首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rat epididymal protein DE associates with the sperm surface during epididymal maturation and is a candidate molecule for mediating gamete membrane fusion in the rat. Here, we provide evidence supporting a role for DE in mouse sperm-egg fusion. Western blot studies indicated that the antibody against rat protein DE can recognize the mouse homologue in both epididymal tissue and sperm extracts. Indirect immunofluorescence studies using this antibody localized the protein on the dorsal region of the acrosome. Experiments in which zona-free mouse eggs were coincubated with mouse capacitated sperm in the presence of DE showed a significant and concentration-dependent inhibition in the percentage of penetrated eggs, with no effect on either the percentage of oocytes with bound sperm or the number of sperm bound per egg. Immunofluorescence experiments revealed specific DE-binding sites on the fusogenic region of mouse eggs. Because mouse sperm can penetrate zona-free rat eggs, the participation of DE in this interaction was also investigated. The presence of the protein during gamete coincubation produced a significant reduction in the percentage of penetrated eggs, without affecting the binding of sperm to the oolemma. These observations support the involvement of DE in an event subsequent to sperm-egg binding and leading to fusion in both homologous (mouse-mouse) and heterologous (mouse-rat) sperm-egg interaction. The lack of disintegrin domains in DE indicates that the protein interacts with its egg-binding sites through a novel mechanism that does not involve the reported disintegrin-integrin interaction.  相似文献   

2.
Carnitine: an osmolyte that plays a metabolic role   总被引:3,自引:0,他引:3  
Carnitine, gamma-trimethyl-beta-hydroxybutyrobetaine, is a small molecule widely present in all cells from prokaryotic to eukaryotic ones. It is the sole source of carbon and nitrogen in some bacteria; it serves as osmoprotectant in others. It is a carrier of acyl moieties, and exclusively of long-chain fatty acids for mitochondrial beta-oxidation in mammals. The conspicuously similar composition of the intracellular milieu among widely different species in relation to organic osmolyte systems involves the methylamine family to which carnitine belongs. This prompted us to examine the osmolytic properties of carnitine in an attempt to clarify the metabolic functions carnitine has acquired during evolution. An understanding of the metabolic functions of this organic compatible solute impinge on research involving this compound.  相似文献   

3.
It has been proposed that NAD depletion resulting from excessive activation of poly(ADP-ribose) polymerase is responsible for secondary energy failure after transient cerebral ischemia. However, this hypothesis has never been verified by measurement of ATP and NAD levels in the same tissue sample. In this study, we therefore investigated the effect of transient focal cerebral ischemia on the temporal profiles of changes in the levels of energy metabolites and NAD. Ischemia was induced in mice by occluding the left middle cerebral artery using the intraluminal filament technique. Animals were subjected to 1-h ischemia, followed by 0, 1, 3, 6, or 24 h of reperfusion. During ischemia, ATP levels, total adenylate pool, and adenylate energy charge dropped to approximately 20, 50, and 40% of control, respectively, whereas NAD levels remained close to control. Energy state recovered transiently, peaking at 3 h of recovery (ATP levels and total adenylate pool recovered to 78 and 81% of control). In animals subjected to reperfusion of varying duration, the extent of ATP depletion was clearly more pronounced than that of NAD. The results imply that depletion of NAD pools did not play a major role in secondary disturbances of energy-producing metabolism after transient focal cerebral ischemia. Changes in ATP levels were closely related to changes in total adenylate pool (p<0.001). The high energy charge after 6 h of reperfusion (0.90 versus a control value of 0.93) and the close relationship between the decline of ATP and total adenylate pool suggest that degradation or a washout of adenylates (owing to leaky membranes) rather than a mismatch between energy production and consumption is the main causative factor contributing to the secondary energy failure observed after prolonged recovery.  相似文献   

