共查询到20条相似文献,搜索用时 78 毫秒
1.
Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, is an obligate intracellular bacterium that survives in neutrophils
by delaying apoptosis. The human promyelocytic leukemia cell line HL-60 has been the ultimate choice for culturing Anaplasma in vitro. In this study, we assessed the various events of drug-induced apoptosis in A. phagocytophilum-infected HL-60 cells. Anaplasma infection reduced the cell viability and increased the apoptosis in HL-60 cells and staurosporine or etoposide-induced apoptosis
was further exacerbated with Anaplasma infection. Altogether our results suggest that A.
phagocytophilum infection is proapoptotic in HL-60 cells unlike in neutrophils where it is antiapoptotic. 相似文献
2.
Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis, is an obligate intracellular bacterium of granulocytes. A. phagocytophilum specifically induces tyrosine phosphorylation of a 160 kDa protein (P160) in host cells. However, identity of P160, kinases involved, and effects of tyrosine phosphorylation on bacterial infection remain largely unknown. Here, we demonstrated through proteomic analysis that P160, an abundant and rapidly tyrosine-phosphorylated protein throughout infection, was AnkA of bacterial origin. Differential centrifugation and confocal microscopy revealed that AnkA was rarely retained within A. phagocytophilum or its inclusion, but localized mainly in the cytoplasm of infected cells. Using Cre recombinase reporter assay of Agrobacterium tumefaciens, we proved that AnkA could be secreted by VirB/D4-dependent type IV secretion (T4S) system. Yeast two-hybrid and coimmunoprecipitation analyses demonstrated that AnkA could bind to Abl-interactor 1 (Abi-1), an adaptor protein that interacts with Abl-1 tyrosine kinase, thus mediating AnkA phosphorylation. AnkA and Abl-1 were critical for bacterial infection, as infection was inhibited upon host cytoplasmic delivery of anti-AnkA antibody, Abl-1 knockdown with targeted siRNA, or treatment with a specific pharmacological inhibitor of Abl-1. These data establish AnkA as the first proven T4S substrate in members of obligate intracellular alpha-proteobacteria; furthermore, it demonstrated that AnkA plays an important role in facilitating intracellular infection by activating Abl-1 signalling pathway, and suggest a novel approach to treatment of human granulocytic anaplasmosis through inhibition of host cell signalling pathways. 相似文献
3.
Anaplasma phagocytophilum is an intracellular pathogen that infects and survives in neutrophilic granulocytes. The A. phagocytophilum genome encodes a type four secretion system (T4SS) that may facilitate intracellular survival by translocation of virulence factors, but to date, no such factors have been identified. Because T4SS-translocated proteins of several intracellular organisms undergo tyrosine phosphorylation by host cell kinases, we investigated tyrosine phosphorylation of A. phagocytophilum proteins during infection. Within minutes after incubation of A. phagocytophilum with HL-60 cells or PMN, a 190 kDa bacterial protein, AnkA, was increasingly tyrosine-phosphorylated. A. phagocytophilum binding to host cells without entry was sufficient for AnkA tyrosine phosphorylation. An in vitro Src kinase assay demonstrated that purified AnkA expressed in Escherichia coli was phosphorylated at tyrosines located at the C-terminal portion of AnkA. Similarly, AnkA expressed in COS-7 cells underwent tyrosine phosphorylation by Src at the C-terminus. The phosphorylated tyrosines were located in EPIYA motifs that display the consensus sequence for binding to SH2 domains. Immunoprecipitation studies demonstrated AnkA binding to the host cell phosphatase SHP-1 during early infection. Phosphorylation of the EPIYA motifs and the presence of the SH2 domains were necessary for AnkA-SHP-1 interaction. We conclude that AnkA is a translocated virulence factor that is tyrosine-phosphorylated by host cell kinases upon translocation into the host cell early during infection. A. phagocytophilum may manipulate the host cell through SHP-1 recruitment. 相似文献
4.
Roderick F Felsheim Michael J Herron Curtis M Nelson Nicole Y Burkhardt Anthony F Barbet Timothy J Kurtti Ulrike G Munderloh 《BMC biotechnology》2006,6(1):42-9
Background
Tick-borne pathogens cause emerging zoonoses, and include fastidious organisms such as Anaplasma phagocytophilum. Because of their obligate intracellular nature, methods for mutagenesis and transformation have not been available. 相似文献5.
