首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Cultured human articular and costal chondrocytes were used as a model system to examine the effects of recombinant gamma-interferon (IFN-gamma) on synthesis of procollagens, the steady state levels of types I and II procollagen mRNAs, and the expression of major histocompatibility complex class II (Ia-like) antigens on the cell surface. Adult articular chondrocytes synthesized mainly type II collagen during weeks 1-3 of primary culture, whereas types I and III collagens were also produced after longer incubation and predominated after the first subculture. Juvenile costal chondrocytes synthesized no detectable alpha 2(I) collagen chains until after week 1 of primary culture; type II collagen was the predominant species even after weeks of culture. The relative amounts of types I and II collagens synthesized were reflected in the levels of alpha 1(I), alpha 2(I), and alpha 1(II) procollagen mRNAs. In articular chondrocytes, the levels of alpha 1(I) procollagen mRNA were disproportionately low (alpha 1(I)/alpha 2(I) less than 1.0) compared with costal chondrocytes (alpha 1 (I)/alpha 2(I) approximately 2). Recombinant IFN-gamma (0.1-100 units/ml) inhibited synthesis of type II as well as types I and III collagens associated with suppression of the levels of alpha 1(I), alpha 2(I), and alpha 1(II) procollagen mRNAs. IFN-gamma suppressed the levels of alpha 1(I) and alpha 1(II) procollagen mRNAs to a greater extent than alpha 2(I) procollagen mRNA in articular but not in costal chondrocytes. Human leukocyte interferon (IFN-alpha) at 1000 units/ml suppressed collagen synthesis and procollagen mRNA levels to a similar extent as IFN-gamma at 1.0 unit/ml. In addition, IFN-gamma but not IFN-alpha induced the expression of HLA-DR antigens on intact cells. The lymphokine IFN-gamma could, therefore, have a role in suppressing cartilage matrix synthesis in vivo under conditions in which the chondrocytes are in proximity to T lymphocytes and their products.  相似文献   

2.
A quantitative determination of collagen expression was carried out in cultured chondrocytes obtained from a tissue that undergoes endochondral bone replacement (ventral vertebra) and one that does not (caudal sterna). The "short chain" collagen, type X is only expressed in the former while the other "short chain" collagen type IX, was primarily expressed in the latter. These two tissues also differ in that vertebral chondrocytes express moderate levels of both type I procollagen mRNAs which were translated into full length procollagen chains both in vivo and in vitro, while caudal sternal chondrocytes did not. The percent of collagen synthesis was about 50% in both cell types, but sternal cells expressed twice as much collagen as vertebral cells even though type II procollagen was more efficiently processed to alpha-chains in vertebral chondrocytes than in sternal chondrocytes. The number of type II procollagen mRNA molecules/cell was found to be about 2300 in vertebral chondrocytes and about 8000 in sternal cells, in good agreement with the results reported by Kravis and Upholt (Kravis, D., and Upholt, W. B. (1985) Dev. Biol. 108, 164-172). There were about 630 copies of type I procollagen mRNAs with an alpha 1/alpha 2 ratio of 1.6 in vertebral chondrocytes compared with 5100 copies and an alpha 1/alpha 2 ratio of 2.2 in osteoblasts, and less than 40 copies in sternal cells. Since the rate of type I collagen chain synthesis was 50 times greater in osteoblasts than in vertebral cells, type I procollagen mRNAs were about six times less efficiently translated in vertebral cells than in osteoblasts. The type I mRNAs in vertebral chondrocytes were polyadenylated and had 5' ends that were identical in osteoblasts, fibroblasts, and myoblasts. Moreover, type I mRNAs isolated from vertebral chondrocytes were translated into full length preprocollagen chains in vitro in rabbit reticulocyte lysates. Thus, chondrocytes isolated from cartilage tissues with different developmental fates differed quantitatively and qualitatively in total collagen synthesis, procollagen processing, and distribution of collagen types.  相似文献   

3.
4.
5.
Rats were administered CCl4, a well-defined nephrotoxin, for 20 weeks to produce glomerular sclerosis. Tubular degeneration and necrosis with interstitial fibrosis was clearly evident by histological examination. Kidneys were homogenized in phosphate-buffered saline and a collagen synthesis-stimulating factor was isolated by Sephadex G-50 gel filtration. The 5 kDa component stimulated both type I and type IV procollagen synthesis by mesangial cells and type I procollagen synthesis by rat skin fibroblasts. In each cell type, 2-6-fold increases in procollagen protein production or cell proliferation was noted. The steady-state levels of mRNA encoding for procollagen alpha 1(I) and procollagen alpha 1(IV) chains in mesangial cells were determined by by hybridization to their corresponding cDNA clones. The type I procollagen mRNA was elevated 1.4-fold compared to a 1.6-fold increase in mRNA encoding for type IV procollagen. The similar properties and chemical characteristics of this fibrogenic factor with a factor from fibrotic liver suggests they are the same and that a common endogenous collagen synthesis stimulator may be present in fibrosing organs, thus providing a driving force for collagen over-production.  相似文献   