4.
Studies reported here were designed to examine the hypothesis that covalent binding of reactive intermediates to macromolecules of the conceptus represents a major mechanism for the embryotoxicity of niridazole (NDZ). The roles of embryonic thiol content and oxygenation on: 1) malformation incidence; 2) reductive metabolism; and 3) covalent binding to embryonic macromolecules of metabolites resulting from reductive biotransformation of NDZ were studied. Results were compared with those from studies with the nondysmorphogenic analog of NDZ, 4'-methylniridazole (MNDZ). Day 10 rat embryos were pretreated for 5 hours in vitro with either L-buthionine-S, R-sulfoximine (BSO) or N-acetylcysteine (NAC) to modulate their glutathione (GSH) content. BSO reduced GSH levels, but NAC was ineffective. Following pretreatment, embryos were cultured for an additional 15 hours in the presence of [14C]NDZ or [14C]MNDZ with an initial oxygen concentration of 5%. At the end of the culture period (day 11, AM), those embryos with active heartbeat and vitelline circulation were examined for asymmetric malformations. Drug metabolites were subjected to multiple extractions from the culture medium and subjected to quantitative high-performance liquid chromatography (HPLC) analysis. Homogenates of the embryos were extracted with trichloroacetic acid (TCA) to estimate the covalent binding of radiolabeled parent compound/metabolites. Autoradiographic analyses were performed on other embryos. BSO pretreatment, which reduces embryonic GSH tissue levels, dramatically increased both the conversion of NDZ to 1-thiocarbamoyl-2-imidazolidinone (TCI) (generated via reductive metabolism of NDZ) and covalently bound label but failed to increase embryotoxicity. NAC, by contrast, did not significantly affect embryonic GSH levels, TCI generation, or covalent binding. Because both rates of metabolism of NDZ to TCI and covalent binding could vary independently of malformation incidence, we concluded that they do not represent critical mechanistic factors for the embryotoxicity of NDZ and related nitroheterocycles.  相似文献   

5.
The Arg-Gly-Asp (RGD) sequence is known to play a role in many recognition systems involved in cell-to-cell and cell-to-matrix adhesion. In our experiments we demonstrated that an RGD-dependent recognition is involved in sperm-oolemmal adhesion and egg penetration. Following coincubation of RGD-containing oligopeptides in a heterologous system (human sperm and zona-free hamster eggs), a significant decrease in the number of oolemma-adherent sperm was noted at 15 microM RGDV (Arg-Gly-Asp-Val) and at 5 microM GRGDTP (Gly-Arg-Gly-Asp-Thr-Pro), and fertilization was completely inhibited at 250 microM RGDV and 30 microM GRGDTP. In a homologous system (hamster sperm and zona-free hamster eggs), a concentration-dependent decrease in oolemmal adhesion and egg penetration was also noted, with complete inhibition of fertilization at 200 microM GRGDTP. The specificity of the receptor was confirmed by the fact that small changes in aminoacid composition impaired the peptide's effectiveness and that peptide-dependent inhibition of fertilization was partially reversible in competition studies. The presence of a molecule on the oolemma capable of binding the RGD sequence was demonstrated by using immunobeads coupled with an RGD-containing hexapeptide (GRGDTP), which rosetted over the egg surface in a manner reversible by the addition of free GRGDTP in the medium.  相似文献   

6.
When naive CD4 T cells are primed, they rapidly differentiate into polarized Th1 and/or Th2 phenotypes. A major factor in producing such polarization is the early production of cytokines (IL-12 and IFN-gamma in the case of Th1 cells and IL-4 in the case of Th2 cells). One issue that remains unresolved is the source of the early IFN-gamma that synergizes with IL-12 to fully polarize CD4 T cells into Th1 cells. We have examined this question by injecting mice with anti-CD3 and examining cells from normal and various MHC-knockout mice. We found that IFN-gamma is induced rapidly in a small subset of CD8 T cells. This subset is absent in mice that lack beta2-microglobulin, but not in K(b)D(b)-double-knockout mice, indicating that these CD8 T cells are dependent on nonclassical MHC class Ib molecules. The early burst of IFN-gamma polarizes CD4 T cells toward Th1 cells, in part by stimulating the release of IL-12 from APC. We also use TAP- and CD1-knockout mice to show that such cells are not CD1-restricted NK T cells, nor are they dependent on TAP-1 transport for surface expression of the relevant MHC class Ib molecule. Therefore, they arise on MHC class Ib molecules that do not depend on TAP-1 transporters.  相似文献   