ASC/PYCARD and caspase-1 regulate the IL-18/IFN-gamma axis during Anaplasma phagocytophilum infection 总被引:1,自引:0,他引:1
Pedra JH Sutterwala FS Sukumaran B Ogura Y Qian F Montgomery RR Flavell RA Fikrig E 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(7):4783-4791
Anaplasma phagocytophilum is an obligate intracellular pathogen that resides within neutrophils and can cause fever, pancytopenia, or death. IFN-gamma plays a critical role in the control of A. phagocytophilum; however, the mechanisms that regulate IFN-gamma production remain unclear. In this study, we demonstrate that apoptotic specklike protein with a caspase-activating recruiting domain (ASC)/PYCARD, a central adaptor molecule in the Nod-like receptor (NLR) pathway, regulates the IL-18/IFN-gamma axis during A. phagocytophilum infection through its effect on caspase-1. Caspase-1- and asc-null mice were more susceptible than control animals to A. phagocytophilum infection due to the absence of IL-18 secretion and reduced IFN-gamma levels in the peripheral blood. Moreover, caspase-1 and ASC deficiency reduced CD4+ T cell-mediated IFN-gamma after in vitro restimulation with A. phagocytophilum. The NLR family member IPAF/NLRC4, but not NALP3/NLRP3, was partially required for IFN-gamma production in response to A. phagocytophilum. Taken together, our data demonstrate that ASC and caspase-1 are critical for IFN-gamma-mediated control of A. phagocytophilum infection. 相似文献
6.
Erik G Granquist Kjetil Bårdsen Karin Bergström Snorre Stuen 《Acta veterinaria Scandinavica》2010,52(1):1-7
Background
Anaplasma phagocytophilum is the causative agent of tick-borne fever in ruminants and human granulocytotropic anaplasmosis (HGA). The bacterium is able to survive for several months in immune-competent sheep by modifying important cellular and humoral defence mechanisms. Little is known about how different strains of A. phagocytophilum propagate in their natural hosts during persistent infection.Methods
Two groups of five lambs were infected with each of two 16S rRNA gene variants of A. phagocytophilum, i.e. 16S variant 1 which is identical to GenBank no M73220 and 16S variant 2 which is identical to GenBank no AF336220, respectively. The lambs were infected intravenously and followed by blood sampling for six months. A. phagocytophilum infection in the peripheral blood was detected by absolute quantitative real-time PCR.Results
Both 16S rRNA gene variants of A. phagocytophilum established persistent infection for at least six months and showed cyclic bacteraemias, but variant 1 introduced more frequent periods of bacteraemia and higher number of organisms than 16S rRNA gene variant 2 in the peripheral blood.Conclusion
Organisms were available from blood more or less constantly during the persistent infection and there were individual differences in cyclic activity of A. phagocytophilum in the infected animals. Two 16S rRNA gene variants of A. phagocytophilum show differences in cyclic activity during persistent infection in lambs. 相似文献7.
Dumler JS 《FEMS immunology and medical microbiology》2012,64(1):13-20
Anaplasma phagocytophilum causes granulocytic anaplasmosis, an acute disease in humans that is also often subclinical. However, 36% are hospitalized, 7% need intensive care, and the case fatality rate is 0.6%. The biological basis for severe disease is not understood. Despite A.?phagocytophilum's mechanisms to subvert neutrophil antimicrobial responses, whether these mechanisms lead to disease is unclear. In animals, inflammatory lesions track with IFNγ and IL-10 expression and infection of Ifng(-/-) mice leads to increased pathogen load but inhibition of inflammation. Suppression of STAT signaling in horses impacts IL-10 and IFN-γ expression, and also suppresses disease severity. Similar inhibition of inflammation with infection of NKT-deficient mice suggests that innate immune responses are key for disease. With severe disease, tissues can demonstrate hemophagocytosis, and measures of macrophage activation/hemophagocytic syndromes (MAS/HPS) support the concept of human granulocytic anaplasmosis as an immunopathologic disease. MAS/HPS are related to defective cytotoxic lymphocytes that ordinarily diminish inflammation. Pilot studies in mice show cytotoxic lymphocyte activation with A.?phagocytophilum infection, yet suppression of cytotoxic responses from both NKT and CD8 cells, consistent with the development of MAS/HPS. Whether severity relates to microbial factors or genetically determined diversity in human immune and inflammatory response needs more investigation. 相似文献
8.
