首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oral nicotine induces an atherogenic lipoprotein profile   总被引:3,自引:0,他引:3  
Male squirrel monkeys were used to evaluate the effect of chronic oral nicotine intake on lipoprotein composition and metabolism. Eighteen yearling monkeys were divided into two groups: 1) Controls fed isocaloric liquid diet; and 2) Nicotine primates given liquid diet supplemented with nicotine at 6 mg/kg body wt/day. Animals were weighed biweekly, plasma lipid, glucose, and lipoprotein parameters were measured monthly, and detailed lipoprotein composition, along with postheparin plasma lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) activity, was assessed after 24 months of treatment. Although nicotine had no effect on plasma triglyceride or high density lipoproteins (HDL), the alkaloid caused a significant increase in plasma glucose, cholesterol, and low density lipoprotein (LDL) cholesterol plus protein while simultaneously reducing the HDL cholesterol/plasma cholesterol ratio and animal body weight. Levels of LDL precursors, very low density (VLDL) and intermediate density (IDL) lipoproteins, were also lower in nicotine-treated primates while total postheparin lipase (LPL + HTGL) activity was significantly elevated. Our data indicate that long-term consumption of oral nicotine induces an atherogenic lipoprotein profile (increases LDL, decreases HDL/total cholesterol ratio) by enhancing lipolytic conversion of VLDL to LDL. These results have important health implications for humans who use smokeless tobacco products or chew nicotine gum for prolonged periods.  相似文献   

2.
To test whether estrogen can modulate the cholesterolemic response to an Occidental diet, six healthy postmenopausal women were studied for 84 days while ingesting a solid food diet of constant composition high in cholesterol content (995 mg/d). In the middle of the study, estrogen (17 alpha-ethinyl estradiol, 1 microgram/kg per day) was administered orally. Ingestion of the diet for the initial 28 days did not alter lipoprotein lipid or apolipoprotein (apo) levels. However, with just 4 days of estrogen use there were significant decreases in apoE (-36%), low density lipoprotein cholesterol (-26%), and postheparin plasma hepatic triglyceride lipase activity (HTGL) (-61%), and an increase in high density lipoprotein (HDL) triglyceride (72%). These changes persisted throughout the estrogen use. The percent change in HTGL with 4 days of estrogen correlated inversely with the percent change in HDL triglyceride (rs = -0.94). After 28 days of estrogen there were also significant increases in HDL cholesterol (21%), HDL2 cholesterol (42%), apoA-I (37%), and apoA-II (9%), and a decrease in apoB (-11%). The level of apoE at this juncture correlated inversely with the level of HDL cholesterol (rs = -0.90), and the levels of HTGL and apoA-I correlated with HDL2 cholesterol (rs = -0.89 and rs = 0.89, respectively). Thus, HTGL may play a role in both the early estrogen-related changes in HDL triglyceride and apoE and the late estrogen-related changes in HDL cholesterol, apoA-I, and apoA-II.  相似文献   

3.
Plasma clearance of triglyceride-rich lipoproteins appears decreased in aged humans and rats and may be due to lowered activities of the lipases responsible for lipid degradation. This study was designed to examine differential effects of age and diet on lipoprotein lipase (LPL) activity of adipose and heart tissue and hepatic triglyceride lipase (HTGL) activity. LPL and HTGL activities were examined in 3- and 13-month-old Sprague-Dawley rats after they had consumed either a high-carbohydrate or a high-fat diet for 14 days. The data were analyzed for age and diet differences by two-way analysis of variance. Although animals in the two age groups consumed diets of equal caloric content, the older rats gained less weight. Rats on the high-carbohydrate diet consumed less calories and gained less weight than the fat fed rats in both age groups. Neither heart nor adipose tissue LPL activity differed when examined for age or diet. HTGL activity levels, while not affected by age, were higher in the carbohydrate fed rats (P = 0.014). Regardless of age group, fasting plasma cholesterol levels were significantly higher in the carbohydrate-fed rats than fat-fed rats (P = 0.002). Thus, the diet effect was much stronger than the age effect for HTGL and plasma cholesterol levels.  相似文献   