7.
We have identified and characterized a gene, Mospd3 on mouse chromosome 5 using gene trapping in ES cells. MOSPD3 is part of a family of proteins, including MOSPD1, which is defined by the presence of a major sperm protein (MSP) domain and two transmembrane domains. Interestingly Mospd3 is mammalian specific and highly conserved between mouse and man. Insertion of the gene trap vector at the Mospd3 locus is mutagenic and breeding to homozygosity results in a characteristic right ventricle defect and neonatal lethality in 50% of mice. The phenotypic defect is dependent on the genetic background, indicating the presence of genetic modifier loci. We speculate that the further characterization of Mospd3 will shed light on the complex genetic interactions involved in cardiac development and disease.  相似文献   

8.
Chloroplasts of guard cells and coleoptiles have been implicated in the sensory transduction of blue light. The present study was aimed at establishing whether the chloroplast of the hypocotyl from Arabidopsis, another blue light-responding organ, has similar characteristics to that of sensory-transducing guard cell and coleoptile chloroplasts. Results showed that the phototropic curvature and arch length induced by blue light in Arabidopsis seedlings matched the distribution of mature chloroplasts in the bending hypocotyl. The bending arch consistently included the region of the hypocotyl containing mature chloroplasts, and never extended beyond that region. Manipulation of the extent of greening of dark-grown hypocotyls by varying red light pretreatments elicited blue light-stimulated curvatures and arch lengths that depended on the duration of the red light pretreatment and on the distribution of mature chloroplasts in the hypocotyl. Albino psd2 mutants of Arabidopsis, which lack mature chloroplasts, are devoid of phototropic sensitivity under conditions in which wild-type seedlings show large curvatures. The star mutant of Arabidopsis has a delayed greening and a delayed phototropic response as compared with wild type. Measurements of photosynthetic oxygen evolution and carbon fixation, dark respiration, and light-dependent zeaxanthin formation in the hypocotyl showed features similar to those of guard cells and coleoptiles, and distinctly different from those of mesophyll tissue. These results indicate that the hypocotyl chloroplast has characteristics similar to those associated with guard cell and coleoptile chloroplasts, and that phototropic bending of Arabidopsis hypocotyls appears to require mature chloroplasts.  相似文献   

9.
The present study explores the role of myoglobin (Mb) in retarding the development of anoxia in the perfused working rat heart. We examine this phenomenon by analyzing the behavior and the kinetics of Mb oxygenation and cytochrome aa3 (cytaa3) redoxation. Absorbance changes, measured at wavelength pairs specific to Mb and cytaa3, show parallelism between the Mb oxygenation status and the redox states of cytaa3. Induction of anoxia leads to early and accelerated Mb deoxygenation whereas cytaa3 reduction marks a slight delay and its rate is twice slower than that of Mb. Then, when Mb is desatured above 50%, the cytaa3 reduction becomes accelerated. With the reoxygenated perfusion following the anoxia, the rate of Mb reoxygenation is twice faster than that of the cytaa3 reoxidation. When the oxygen-binding function of Mb, in situ in the heart, is abolished by treatment with sodium nitrite (NaNO2), the redox kinetics of cytaa3 show significant perturbations. Induction of anoxia leads to a precocious and accelerated reduction of cytaa3, compared to the same anoxic heart before the treatment. At reoxygenation, the reoxidation rate of cytaa3 decreases significantly, compared to that before the treatment. Similarly, in the nitrite treated heart, the phosphocreatine (PCr) level decreases to 60% of the control, whereas the inorganic phosphate (Pi) level increases to 300%. ATP concentration, however, remains constant. We conclude from these results that Mb may support mitochondrial respiration at the critical levels of the myocardial O2 supply.  相似文献   