Lindsey J. Chisholm Devendra K. Agrawal Trevor J. Pearson John D. Edwards 《Molecular and cellular biochemistry》1996,159(1):33-38
Mediators including the neuropeptide endothelin-1 (ET-1), which are released in response to injury, modulate the expression of cell adhesion molecules on leukocytes and endothelial cells. The mechanisms underlying this process are not clear. In this study we investigated the effect of endothelin-1 on the expression of tyrosine phosphorylated proteins in human blood monocytes. Endothelin-1 caused an increase in tyrosine phosphorylated proteins in monocytes in a time-dependent and dose-dependent manner, the Mr 60, 80 and 110 kDa proteins being the most prominent. This effect was blocked by pre-incubating the monocytes with the selective tyrosine kinase inhibitors genistein or herbimycin A. Endothelin-1-induced upregulation of tyrosine phosphorylated proteins appears to be mediated by the ETAreceptor. Unlike our previously reported studies in endothelial cells, immunoprecipitation with anti-src or anti-JAK antibodies followed by immunoblotting with PY20 in human blood monocytes revealed that these proteins of Mr 60, 80 and 110 kDa were not related to src or JAK kinases. These findings suggest that ET-1 exerts its effect on monocytes by a pathway involving tyrosine kinases other than src or JAK kinases. 相似文献
9.
Kelher MR Ambruso DR Elzi DJ Anderson SM Paterson AJ Thurman GW Silliman CC 《Cell calcium》2003,34(6):445-455
Chemoattractant priming and activation of PMNs results in changes in cytosolic Ca2+ concentration, tyrosine kinase activity, and gene expression. We hypothesize that the initial signaling for the activation of a 105 kDa protein (Rel-1) requires Ca2+-dependent tyrosine phosphorylation. A rapid and time-dependent tyrosine phosphorylation of Rel-1 occurred following formyl-Met-Leu-Phe (fMLP) stimulation of human PMNs at concentrations that primed or activated the NADPH oxidase (10−9 to 10−6 M), becoming maximal after 30 s. Pretreatment with pertussis toxin (Ptx) or tyrosine kinase inhibitors abrogated this phosphorylation and inhibited fMLP activation of the oxidase. The fMLP concentrations employed also caused a rapid increase in cytosolic Ca2+ but chelation negated the effects, including the cytosolic Ca2+ flux, oxidase activation, and the tyrosine phosphorylation of Rel-1. Conversely, chelation of extracellular Ca2+ decreased the fMLP-mediated Ca2+ flux, had no affect on the oxidase, and augmented tyrosine phosphorylation of Rel-1. Phosphorylation of Rel-1 was inhibited when PMNs were preincubated with a p38 MAP kinase (MAPK) inhibitor (SB203580). In addition, fMLP elicited rapid activation of p38 MAPK which was abrogated by chelation of cytosolic Ca2+. Thus, fMLP concentrations that prime or activate the oxidase cause a rapid Ca2+-dependent tyrosine phosphorylation of Rel-1 involving p38 MAPK activation. 相似文献
10.
Bindu Sukumaran Sarah Fankhauser Pradeep D. Uchil Roie Levy Morven Graham Tonya Michelle Colpitts Erol Fikrig 《Cellular microbiology》2011,13(1):47-61
Anaplasma phagocytophilum causes human granulocytic anaplasmosis, one of the most common tick‐borne diseases in North America. This unusual obligate intracellular pathogen selectively persists within polymorphonuclear leucocytes. In this study, using the yeast surrogate model we identified an A. phagocytophilum virulence protein, AptA (A. phagocytophilum toxin A), that activates mammalian Erk1/2 mitogen‐activated protein kinase. This activation is important for A. phagocytophilum survival within human neutrophils. AptA interacts with the intermediate filament protein vimentin, which is essential for A. phagocytophilum‐induced Erk1/2 activation and infection. A. phagocytophilum infection reorganizes vimentin around the bacterial inclusion, thereby contributing to intracellular survival. These observations reveal a major role for the bacterial protein, AptA, and the host protein, vimentin, in the activation of Erk1/2 during A. phagocytophilum infection. 相似文献
11.
嗜吞噬细胞无形体致病机理的研究进展 总被引:1,自引:0,他引:1
嗜吞噬细胞无形体是一种侵染中性粒细胞专性细胞内寄生的革兰阴性菌,其所致疾病为人粒细胞无形体病(HGA),是一种经蜱传播的人兽共患病。它感染中性粒细胞后可诱发机体产生炎症免疫反应,最终导致免疫抑制及潜在疾病引起的各种继发感染和器官衰竭,甚至危及生命。近年来该病原体日益受到人们的关注和重视。就嗜吞噬细胞无形体致病机理研究的进展进行了综述。 相似文献
12.
13.