4.
Small, dense LDL particles are typical for FCHL. Intravascular lipid exchange and net transfer among HDL, LDL, and triglyceride-rich lipoproteins as well as lipolysis in the VLDL-IDL-LDL cascade regulate properties of LDL. We investigated postheparin plasma activities of hepatic lipase (HL) and LPL, and plasma activities of CETP and phospholipid transfer protein (PLTP) in 191 individuals from 37 Finnish FCHL families. LDL peak particle diameter (LDL size) was measured with 2-10% gradient polyacrylamide gel electrophoresis. LDL size was significantly smaller in affected FCHL family members (n = 68) as compared with nonaffected FCHL family members (n = 78) or spouses (n = 45) (25.3 +/- 1.5 nm, 26.8 +/- 1.2 nm, and 26.6 +/- 1.2 nm, respectively, P < 0.001 for both). In affected FCHL family members, serum triglycerides were the strongest correlate for LDL size (r = -0.71, P < 0.001). In univariate correlation analysis LDL size was not associated with HL, LPL, CETP, and PLTP activities. In multivariate stepwise regression analysis, however, serum triglycerides, CETP activity, HL activity, and HDL cholesterol were significant predictors of LDL size in affected FCHL subjects (adjusted r (2) = 0.642).We conclude that serum triglyceride concentration is strongly correlated with LDL size in affected FCHL subjects. After adjustment for serum triglycerides, HL and CETP activities are associated with LDL size in FCHL.  相似文献   

5.
Chronic alcohol intake is associated with an increase in fasting plasma high density lipoproteins (HDL). To study alcohol's acute effects on plasma lipoproteins, we measured plasma lipoprotein concentrations and activities of postheparin plasma lipases in nine normolipemic males after ingestion of 40 g of ethanol (as whiskey). After alcohol there was no change in lipoprotein lipase activity but hepatic lipase was decreased to 67% of baseline at 6 hr. There were associated increases in HDL phospholipids (12 mg/dl) and cholesterol (10 mg/dl) resulting in prominence of larger, lipid-enriched HDL particles. Changes were most pronounced in the HDL3 and HDL2a subclasses. Very low density lipoprotein (VLDL) phospholipids and cholesterol were also increased by 13 and 9 mg/dl, respectively, with no significant change in triglycerides. Changes in lipoproteins and lipase were largely reversed 10 hr after alcohol intake. The transient increases in VLDL and HDL lipids after alcohol may result in part from acute inhibition of hepatic lipase activity. The results suggest a role of hepatic lipase in the catabolism of phospholipids of VLDL and possibly HDL.  相似文献   

6.
Our objective was to test the hypothesis that a common polymorphism in the hepatic lipase (HL) gene (LIPC -514C>T, rs1800588) influences aerobic exercise training-induced changes in TG, very-low-density lipoprotein (VLDL), and high-density lipoprotein (HDL) through genotype-specific increases in lipoprotein lipase (LPL) activity and that sex may affect these responses. Seventy-six sedentary overweight to obese men and women aged 50-75 yr at risk for coronary heart disease (CHD) underwent a 24-wk prospective study of the LIPC -514 genotype-specific effects of exercise training on lipoproteins measured enzymatically and by nuclear magnetic resonance, postheparin LPL and HL activities, body composition by dual energy x-ray absorptiometry and computer tomography scan, and aerobic capacity. CT genotype subjects had higher baseline total cholesterol, HDL-C, HDL(2)-C, large HDL, HDL particle size, and large LDL than CC homozygotes. Exercise training elicited genotype-specific decreases in VLDL-TG (-22 vs. +7%; P < 0.05; CC vs. CT, respectively), total VLDL and medium VLDL, and increases in HDL-C (7 vs. 4%; P < 0.03) and HDL(3)-C with significant genotype×sex interactions for the changes in HDL-C and HDL(3)-C (P values = 0.01-0.02). There were also genotype-specific changes in LPL (+23 vs. -6%; P < 0.05) and HL (+7 vs. -24%; P < 0.01) activities, with LPL increasing only in CC subjects (P < 0.006) and HL decreasing only in CT subjects (P < 0.007). Reductions in TG, VLDL-TG, large VLDL, and medium VLDL and increases in HDL(3)-C and small HDL particles correlated significantly with changes in LPL, but not HL, activity only in CC subjects. This suggests that the LIPC -514C>T variant significantly affects training-induced anti-atherogenic changes in VLDL-TG, VLDL particles, and HDL through an association with increased LPL activity in CC subjects, which could guide therapeutic strategies to reduce CHD risk.  相似文献   