6.
Hsp47 is a heat stress protein that interacts with procollagen in the lumen of the endoplasmic reticulum, which is vital for collagen elaboration and embryonic viability. The precise actions of Hsp47 remain unclear, however. To evaluate the effects of Hsp47 on collagen production we infected human vascular smooth muscle cells (SMCs) with a retrovirus containing Hsp47 cDNA. SMCs overexpressing Hsp47 secreted type I procollagen faster than SMCs transduced with empty vector, yielding a greater accumulation of pro alpha1(I) collagen in the extracellular milieu. Interestingly, the amount of intracellular pro alpha1(I) collagen was also increased. This was associated with an unexpected increase in the rate of pro alpha1(I) collagen chain synthesis and 2.5-fold increase in pro alpha1(I) collagen mRNA expression, without a change in fibronectin expression. This amplification of procollagen expression, synthesis, and secretion by Hsp47 imparted SMCs with an enhanced capacity to elaborate a fibrillar collagen network. The effects of Hsp47 were qualitatively distinct from, and independent of, those of ascorbate and the combination of both factors yielded an even more intricate fibril network. Given the in vitro impact of altered Hsp47 expression on procollagen production, we sought evidence for interindividual variability in Hsp47 expression and identified a common, single nucleotide polymorphism in the Hsp47 gene promoter among African Americans that significantly reduced promoter activity. Together, these findings indicate a novel means by which type I collagen production is regulated by the endoplasmic reticulum constituent, Hsp47, and suggest a potential basis for inherent differences in collagen production within the population.  相似文献   

7.
8.
Activation of type I collagen genes in cultured scleroderma fibroblasts   总被引:2,自引:0,他引:2  
Fibroblasts cultured from affected skin areas of five patients with cutaneous scleroderma were found to produce increased amounts of collagen when compared with nonaffected control cells. Total RNA was isolated from the cultures and analyzed for its level of pro alpha 1 (I)collagen mRNA by hybridization of RNA blots with a cloned cDNA probe. The levels of pro alpha 1 (I)collagen mRNAs relative to total RNA were two- to sixfold higher in the samples from affected cells, accounting for the increased synthesis of type I collagen. Cytoplasmic dot hybridizations were performed to measure the cellular content of pro alpha 1 (I)collagen mRNA: up to ninefold increases in the level of this mRNA per cell were found. Upon subculturing, scleroderma fibroblasts were found to reduce gradually the increased synthesis of collagen to the level of nonaffected controls by the tenth passage. The levels of type I collagen mRNAs were also reduced, but more slowly. The results suggest that in scleroderma fibroblasts the genes for type I collagen are activated at procollagen mRNA level or that they are more stable and that the activating factors are lost during prolonged cell culture because cells from affected areas lose their activated state.  相似文献   

9.
The effect of porcine relaxin on rabbit articular and growth plate chondrocytes in primary culture was investigated by measurement of total collagen production and analysis of the phenotypes of newly synthesized collagen chains. A 24-h treatment of monolayer articular and multilayer growth plate chondrocytes with 2 micrograms per ml relaxin had no effect on total DNA and did not significantly modify the amount of [3H]proline-labelled collagen chains secreted by the cells. However, polyacrylamide gel electrophoresis demonstrated relevant modifications in relaxin treated chondrocytes. A significant increase was observed in the proportion of type III collagen and in the intensity of the band corresponding to alpha 2I chains. Two-dimensional peptide mapping of CNBr-cleaved molecules indicated that the band that was identified as alpha 1II on monodimensional gels contained a significant proportion of alpha 1I collagen chains, as demonstrated by the presence of alpha 1I cyanogen bromide-digested peptides. The intensity of this band was increased by relaxin treatment. Furthermore, total RNA analysis by slot blot and Northern blot techniques showed a dose-dependent stimulation of alpha 1I and alpha 1III mRNA levels after incubation with increased relaxin concentrations, but no change in the amount of alpha 1II mRNA. These results suggested that when added to cartilage cells in vitro, relaxin modulated the expression of type I, type II and type III collagen genes by amplifying the dedifferentiation process.  相似文献   