T-cell antigen receptor ligation induces tyrosine phosphorylation of phospholipase C-gamma 1 总被引:31,自引:0,他引:31
Ligand-mediated perturbation of the T-cell antigen receptor (TCR) triggers a rapid increase in phosphoinositide-specific phospholipase C (PLC) activity in resting T-cells. Although the mechanism by which TCR ligation regulates PLC activity is unknown, recent studies suggest that coupling of this receptor complex to PLC activity is dependent on an intermediate protein tyrosine phosphorylation event(s). In the present study, we demonstrate that antibody-mediated TCR cross-linkage results in the tyrosine phosphorylation of PLC-gamma 1. Stimulation of the TCR for 30 s induced a 4-5-fold increase in the level of PLC activity recovered in anti-phosphotyrosine (Tyr(P)) antibody immunoprecipitates from stimulated Jurkat cells. The appearance of PLC activity in the immunoprecipitates preceded the onset of phosphoinositide hydrolysis in vivo, which began 30-60 s after TCR ligation. Furthermore, the TCR-mediated increase in anti-Tyr(P) antibody-bound PLC activity was inhibited by staurosporine at drug concentrations identical with those required for in vivo inhibition of TCR-dependent phosphoinositide breakdown. Immunoblot analyses demonstrated that TCR ligation dramatically increased the level of tyrosine-phosphorylated PLC-gamma 1 present in anti-Tyr(P) antibody immunoprecipitates from stimulated Jurkat cells. These results strongly suggest that the TCR complex expressed by Jurkat cells is functionally coupled to the phosphoinositide-dependent signaling pathway through the tyrosine phosphorylation of PLC-gamma 1. 相似文献
14.
Takami M Herrera R Petruzzelli L 《American journal of physiology. Cell physiology》2001,280(5):C1045-C1056
Activated neutrophils display an array of physiological responses, including initiation of the oxidative burst, phagocytosis, and cell migration, that are associated with cellular adhesion. Under conditions that lead to cellular adhesion, we observed rapid tyrosine phosphorylation of an intracellular protein with an approximate relative molecular mass of 92 kDa (p92). Phosphorylation of p92 was inducible when Mac-1 was activated by phorbol 12-myristate 13-acetate, the beta(2)-specific activating antibody CBR LFA-1/2, or interleukin-8 (77 amino acids). In addition, tyrosine phosphorylation of p92 was dependent on engagement of Mac-1 with ligand. Several observations suggest that this event may be an important step in the signaling pathway initiated by Mac-1 binding. p92 phosphorylation was specifically blocked with antibodies to CD11b, the alpha-subunit of Mac-1, and was rapidly reversible on disengagement of the integrin ligand interaction. Integrin-stimulated phosphorylation of p92 created binding sites that were recognized in vitro by the SH2 domains of c-CrkII and Src. Our observations suggest that neutrophil adhesion mediated through the binding of the beta(2)-integrin Mac-1 initiates a signaling cascade that involves the activation of protein tyrosine kinases and leads to the regulation of protein-protein interactions via SH2 domains, a key process shared with growth factor signaling pathways. 相似文献
15.
Intracellular cholesterol amounts, distribution and traffic are tightly regulated to maintain the healthy eukaryotic cell function. However, how intracellular pathogens that require cholesterol, interact with the host cholesterol homeostasis and traffic is not well understood. Anaplasma phagocytophilum is an obligatory intracellular and cholesterol-robbing bacterium, which causes human granulocytic anaplasmosis. Here we found that a subset of cholesterol-binding membrane protein, Niemann-Pick type C1 (NPC1)-bearing vesicles devoid of lysosomal markers were upregulated in HL-60 cells infected with A. phagocytophilum, and trafficked to live bacterial inclusions. The NPC1 localization to A. phagocytophilum inclusions was abolished by low-density lipoprotein (LDL)-derived cholesterol traffic inhibitor U18666A. Studies using NPC1 siRNA and the cell line with cholesterol traffic defect demonstrated that the NPC1 function is required for bacterial cholesterol acquisition and infection. Furthermore, trans-Golgi network-specific soluble N-ethylmaleimide-sensitive factor attachment protein receptors, vesicle-associated membrane protein (VAMP4) and syntaxin 16, which are associated with NPC1 and LDL-derived cholesterol vesicular transport were recruited to A. phagocytophilum inclusions, and VAMP4 was required for bacteria infection. Taken together, A. phagocytophilum is the first example of a pathogen that subverts the NPC1 pathway of intracellular cholesterol transport and homeostasis for bacterial inclusion membrane biogenesis and cholesterol capture. 相似文献
16.