7.
To study the role of the two postheparin plasma lipolytic enzymes, lipoprotein lipase (LPL) and hepatic lipase (HL) in high density lipoprotein (HDL) metabolism at a population level, we determined serum lipoproteins, apoproteins A-I, A-II, B, and E, and postheparin plasma LPL and HL activities in 65 subjects with a mean HDL-cholesterol of 34 mg/dl and in 62 subjects with a mean HDL-cholesterol of 87 mg/dl. These two groups represented the highest and lowest 1.4 percentile of a random sample consisting 4,970 subjects. The variation in HDL level was due to a 4.1-fold difference in the HDL2 cholesterol (P less than 0.001) whereas the HDL3 cholesterol level was increased only by 32% (P less than 0.001) in the group with high HDL-cholesterol. Serum apoA-levels were 128 +/- 2.2 mg/dl and 210 +/- 2.8 mg/dl (mean +/- SEM) in hypo- and hyper-HDL cholesterolemia, respectively. Serum apoA-II concentration was elevated by 28% (P less than 0.001) in hyperalphalipoproteinemia. The apoA-I/A-II ratio was elevated only in women with high HDL-cholesterol but not in men, suggesting that elevation of apoA-I is involved in hyperalphalipoproteinemia in females, whereas both apoA proteins are elevated in men with high HDL cholesterol. Serum concentration of apoE and its phenotype distribution were similar in the two groups. The HL activity was reduced in the high HDL-cholesterol group (21.2 +/- 1.5 vs. 38.5 +/- 1.8 mumol/h/ml, P less than 0.001), whereas the LPL activity was elevated in the group with high HDL-cholesterol compared to subjects with low HDL-cholesterol (27.8 +/- 1.3 vs. 19.9 +/- 0.8 mumol/h/ml, P less than 0.001). The HL and LPL activities correlated in opposing ways with the HDL2 cholesterol (r = 0.57, P less than 0.001 and r = 0.51, P less than 0.001, respectively), and this appeared to be independent of the relative ponderosity by multiple correlation analysis. The results demonstrate major influence of both HL and LPL on serum HDL cholesterol concentration at a population level.  相似文献   

8.
Lipoprotein lipase (LPL) and hepatic lipase (HL) are enzymatic activities involved in lipoprotein metabolism. The purpose of this study was to analyze the physicochemical modifications of plasma lipoproteins produced by LPL activation in two patients with apoC-II deficiency syndrome and by HL activation in two patients with LPL deficiency. LPL activation was achieved by the infusion of normal plasma containing apoC-II and HL was released by the injection of heparin. Lipoproteins were analyzed by ultracentrifugation in a zonal rotor under rate flotation conditions before and after lipase activation. The LPL activation resulted in: a reduction of plasma triglycerides; a reduction of fast-floating very low density lipoprotein (VLDL) concentration; an increase of intermediate density lipoprotein (IDL), which maintained unaltered flotation properties; an increase of low density lipoproteins (LDL) accompanied by modifications of their flotation rates and composition; no significant variations of high density lipoprotein (HDL) levels; and an increase of the HDL flotation rate. The HL activation resulted in: a slight reduction of plasma triglycerides; a reduction of the relative triglyceride content of slow-floating VLDL, IDL, LDL2, and HDL3 accompanied by an increase of phospholipid in VLDL and by an increase of cholesteryl ester in IDL; and a reduction of the HDL flotation rate. These experiments in chylomicronemic patients provide in vivo evidence that LPL and HL are responsible for plasma triglyceride hydrolysis of different lipoproteins, and that LPL is particularly involved in determining the levels and physicochemical properties of LDL. Moreover, in these patients, the LPL activation does not directly change the HDL levels, and LPL or HL does not produce a step-wise conversion of HDL3 to HDL2 (or vice versa) but rather modifies the flotation rates of all the HDL molecules present in plasma.  相似文献   