10.
In osteoarthritic cartilage, chondrocytes are able to present heterogeneous cellular reactions with expression and synthesis of the (pro)collagen types characteristic of prechondrocytes (type IIA), hypertrophic chondrocytes (type X), as well as differentiated (types IIB, IX, XI, VI) and dedifferentiated (types I, III) chondrocytes. The expression of type IIA procollagen in human osteoarthritic cartilage support the assumption that OA chondrocytes reverse their phenotype towards a chondroprogenitor phenotype. Recently, we have shown that dedifferentiation of mouse chondrocytes induced by subculture was associated with the alternative splicing of type II procollagen pre-mRNA with a switch from the IIB to the IIA form. In this context, we demonstrated that BMP-2 favours expression of type IIB whereas TGF-beta1 potentiates expression of type IIA induced by subculture. These data reveal the specific capability of BMP-2 to reverse the program of chondrocyte dedifferentiation. This interesting feature needs to be tested with human chondrocytes since cell amplification is required for the currently used autologous chondrocyte transplantation.  相似文献   

11.
12.
13.
Expression of type I and III procollagen genes was studied in embryonic chicken myoblast cell cultures, obtained from thigh muscles of 11-day-old embryos. Differentiation initiated by the addition of ovotransferrin (30 micrograms/ml) was followed visually by phase-contrast microscopy. Myoblast fusion and myotube formation were detected by day 3 and appeared to be complete by day 7. The synthesis of procollagens was monitored by labeling cell cultures for 1 h with [3H]proline and determining the radioactivity in procollagen chains by scanning densitometry of the fluorograms of the sodium dodecyl sulfate-polyacrylamide gels. A 10- to 20-fold increase in the rate of pro alpha-1(I), pro alpha-2(I), and pro alpha-1(III) collagen synthesis was observed, with the greatest increase occurring between days 3 and 9. Collagen mRNA levels in the myoblast cultures were examined by Northern blot and dot blot hybridization assays. The 10- to 20-fold increased rate of protein synthesis was accompanied by a 15-fold increase in the steady-state levels of pro alpha-1(I) and pro alpha-2(I) mRNAs and a 10-fold increase in the steady-state levels of pro alpha-1(III). As a correlate to the studies of collagen expression during myoblast differentiation, the expression of actin mRNAs was examined. Although alpha actin could be detected by day 4, a complete switch from lambda and beta to alpha actin was not observed in the time periods examined. Similar results were obtained in the analysis of RNA extracted from embryonic legs at days 12 and 17 of gestation. Myoblast differentiation is manifested by the accumulation of both muscle-specific mRNAs, such as actin, and type I and III procollagen mRNAs.  相似文献   

14.
Collagenase secretion was studied on cultures of rabbit articular chondrocytes. Differentiation of the cells was assessed by characterizing the type of 3H-labelled collagen produced during treatment with (1) conditioned media from rabbit peritoneal macrophages and human blood mononuclear cells, and (2) with retinol, a potent cartilage resorbing agent in tissue culture. Conditioned media stimulated collagenase secretion. Total collagen synthesis was reduced due to a decrease of synthesis of alpha 1 chains; the amount of alpha 2 chains synthesized was unchanged. This is thought to be due to a reduction in type II synthesis. Retinol did not stimulate collagenase secretion. Total collagen synthesis was reduced by retinol. alpha 2 chain synthesis, however, was significantly increased, suggesting a switch of collagen synthesis in favor of type I collagen, and therefore, dedifferentiation. These results demonstrate that dedifferentiation of chondrocytes with respect to collagen synthesis is not necessarily associated with a stimulation of collagenase secretion.  相似文献   

15.
To study how collagen synthesis is regulated in developing chick embryonic skin, hydroxyproline synthesis, incorporation of proline, and translational activity and content of collagen mRNA in 12-, 15-, and 18-day skins were determined and compared with each other. Hydroxyproline synthesis in the 18-day skins was markedly increased over that in the 12-day skins, whereas proline incorporation was moderately increased. The increase in collagen synthesis from day 15 to 18 was accompanied by increases in both the translational activity and the content of type I procollagen mRNA, with a selective increase in the lower-molecular-weight species of pro alpha 1 (I) collagen mRNA. In contrast, the stimulation of collagen synthesis from day 12 to day 15 did not parallel the levels of type I procollagen mRNA. These results suggest that the stimulation of collagen synthesis is regulated by collagen mRNA levels only in the later stage of development (from day 15 to day 18). Both the collagen synthesis and type I procollagen mRNA levels in the fibroblasts isolated on each corresponding day were constant. The difference in collagen synthesis under two different culture conditions suggests that cell-matrix interaction and/or some serum factors, including several growth factors, are essential for the marked stimulation of collagen synthesis observed in 12- to 18-day skin.  相似文献   

