lack 3'-to-5' exonuclease activity. The 5'-to-3' exonuclease domain was located in the amino-terminal region of the wild-type pneumococcal protein. This exonuclease activity excised deoxyribonucleoside 5'-monophosphate from both double- and single-stranded DNAs. It degraded oligonucleotide substrates to a decameric final product.  相似文献   

15.
Type VII collagen is a major component of anchoring fibrils, attachment structures that mediate dermal-epidermal adherence in human skin. Dystrophic epidermolysis bullosa (DEB) is an inherited mechano-bullous disorder caused by mutations in the type VII collagen gene and perturbations in anchoring fibrils. In this study, we produced recombinant human type VII collagen in stably transfected human 293 cell clones and purified large quantities of the recombinant protein from culture media. The recombinant type VII collagen was secreted as a correctly folded, disulfide-bonded, helical trimer resistant to protease degradation. Purified type VII collagen bound to fibronectin, laminin-5, type I collagen, and type IV collagen and also supported human dermal fibroblast adhesion. In an attempt to establish genotype-phenotype relationships, we generated two individual substitution mutations that have been associated with recessive DEB, R2008G and G2749R, and purified the recombinant mutant proteins. The G2749R mutation resulted in mutant type VII collagen with increased sensitivity to protease degradation and decreased ability to form trimers. The R2008G mutation caused the intracellular accumulation of type VII collagen. We conclude that structural and functional studies of in vitro generated type VII collagen mutant proteins will aid in correlating genetic mutations with the clinical phenotypes of DEB patients.  相似文献   

16.
Infection of Escherichia coli with bacteriophage T7 results in an inhibition of the host exonuclease V (recB, C DNase) activity. This inhibition is not observed when cells are infected in the presence of chloramphenicol or with a gene 1 mutant. The protein responsible for the inhibition of exonuclease V has been partially purified from T7-infected cells. The protein which does not possess nuclease or ATPase activity can inhibit all nucleolytic activities associated with exonuclease V. The protein does not, however, inhibit the DNA-dependent ATPase activity associated with exonuclease V. The inhibitory protein has a molecular weight of about 12,000, as determined from sedimentation analysis in glycerol gradients.  相似文献   

17.
In Escherichia coli K-12, sbcB/xonA is the structural gene for exonuclease I, an enzyme that hydrolyzes single-stranded DNA to mononucleotides in the 3'-to-5' direction. This enzyme has been implicated in the DNA repair and recombination pathways mediated by the recB and recC gene products (exonuclease V). We have cloned several sbcB/xonA mutant alleles in bacterial plasmids and have partially characterized the cloned genes and their protein products. Two of the mutations (xonA2 and xonA6) retain no detectable exonucleolytic activity on single-stranded DNA. The xonA6 allele was shown to harbor an insertion of an IS30-related genetic element near the 3' end of the gene. Two other mutations, sbcB15 and xonA8, exhibited significantly reduced levels of exonuclease I activity as compared to the cloned wild-type gene. A correlation was observed between levels of exonuclease I activity and the ability of the sbcB/xonA mutations to suppress UV sensitivity in recB and recC strains. Also, recombinant plasmids bearing either the sbcB15 or xonA6 allele exhibited a high degree of instability during growth of their bacterial hosts. The results suggest that the sbcB/xonA gene product is a bi- or multifunctional protein that interacts with single-stranded DNA and possibly with other proteins in the suppression of genetic recombination and DNA-repair deficiencies in recB and recC mutants.  相似文献   

18.
An exonuclease, DNase VII, has been purified 6000-fold from human placenta. The enzyme has an apparent molecular weight of 43,000, requires Mg2+ for activity, and has a pH optimum of 7.8. The enzyme hydrolyzes single-stranded and nicked duplex DNA at the same rate proceeding in a 3' leads to 5' direction liberating 5'-mononucleotides. It does not measurably hydrolyze polyribonucleotides.  相似文献   

19.
Exonuclease VIII of Escherichia coli. I. Purification and physical properties   总被引:10,自引:0,他引:10  
Exonuclease VIII is an enzyme whose synthesis is induced as a result of sbcA mutations. The enzyme has been purified to near homogeneity from an Escherichia coli strain containing an sbcA mutation and mutations in the structural genes for exonuclease III, exonuclease V, and endonuclease I. The enzyme specifically degrades linear duplex DNA in a reaction which requires magnesium ions and is susceptible to inhibition by other divalent cations and by sulfhydryl-blocking reagents. Enzyme activity occurs over a broad pH range with peak activity at pH 8.5 in Tris buffer. The protein has a subunit Mr = 140,000, a sedimentation coefficient of 8.4 +/- 0.6, and a Stokes radius of 142 +/- 6 A, which is consistent with its active form being a multimer. Exonuclease VIII has a frictional coefficient of 2.6 which indicates that it has an asymmetric structure.  相似文献   

20.
An isogenic series of Escherichia coli strains deficient in various combinations of three 5' leads to 3' exonucleases (exonuclease V, exonuclease VII, and the 5' leads to 3' exonuclease of DNA polymerase I) was constructed and examined for the ability to excise pyrimidine dimers after UV irradiation. Although the recB and recC mutations (deficient in exonuclease V) proved to be incompatible with the polA(Ex) mutation (deficient in the 5' leads to 3' exonuclease of DNA polymerase I), it was possible to reduce the level of the recB,C exonuclease by the use of temperature-sensitive recB270 recC271 mutants. It was found that, by employing strains deficient in exonuclease V, postirradiation DNA degradation could be reduced and dimer excision measurements could be facilitated. Mutants deficient in exonuclease V were found to excise dimers at a rate comparable to that of the wild type. Mutants deficient in exonuclease V and the 5' leads to 3' exonuclease of DNA polymerase I are slightly slower than the wild type at removing dimers accumulated after doses in excess of 40 J/m2. However, although strains with reduced levels of exonuclease VII excised dimers at the same rate as the wild type, the addition of an exonuclease VII deficiency to a strain with reduced levels of exonuclease V and the 5' leads to 3' exonuclease of DNA polymerase I caused a marked decrease in the rate and extent of dimer excision. These observations support previous indications that the 5' leads to 3' exonuclease of DNA polymerase I is important in dimer removal and also suggest a role for exonuclease VII in the excision repair process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号