9.
Apolipoprotein E (apoE) is the primary recognition signal on triglyceride-rich lipoproteins responsible for interacting with low density lipoprotein (LDL) receptors and LDL receptor-related protein (LRP). It has been shown that lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) promote receptor-mediated uptake and degradation of very low density lipoproteins (VLDL) and remnant particles, possibly by directly binding to lipoprotein receptors. In this study we have investigated the requirement for apoE in lipase-stimulated VLDL degradation. We compared binding and degradation of normal and apoE-depleted human VLDL and apoE knockout mouse VLDL in human foreskin fibroblasts. Surface binding at 37 degrees C of apoE knockout VLDL was greater than that of normal VLDL by 3- and 40-fold, respectively, in the presence of LPL and HTGL. In spite of the greater stimulation of surface binding, lipase-stimulated degradation of apoE knockout mouse VLDL was significantly lower than that of normal VLDL (30, 30, and 80%, respectively, for control, LPL, and HTGL treatments). In the presence of LPL and HTGL, surface binding of apoE-depleted human VLDL was, respectively, 40 and 200% of normal VLDL whereas degradation was, respectively, 25 and 50% of normal VLDL. LPL and HTGL stimulated degradation of normal VLDL in a dose-dependent manner and by a LDL receptor-mediated pathway. Maximum stimulation (4-fold) was seen in the presence LPL (1 microgram/ml) or HTGL (3 microgram/ml) in lovastatin-treated cells. On the other hand, degradation of apoE-depleted VLDL was not significantly increased by the presence of lipases even in lovastatin-treated cells. Surface binding of apoE-depleted VLDL to metabolically inactive cells at 4 degrees C was higher in control and HTGL-treated cells, but unchanged in the presence of LPL. Degradation of prebound apoE-depleted VLDL was only 35% as efficient as that of normal VLDL. Surface binding of apoE knockout or apoE-depleted VLDL was to heparin sulfate proteoglycans because it was completely abolished by heparinase treatment. However, apoE appears to be a primary determinant for receptor-mediated VLDL degradation.Our studies suggest that overexpression of LPL or HTGL may not protect against lipoprotein accumulation seen in apoE deficiency.  相似文献   

10.
The effects of dietary n-3 polyunsaturated fatty acids on lipoprotein concentrations and on lipoprotein lipase (LPL), hepatic triglyceride lipase (HTGL) and lecithin cholesterol acyltransferase (LCAT) activities were studied in streptozotocin-induced diabetic rats during pregnancy and in their macrosomic offspring from birth to adulthood. Pregnant diabetic and control rats were fed Isio-4 diet (vegetable oil) or EPAX diet (concentrated marine omega-3 EPA/DHA oil), the same diets were consumed by pups at weaning. Compared with control rats, diabetic rats showed, during pregnancy, a significant elevation in very low density lipoprotein (VLDL) and low and high density lipoprotein (LDL-HDL(1))-triglyceride, cholesterol and apoprotein B100 concentrations and a reduction in apoprotein A-I levels. HTGL activity was high while LPL and LCAT activities were low in these rats. The macrosomic pups of Isio-4-fed diabetic rats showed a significant enhancement in triglyceride and cholesterol levels at birth and during adulthood with a concomitant increase in lipase and LCAT activities. EPAX diet induces a significant diminution of VLDL and LDL-HDL(1) in mothers and in their macrosomic pups, accompanied by an increase in cholesterol and apoprotein A-I levels in HDL(2-3) fraction. It also restores LPL, HTGL and LCAT activities to normal range. EPAX diet ameliorates considerably lipoprotein disorders in diabetic mothers and in their macrosomic offspring.  相似文献   