16.
17.
The differentiated phenotype of chondrocyte is rapidly lost during in vitro culture by a process designated "dedifferentiation." In this study, we investigate the roles of protein kinase C (PKC) and extracellular signal-regulated protein kinase (ERK) in the maintenance of the differentiated chondrocyte phenotype. Chondrocytes isolated from rabbit articular cartilage underwent dedifferentiation upon serial monolayer culture with cessation of type II collagen expression and proteoglycan synthesis, which was reversed by culturing dedifferentiated cells in alginate gel. The expression pattern of PKC alpha was essentially the same as that of type II collagen during de- and redifferentiation, in that expression was decreased during dedifferentiation and increased during redifferentiation. In contrast to PKC alpha, ERK activity increased 15-fold during dedifferentiation. This enhanced activity was terminated during redifferentiation. Down-regulation of PKC alpha in passage 0 chondrocytes resulted in dedifferentiation. However, overexpression of PKC alpha did not affect type II collagen levels, suggesting that PKC alpha expression is not sufficient to maintain the differentiated phenotype. However, inhibition of ERK by PD98059 enhanced type II collagen expression and proteoglycan synthesis in passage 0 cells, retarded dedifferentiation during monolayer cultures, and reversed dedifferentiation caused by down-regulation of PKC. Unlike PKC-dependent ERK regulation of chondrogenesis, PKC and ERK independently modulated chondrocyte dedifferentiation, as confirmed by observations that PKC down-regulation and ERK inhibition did not alter ERK phosphorylation and PKC expression, respectively. In addition, expression of N-cadherin, alpha-catenin, and beta-catenin, which are oppositely regulated to type II collagen during phenotype alterations, were modulated by PKC and ERK during chondrogenesis but not dedifferentiation, supporting distinct mechanisms for the regulation of chondrocyte differentiation and maintenance of differentiated phenotype by these two protein kinases.  相似文献   

18.
Phorbol-12-myristate-13-acetate (PMA), a potent tumor promoter, was shown to have opposite effects on the cellular morphology and steady-state levels of beta-actin mRNA in embryonic chicken muscle fibroblasts and sternal chondrocytes. When fibroblasts were treated with PMA, they formed foci of densely packed cells, ceased to adhere to culture plates, and had significantly reduced levels of beta-actin mRNA and protein. Conversely, when treated with PMA, floating chondrocytes attached to culture dishes, spread out, and began to accumulate high levels of beta-actin mRNA and proteins. In the sternal chondrocytes the stimulation of the beta-actin mRNA production was accompanied by increased steady-state levels of fibronectin mRNAs and protein. These alterations were concomitant with a fivefold reduction in type II collagen mRNA and a cessation in its protein production. After fibronectin and actin mRNAs and proteins reached their maximal levels, type I collagen mRNA and protein synthesis were turned on. Removal of PMA resulted in reduced beta-actin mRNA levels in chondrocytes and in a further alteration in the cell morphology. These observed correlations between changes in cell adhesion and morphology and beta-actin expression suggest that the effect of PMA on cell shape and adhesion may result in changes in the microfilament organization of the cytoskeleton which ultimately lead to changes in the extracellular matrix produced by the cells.  相似文献   

19.
A complementary DNA (cDNA) clone was constructed for chick pro alpha 2(I) collagen mRNA. This and previously constructed cDNA clones for chick and human pro alpha 1(I) collagen mRNAs were used to measure levels of type I procollagen messenger RNAs in two experimental models: viscose cellulose sponge-induced experimental granulation tissue and silica-induced experimental lung fibrosis in rats. Both Northern RNA blot and RNA dot hybridizations were used to quantitate procollagen mRNAs during formation of granulation tissue. The period of rapid collagen synthesis was characterized by high levels of procollagen mRNAs, which were reduced when collagen production returned to a low basal level. The rate of collagen synthesis and the levels of procollagen mRNAs during the period of rapid reduction in collagen production did not, however, parallel with each other. This suggests that translational control mechanisms are important during this time in preventing overproduction of collagen. In silicotic lungs, the early stages of fibroblast activation follow a similar path but appear faster. At a later stage, however, the RNA levels increase again and permit collagen synthesis to continue at a high rate, resulting in massive collagen accumulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号