Subversion of cellular autophagy by Anaplasma phagocytophilum 总被引:1,自引:0,他引:1
Anaplasma phagocytophilum , the causative agent of human granulocytic anaplasmosis, is an obligatory intracellular pathogen. After entry into host cells, the bacterium is diverted from the endosomal pathway and replicates in a membrane-bound compartment devoid of endosomal or lysosomal markers. Here, we show that several hallmarks of early autophagosomes can be identified in A. phagocytophilum replicative inclusions, including a double-lipid bilayer membrane and colocalization with GFP-tagged LC3 and Beclin 1, the human homologues of Saccharomyces cerevisiae autophagy-related proteins Atg8 and Atg6 respectively. While the membrane-associated form of LC3, LC3-II, increased during A. phagocytophilum infection, A. phagocytophilum -containing inclusions enveloped with punctate GFP-LC3 did not colocalize with a lysosomal marker. Stimulation of autophagy by rapamycin favoured A. phagocytophilum infection. Inhibition of the autophagosomal pathway by 3-methyladenine did not inhibit A. phagocytophilum internalization, but reversibly arrested its growth. Although autophagy is considered part of the innate immune system that clears a variety of intracellular pathogens, our study implies that A. phagocytophilum subverts this system to establish itself in an early autophagosome-like compartment segregated from lysosomes to facilitate its proliferation. 相似文献
17.
Anaplasma phagocytophilum is an aetiological agent of human granulocytic ehrlichiosis, an emerging tick‐borne zoonosis in the United States and Europe. This obligate intracellular bacterium is unique in that it colonizes polymorphonuclear leucocytes (neutrophils). Neutrophils are key players in innate immunity. These short‐lived phagocytes ingest invading microorganisms and destroy them by various means, which include fusing the bacteria‐containing phagosome with acidic lysosomes as well as directing toxic oxidative and proteolytic compounds into the phagosomal lumen. Its tropism for neutrophils indicates that A. phagocytophilum uses strategies for evading and/or neutralizing these microbicidal activities. This review focuses on some of the mechanisms that A. phagocytophilum uses for neutrophil adhesion, surviving within the hostile intracellular environment of its host neutrophil and for effectively disseminating to naïve host cells. 相似文献
18.
Anaplasma phagocytophilum is an obligate intracellular bacterium that infects neutrophils to cause granulocytic anaplasmosis in humans and mammals. P-selectin glycoprotein ligand-1 (PSGL-1) and the tetrasaccharide sialyl Lewis x (sLex ), which caps the PSGL-1 N-terminus, are confirmed A. phagocytophilum receptors. A. phagocytophilum is capable of sLex -modified PSGL-1-dependent and -independent infection. PSGL-1 N-terminus-mediated entry is dependent on spleen tyrosine kinase (Syk). Here, we determined that PSGL-1-independent entry does not alter bacterial replication and investigated whether it involves Syk using NCH-1A2, an enriched subpopulation of A. phagocytophilum NCH-1 obtained through cultivation in a sLex -deficient HL-60 cell line, HL-60 A2. Pharmacological inhibition of Syk nearly abolishes NCH-1 infection, but does not alter NCH-1A2 invasion and only marginally reduces NCH-1A2 propagation. This phenomenon was confirmed by a competitive infection assay using PSGL-1-dependent and -independent A. phagocytophilum organisms transformed to express mCherry or green fluorescent protein respectively. We also assayed for delivery and tyrosine phosphorylation of the A. phagocytophilum effector, AnkA, following NCH-1or NCH-1A2 incubation with HL-60 or HL-60 A2 cells in the presence of PSGL-1 blocking antibody. PSGL-1 N-terminus recognition promotes optimal AnkA delivery while binding to sLex or the unknown receptor is comparably less important for this process. 相似文献
19.
Joao H. F. Pedra Sukanya Narasimhan Dubravko Rendić Kathleen DePonte Lesley Bell‐Sakyi Iain B. H. Wilson Erol Fikrig 《Cellular microbiology》2010,12(9):1222-1234
Fucosylated structures participate in a wide range of pathological processes in eukaryotes and prokaryotes. The impact of fucose on microbial pathogenesis, however, has been less appreciated in arthropods of medical relevance. Thus, we used the tick‐borne bacterium Anaplasma phagocytophilum– the agent of human granulocytic anaplasmosis to understand these processes. Here we show that A. phagocytophilum uses α1,3‐fucose to colonize ticks. We demonstrate that A. phagocytophilum modulates the expression of α1,3‐fucosyltransferases and gene silencing significantly reduces colonization of tick cells. Acquisition but not transmission of A. phagocytophilum was affected when α1,3‐fucosyltransferases were silenced during tick feeding. Our results uncover a novel mechanism of pathogen colonization in arthropods. Decoding mechanisms of pathogen invasion in ticks might expedite the development of new strategies to interfere with the life cycle of A. phagocytophilum. 相似文献