11.
脂蛋白酯酶与动脉粥样硬化   总被引:3,自引:0,他引:3  
脂蛋白酯酶(1ipopmtein lipase,LPL)是调节脂蛋白代谢的一种关键酶,如具有水解血浆脂蛋白中三酰甘油的作用等.体内LPL减少会导致血三酰甘油升高和高密度脂蛋白胆固醇降低,增加患动脉粥样硬化的危险.通过提高LPL的活性可以抑制动脉粥样硬化的发生发展.已有的研究说明NO-1886促进心肌和脂肪组织LPL mRNA表达,提高心肌、脂肪组织、骨骼肌和血液中LPL活性,因而改善脂蛋白代谢,抑制动脉粥样硬化.  相似文献   

12.
Phospholipid transfer protein (PLTP), hepatic lipase (HL), and lipoprotein lipase (LPL) have all been reported to be intricately involved in HDL metabolism but the effect of PLTP on the apolipoprotein B-containing lipoproteins relative to that of HL and LPL has not been established. Due to our previous observation of a positive correlation of PLTP activity with plasma apoB and LDL cholesterol, the relationship of PLTP with the LDL subfractions was investigated and compared with that of HL and LPL. Plasma lipoproteins from 50 premenopausal women were fractionated by density gradient ultracentrifugation. Correlations were calculated between the cholesterol concentration of each fraction and plasma PLTP, HL, and LPL activity. Plasma PLTP activity was highly, positively, and selectively correlated with the cholesterol concentration of the buoyant LDL/dense IDL fractions, yet demonstrated a complete absence of an association with the dense LDL fractions. In contrast, HL was positively correlated with the dense LDL fractions but showed no association with buoyant LDL. LPL was also positively correlated with several buoyant LDL fractions; however, the correlations were weaker than those of PLTP. PLTP and LPL were positively correlated and HL was negatively correlated with HDL fractions. The results suggest that PLTP and HL may be important and independent determinants of the LDL subpopulation density distributions.  相似文献   

13.
A large family is reported with familial hepatic triglyceride lipase (HTGL) deficiency and with the coexistence of reduced lipoprotein lipase (LPL) similar to the heterozygote state of LPL deficiency. The proband was initially detected because of hypertriglyceridemia and chylomicronemia. He was later demonstrated to have beta-VLDL despite an apo E3/E3 phenotype and the lack of stigmata of type III hyperlipoproteinemia. The proband had no HTGL activity in postheparin plasma. Two of his half-sisters had very low HTGL activity (39 and 31 nmol free fatty acids/min/ml; normal adult female greater than 44). His son and daughters had decreased HTGL activity (normal male and preadolescent female greater than 102), which would be expected in obligate heterozygotes for HTGL deficiency. Low HTGL activity was associated with LDL particles which were larger and more buoyant. Several family members, including the proband, had reduced LPL activity and mass less than that circumscribed by the 95% confidence-interval ellipse for normal subjects and had hyperlipidemia similar to that described in heterozygote relatives of patients with LPL deficiency. All the sibs with hyperlipidemia had a reduced LPL activity and mass, while subjects with isolated reduced HTGL (with normal LPL activity) had normal lipid phenotypes. Analysis of genomic DNA from these subjects by restriction-enzyme digestion revealed no major abnormalities in the structure of either the HTGL or the LPL gene. Compound heterozygotes for HTGL and LPL deficiency show lipoprotein physiological characteristics typical for HTGL deficiency, while their variable lipid phenotype is typical for LPL deficiency.  相似文献   