10.
11.
Beyond their essential function as the building blocks of proteins, amino acids contribute to many aspects of plant biochemistry and physiology. Despite this, there are relatively large gaps in our understanding of the biochemical pathways and regulation of amino acid synthesis in plants. A rapid (1.5 min versus 20-90 min for standard methods) HPLC-MS/MS assay for separating 19 amino acids was developed for quantifying levels of free amino acids in plant tissue. This assay was used to determine the free amino acid content in the seeds of 10,000 randomly mutagenized Arabidopsis lines, and 322 Arabidopsis lines with increased levels of one or more amino acids were identified. The heritability of the mutant phenotype was confirmed for 43 lines with increased seed levels of the aspartate-derived amino acids Ile, Lys, Thr, or Met. Genetic mapping and DNA sequencing identified a mutation in an Arabidopsis threonine aldolase (AT1G08630, EC 4.1.2.5) as the cause of increased seed Thr levels in one mutant. The assay that was developed for this project has broad applicability to Arabidopsis and other plant species.  相似文献   

12.
During gastrulation in the mouse, the pluripotent embryonic ectoderm cells form the three primary germ layers, ectoderm, mesoderm and endoderm. Little is known about the mechanisms responsible for these processes, but evidence from previous studies in amphibians, as well as expression studies in mammals, suggest that signalling molecules of the Fibroblast Growth Factor (FGF) family may play a role in gastrulation. To determine whether this might be the case for FGF-5 in the mouse embryo, we carried out RNA in situ hybridization studies to determine when and where in the early postimplantation embryo the Fgf-5 gene is expressed. We chose to study this particular member of the FGF gene family because we had previously observed that its pattern of expression in cultures of teratocarcinoma cell aggregates is consistent with the proposal that Fgf-5 plays a role in gastrulation in vivo. The results reported here show that Fgf-5 expression increases dramatically in the pluripotent embryonic ectoderm just prior to gastrulation, is restricted to the cells forming the three primary germ layers during gastrulation, and is not detectable in any cells in the embryo once formation of the primary germ layers is virtually complete. Based on this provocative expression pattern and in light of what is known about the functions in vitro of other members of the FGF family, we hypothesize that in the mouse embryo Fgf-5 functions in an autocrine manner to stimulate the mobility of the cells that contribute to the embryonic germ layers or to render them competent to respond to other inductive or positional signals.  相似文献   

13.
The specificity of SEL1L expression and promoter activity for the pancreatic cell population, its chromosomal location, as well as its similarities to the yeast Hrd3p protein, a component of HRD complex which is responsible for endoplasmic reticulum (ER)-associated degradation of numerous ER-resident proteins, prompted us to study its effects on beta cell function. In this study we show that lowering SEL1L expression, by using the short interfering RNAs technology as well as antisense transfection, resulted in severe perturbation of betaTC-3 growth and metabolic activity. We hypothesize that SEL1L may exert its function by protecting the cells from ER stress and could counteract immune responses.  相似文献   

14.
In addition to the Pho regulon, phosphate starvation also stimulates the accumulation of RpoS. Several deletion mutations within the pstSCAB-phoU operon were tested for the accumulation of RpoS during exponential growth. Our data suggest that the processed 3' end of the pstA message stimulates translation of rpoS.  相似文献   

15.
The possible role of protein kinase C (PKC) in the cyclic AMP-dependent mechanism of action of corticotropin-releasing factor (CRF) on proopiomelanocortin cells of anterior and intermediate pituitary glands was examined after pretreatment of cells in culture with the PKC inhibitor retinal or the phorbol ester PMA, which depletes cell stores of the kinase. We found that these drugs not only abolished ACTH response to PMA and vasopressin, which both activate PKC, but unexpectably also dampened by 80-90% the stimulatory effect of CRF. Cell treatment with retinal failed to prevent CRF-induced accumulation of cyclic AMP. Retinal and PMA pretreatments of intermediate pituitary cells likewise inhibited alpha-MSH secretion stimulated by CRF. These data provide evidence to suggest that the mechanism of action of CRF on pituitary cells involves both cyclic AMP and PKC messenger systems.  相似文献   