14.
The lipoproteins in GR mice bearing the transplanted GRSL ascites tumor were characterized by density gradient ultracentrifugation and SDS-polyacrylamide gel electrophoresis. In control mice the major proportion of the lipoproteins was found in the HDL density range, but on days 4 and 5 following tumor transplantation a gradual shift into the LDL density range was observed. At the same time the apolipoprotein E content increased at the expense of apolipoprotein A-I. VLDL became moderately elevated. On days 6 and 7 all lipoproteins except VLDL reached extremely low values. The C-apolipoproteins showed a remarkable shift in their relative proportions. Plasma lecithin:cholesterol acyltransferase activity showed no significant alteration in the course of tumor growth, but the triacylglycerol lipases in postheparin plasma were strongly decreased. Lipoprotein lipase had already started to decline on day 2 following tumor transplantation. However, when assayed in the presence of heat-inactivated control plasma, a decrease was not observed before day 5. This is suggestive of a depletion of a plasma cofactor preceding the final disappearance of the enzyme itself, and is compatible with the changing apolipoprotein C pattern. Hepatic lipase showed a 50% reduction between days 3 and 4. The lipoprotein alterations in tumor-bearing mice are explained as a direct consequence of the decreased lipase activities.  相似文献   

15.
Characterization of the lipolytic activity of endothelial lipase   总被引:16,自引:0,他引:16  
Endothelial lipase (EL) is a new member of the triglyceride lipase gene family previously reported to have phospholipase activity. Using radiolabeled lipid substrates, we characterized the lipolytic activity of this enzyme in comparison to lipoprotein lipase (LPL) and hepatic lipase (HL) using conditioned medium from cells infected with recombinant adenoviruses encoding each of the enzymes. In the absence of serum, EL had clearly detectable triglyceride lipase activity. Both the triglyceride lipase and phospholipase activities of EL were inhibited in a dose-dependent fashion by the addition of serum. The ratio of triglyceride lipase to phospholipase activity of EL was 0.65, compared with ratios of 24.1 for HL and 139.9 for LPL, placing EL at the opposite end of the lipolytic spectrum from LPL. Neither lipase activity of EL was influenced by the addition of apolipoprotein C-II (apoC-II), indicating that EL, like HL, does not require apoC-II for activation. Like LPL but not HL, both lipase activities of EL were inhibited by 1 M NaCl. The relative ability of EL, versus HL and LPL, to hydrolyze lipids in isolated lipoprotein fractions was also examined using generation of FFAs as an end point. As expected, based on the relative triglyceride lipase activities of the three enzymes, the triglyceride-rich lipoproteins, chylomicrons, VLDL, and IDL, were efficiently hydrolyzed by LPL and HL. EL hydrolyzed HDL more efficiently than the other lipoprotein fractions, and LDL was a poor substrate for all of the enzymes.  相似文献   

16.
The rabbit as an animal model of hepatic lipase deficiency   总被引:3,自引:0,他引:3  
A natural deficiency of hepatic lipase in rabbits has been exploited to gain insights into the physiological role of this enzyme in the metabolism of plasma lipoproteins. A comparison of human and rabbit lipoproteins revealed obvious species differences in both low-density lipoproteins (LDL) and high-density lipoproteins (HDL), with the rabbit lipoproteins being relatively enlarged, enriched in triacylglycerol and depleted of cholesteryl ester. To test whether these differences related to the low level of hepatic lipase in rabbits, whole plasma or the total lipoprotein fraction from rabbits was either kept at 4 degrees C or incubated at 37 degrees C for 7 h in (i) the absence of lipase, (ii) the presence of hepatic lipase and (iii) the presence of lipoprotein lipase. Following incubation, the lipoproteins were recovered and subjected to gel permeation chromatography to determine the distribution of lipoprotein components across the entire lipoprotein spectrum. An aliquot of the lipoproteins was subjected also to gradient gel electrophoresis to determine the particle size distribution of the LDL and HDL. Both hepatic lipase and lipoprotein lipase hydrolysed lipoprotein triacylglycerol and to a much lesser extent, also phospholipid. There were, however, obvious differences between the enzymes in terms of substrate specificity. In incubations containing hepatic lipase, there was a preferential hydrolysis of HDL triacylglycerol and a lesser hydrolysis of VLDL triacylglycerol. By contrast, lipoprotein lipase acted primarily on VLDL triacylglycerol. When more enzyme was added, both lipases also acted on LDL triacylglycerol, but in no experiment did lipoprotein lipase hydrolyse the triacylglycerol in HDL. Coincident with the hepatic lipase-induced hydrolysis of LDL and HDL triacylglycerol, there were marked reductions in the particle size of both lipoprotein fractions, which were now comparable to those of human LDL and HDL3, respectively.  相似文献   

17.
Appraisal of hepatic lipase and lipoprotein lipase activities in mice   总被引:1,自引:0,他引:1  
A variety of methods are currently used to analyze HL and LPL activities in mice. In search of a simple methodology, we analyzed mouse preheparin and postheparin plasma LPL and HL activities using specific polyclonal antibodies raised in rabbit against rat HL (anti-HL) and in goat against rat LPL (anti-LPL). As an alternative, we analyzed HL activity in the presence of 1 M NaCl, a condition known to inhibit LPL activity in humans. The assays were validated using plasma samples from wild-type and HL-deficient C57BL/6 mice. We now show that the use of 1 M NaCl for the inhibition of plasma LPL activity in mice may generate incorrect measurements of both LPL and HL activities. Our data indicate that HL can be measured directly, without heparin injection, in preheparin plasma, because virtually all HL is present in an unbound form circulating in plasma. In contrast, measurable LPL activity is present only in postheparin plasma. Both HL and LPL can be measured using the same assay conditions (low salt and the presence of apolipoprotein C-II as an LPL activator). Total lipase activity in postheparin plasma minus preheparin HL activity reflects LPL activity. Specific antibodies are not required.  相似文献   

18.
Plasma phospholipid transfer protein (PLTP) is thought to play a major role in the facilitated transfer of phospholipids between lipoproteins and in the modulation of high density lipoprotein (HDL) particle size and composition. However, little has been reported concerning the relationships of PLTP with plasma lipoprotein parameters, lipolytic enzymes, body fat distribution, insulin, and glucose in normolipidemic individuals, particularly females. In the present study, 50 normolipidemic healthy premenopausal females were investigated. The relationships between the plasma PLTP activity and selected variables were assessed. PLTP activity was significantly and positively correlated with low density lipoprotein (LDL) cholesterol (r(s) = 0.53), apoB (r(s) = 0.44), glucose (r(s) = 0.40), HDL cholesterol (r(s) = 0.38), HDL(3) cholesterol (r(s) = 0.37), lipoprotein lipase activity (r(s) = 0.36), insulin (r(s) = 0.33), subcutaneous abdominal fat (r(s) = 0.36), intra-abdominal fat (r(s) = 0.29), and body mass index (r(s) = 0.29). HDL(2) cholesterol, triglyceride, and hepatic lipase were not significantly related to PLTP activity. As HDL(2) can be decreased by hepatic lipase and hepatic lipase is increased in obesity with increasing intra-abdominal fat, the participants were divided into sub-groups of non-obese (n = 35) and obese (n = 15) individuals and the correlation of PLTP with HDL(2) cholesterol was re-examined. In the non-obese subjects, HDL(2) cholesterol was found to be significantly and positively related to PLTP activity (r(s) = 0.44). Adjustment of the HDL(2) values for the effect of hepatic lipase activity resulted in a significant positive correlation between PLTP and HDL(2) (r(s) = 0.41), indicating that the strength of the relationship between PLTP activity and HDL(2) can be reduced by the opposing effect of hepatic lipase on HDL(2) concentrations. We conclude that PLTP-facilitated lipid transfer activity is related to HDL and LDL metabolism, as well as lipoprotein lipase activity, adiposity, and insulin resistance.  相似文献   