16.
17.
It was previously demonstrated that the mig-14 gene of Salmonella enterica serovar Typhimurium is necessary for bacterial proliferation in the liver and spleen of mice following intragastric inoculation and that mig-14 expression, which is induced within macrophages, is under the control of the global regulator PhoP. Here we demonstrate that the mig-14 promoter is induced by growth in minimal medium containing low magnesium or acidic pH, consistent with regulation by PhoP. In addition, mig-14 is strongly induced by polymyxin B, protamine, and the mammalian antimicrobial peptide protegrin-1. While phoP is necessary for the induction of mig-14 in response to protamine and protegrin, mig-14 is still induced by polymyxin B in a phoP background. We also demonstrate that mig-14 is necessary for resistance of S. enterica serovar Typhimurium to both polymyxin B and protegrin-1. Gram-negative resistance to a variety of antimicrobial peptides has been correlated with modifications of lipopolysaccharide structure. However, we show that mig-14 is not required for one of these modifications, the addition of 4-aminoarabinose to lipid A. Additionally, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of wild-type and mig-14 lipopolysaccharide also shows no detectable differences between the two strains. Therefore, mig-14 contributes to Salmonella resistance to antimicrobial peptides by a mechanism that is not yet fully understood.  相似文献   

18.
Mitogen-activated protein (MAP) kinase pathways are three-kinase modules that mediate diverse cellular processes and have been highly conserved among eukaryotes. By using a functional complementation screen in yeast, we have identified a human MAP kinase kinase kinase (MAPKKK) that shares homology with members of the mixed lineage kinase (MLK) family and therefore was called MRK (MLK-related kinase). We report the structure of the MRK gene, from which are generated two splice forms of MRK, MRK-alpha and MRK-beta, encoding for proteins of 800 and 456 amino acids, respectively. By using a combination of solid phase protein kinase assays, transient transfections in cells, and analysis of endogenous proteins in stably transfected Madin-Darby canine kidney cells, we found that MRK-beta preferentially activates ERK6/p38gamma via MKK3/MKK6 and JNK through MKK4/MKK7. We also show that expression of wild type MRK increases the cell population in the G(2)/M phase of the cell cycle, whereas dominant negative MRK attenuates the G(2) arrest caused by gamma-radiation. In addition, exposure of cells to gamma-radiation induces MRK activity. These data suggest that MRK may mediate gamma-radiation signaling leading to cell cycle arrest and that MRK activity is necessary for the cell cycle checkpoint regulation in cells.  相似文献   

19.
Borrelia burgdorferi is an obligate parasite with a limited genome that severely narrows its metabolic and biosynthetic capabilities. Thus survival of this spirochaete in an arthropod vector and mammalian host requires that it can scavenge amino acids, fatty acids and nucleosides from a blood meal or various host tissues. Additionally, the utilization of ribonucleotides for DNA synthesis is further complicated by the lack of a ribonucleotide reductase for the conversion of nucleoside-5'-diphosphates to deoxynucleosides-5'-diphosphates. The data presented here demonstrate that B. burgdorferi must rely on host-derived sources of purine bases, deoxypurines and deoxypyrimidines for the synthesis of DNA. However, if deoxyguanosine (dGuo) is limited in host tissue, the enzymatic activities of a 2'-deoxyribosyltransferase (DRTase, encoded by bb0426 ), IMP dehydrogenase (GuaB) and GMP synthase (GuaA) catalyse the multistep conversion of hypoxanthine (Hyp) to dGMP for DNA synthesis. This pathway provides additional biochemical flexibility for B. burgdorferi when it colonizes and infects different host tissues.  相似文献   

20.
TdT is a nuclear enzyme that catalyzes the addition of random nucleotides at Ig and TCR V(D)J junctions. In this paper we analyze human IgH rearrangements generated from transgenic minilocus mice in the presence or absence of TdT. In the absence of TdT, the pseudo-VH gene segment present in the minilocus is rearranged dramatically more frequently. Additionally, JH6 gene segment utilization is increased as well as the number of rearrangements involving only VH and JH gene segments. Thus, the recombination of IgH gene segments that are flanked by 23-nt spacer recombination signal sequences may be influenced by TdT expression. Extensive analysis indicates that these changes are independent of antigenic selection and cannot be explained by homology-mediated recombination. Thus, the role played by TdT may be more extensive than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号