19.
We have developed a sandwich-enzyme immunoassay (EIA) for the quantification of lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) in human postheparin plasma (PHP) using monoclonal antibodies (MAbs) directed against the corresponding enzymes purified from human PHP. The sandwich-EIA for LPL was performed by using the combination of two distinct types of anti-LPL MAbs that recognize different epitopes on the LPL molecule. The immunoreactive mass of LPL was specifically measured using a beta-galactosidase-labeled anti-LPL MAb as an enzyme-linked MAb, an anti-LPL MAb linked with the bacterial cell wall as an insolubilized MAb, and purified human PHP-LPL as a standard. The sandwich-EIA for HTGL was carried out by using two distinct anti-HTGL MAbs that recognize different epitopes on HTGL. The limit of detection was 20 ng/ml for LPL and 60 ng/ml for HTGL. Each method yielded a coefficient of variation of less than 6% in intra- and inter-assays, and a high concentration of triglyceride did not interfere with the assays. The average recovery of purified human PHP-LPL and -HTGL added to human PHP samples was 98.8% and 97.5%, respectively. The immunoreactive masses of LPL and HTGL in PHP samples, obtained at a heparin dose of 30 IU/kg, from 34 normolipidemic and 20 hypertriglyceridemic subjects were quantified by the sandwich-EIA. To assess the reliability of the measured mass values, they were compared with the corresponding enzyme activities measured by selective immunoinactivation assay using rabbit anti-human PHP-LPL and -HTGL polyclonal antisera. Both assay methods yielded a highly significant correlation in either normolipidemic (r = 0.945 for LPL; r = 0.932 for HTGL) or hypertriglyceridemic subjects (r = 0.989 for LPL; r = 0.954 for HTGL). The normal mean (+/- SD) level of lipoprotein lipase mass and activity in postheparin plasma was 223 +/- 66 ng/ml and 10.1 +/- 2.9 mumol/h per ml, and that of hepatic triglyceride lipase mass and activity was 1456 +/- 469 ng/ml and 26.4 +/- 8.7 mumol/h per ml, respectively. The present sandwich-enzyme immunoassay methods make it possible to study the molecular nature of LPL and HTGL in PHP from patients with either primary or secondary hyperlipoproteinemia.  相似文献   

20.
OBJECTIVE: The aim of this study was to determine how lipoprotein lipase (LPL) and hepatic triacylglycerol lipase (HTGL) activity relate to serum adiponectin levels. RESEARCH DESIGN AND METHODS: Fifty-five hyperlipidemic Japanese men were recruited for this study. LPL and HTGL activity in post-heparin plasma (PHP) was measured using Triton X-100 emulsified-[14C] triolein. The remaining activity in the presence of 1M NaCl was defined as HTGL activity. Serum adiponectin levels were determined by an enzyme-linked immunosorbent assay system. RESULT: LPL activity had a positive relationship with HDL2, but had no relation with HDL3, while HTGL had positive relationship with HDL3, but had no relationship with HDL2. LPL activity showed a positive relationship [r = 0.345, p = 0.010] to serum adiponectin levels, while and HTGL activity showed an inverse relationship [r = - 0.365 p = 0.006]. Multiple regression analysis with LPL and HTGL as dependent variables and age, BMI, serum adiponectin and the homeostasis model assessment of insulin resistance (HOMA-IR) as independent variables showed LPL and HTGL's association to adiponectin did not persist after adjustments for these covariants. However, the association of LPL activity to HOMA-IR was found to persist after adjustments of age, BMI, and serum adiponectin. CONCLUSIONS: There was a co-linearity between insulin sensitivity and adiponectin as well as insulin sensitivity and LPL/HTGL activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号