首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Functional analysis of HNPCC-related missense mutations in MSH2   总被引:10,自引:0,他引:10  
Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions.  相似文献   

2.
Gammie AE  Erdeniz N  Beaver J  Devlin B  Nanji A  Rose MD 《Genetics》2007,177(2):707-721
Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with defects in DNA mismatch repair. Mutations in either hMSH2 or hMLH1 underlie the majority of HNPCC cases. Approximately 25% of annotated hMSH2 disease alleles are missense mutations, resulting in a single change out of 934 amino acids. We engineered 54 missense mutations in the cognate positions in yeast MSH2 and tested for function. Of the human alleles, 55% conferred strong defects, 8% displayed intermediate defects, and 38% showed no defects in mismatch repair assays. Fifty percent of the defective alleles resulted in decreased steady-state levels of the variant Msh2 protein, and 49% of the Msh2 variants lost crucial protein-protein interactions. Finally, nine positions are predicted to influence the mismatch recognition complex ATPase activity. In summary, the missense mutations leading to loss of mismatch repair defined important structure-function relationships and the molecular analysis revealed the nature of the deficiency for Msh2 variants expressed in the tumors. Of medical relevance are 15 human alleles annotated as pathogenic in public databases that conferred no obvious defects in mismatch repair assays. This analysis underscores the importance of functional characterization of missense alleles to ensure that they are the causative factor for disease.  相似文献   

3.
Defects in the mismatch repair protein MSH2 cause tolerance to DNA damage. We report how cancer-derived and polymorphic MSH2 missense mutations affect cisplatin cytotoxicity. The chemotolerance phenotype was compared with the mutator phenotype in a yeast model system. MSH2 missense mutations display a strikingly different effect on cell death and genome instability. A mutator phenotype does not predict chemotolerance or vice versa. MSH2 mutations that were identified in tumors (Y109C) or as genetic variations (L402F) promote tolerance to cisplatin, but leave the initial mutation rate of cells unaltered. A secondary increase in the mutation rate is observed after cisplatin exposure in these strains. The mutation spectrum of cisplatin-resistant mutators identifies persistent cisplatin adduction as the cause for this acquired genome instability. Our results demonstrate that MSH2 missense mutations that were identified in tumors or as polymorphic variations can cause increased cisplatin tolerance independent of an initial mutator phenotype. Cisplatin exposure promotes drug-induced genome instability. From a mechanistical standpoint, these data demonstrate functional separation between MSH2-dependent cisplatin cytotoxicity and repair. From a clinical standpoint, these data provide valuable information on the consequences of point mutations for the success of chemotherapy and the risk for secondary carcinogenesis.  相似文献   

4.
Behavioral phenotypes of Disc1 missense mutations in mice   总被引:6,自引:0,他引:6  
To support the role of DISC1 in human psychiatric disorders, we identified and analyzed two independently derived ENU-induced mutations in Exon 2 of mouse Disc1. Mice with mutation Q31L showed depressive-like behavior with deficits in the forced swim test and other measures that were reversed by the antidepressant bupropion, but not by rolipram, a phosphodiesterase-4 (PDE4) inhibitor. In contrast, L100P mutant mice exhibited schizophrenic-like behavior, with profound deficits in prepulse inhibition and latent inhibition that were reversed by antipsychotic treatment. Both mutant DISC1 proteins exhibited reduced binding to the known DISC1 binding partner PDE4B. Q31L mutants had lower PDE4B activity, consistent with their resistance to rolipram, suggesting decreased PDE4 activity as a contributory factor in depression. This study demonstrates that Disc1 missense mutations in mice give rise to phenotypes related to depression and schizophrenia, thus supporting the role of DISC1 in major mental illness.  相似文献   

5.
Loss of DNA mismatch repair due to mutation or diminished expression of the MLH1 gene is associated with genome instability and cancer. In this study, we used a yeast model system to examine three circumstances relevant to modulation of MLH1 function. First, overexpression of wild-type MLH1 was found to cause a strong elevation of mutation rates at three different loci, similar to the mutator effect of MLH1 gene inactivation. Second, haploid yeast strains with any of six mlh1 missense mutations that mimic germ line mutations found in human cancer patients displayed a strong mutator phenotype consistent with loss of mismatch repair function. Five of these mutations affect amino acids that are homologous to residues suggested by recent crystal structure and biochemical analysis of Escherichia coli MutL to participate in ATP binding and hydrolysis. Finally, using a highly sensitive reporter gene, we detected a mutator phenotype of diploid yeast strains that are heterozygous for mlh1 mutations. Evidence suggesting that this mutator effect results not from reduced mismatch repair in the MLH1/mlh1 cells but rather from loss of the wild-type MLH1 allele in a fraction of cells is presented. Exposure to bleomycin or to UV irradiation strongly enhanced mutagenesis in the heterozygous strain but had little effect on the mutation rate in the wild-type strain. This damage-induced hypermutability may be relevant to cancer in humans with germ line mutations in only one MLH1 allele.  相似文献   

6.
Single nucleotide polymorphisms (SNPs) are the most frequent variation in the human genome. Nonsynonymous SNPs that lead to missense mutations can be neutral or deleterious, and several computational methods have been presented that predict the phenotype of human missense mutations. These methods use sequence‐based and structure‐based features in various combinations, relying on different statistical distributions of these features for deleterious and neutral mutations. One structure‐based feature that has not been studied significantly is the accessible surface area within biologically relevant oligomeric assemblies. These assemblies are different from the crystallographic asymmetric unit for more than half of X‐ray crystal structures. We find that mutations in the core of proteins or in the interfaces in biological assemblies are significantly more likely to be disease‐associated than those on the surface of the biological assemblies. For structures with more than one protein in the biological assembly (whether the same sequence or different), we find the accessible surface area from biological assemblies provides a statistically significant improvement in prediction over the accessible surface area of monomers from protein crystal structures (P = 6e‐5). When adding this information to sequence‐based features such as the difference between wildtype and mutant position‐specific profile scores, the improvement from biological assemblies is statistically significant but much smaller (P = 0.018). Combining this information with sequence‐based features in a support vector machine leads to 82% accuracy on a balanced dataset of 50% disease‐associated mutations from SwissVar and 50% neutral mutations from human/primate sequence differences in orthologous proteins. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
8.
This work describes the project for an advanced undergraduate laboratory course in cell and molecular biology. One objective of the course is to teach students a variety of cellular and molecular techniques while conducting original research. A second objective is to provide instruction in science writing and data presentation by requiring comprehensive laboratory reports modeled on the primary literature. The project for the course focuses on a gene, MSH2, implicated in the most common form of inherited colorectal cancer. Msh2 is important for maintaining the fidelity of genetic material where it functions as an important component of the DNA mismatch repair machinery. The goal of the project has two parts. The first part is to create mapped missense mutation listed in the human databases in the cognate yeast MSH2 gene and to assay for defects in DNA mismatch repair. The second part of the course is directed towards understanding in what way are the variant proteins defective for mismatch repair. Protein levels are analyzed to determine if the missense alleles display decreased expression. Furthermore, the students establish whether the Msh2p variants are properly localized to the nucleus using indirect immunofluorescence and whether the altered proteins have lost their ability to interact with other subunits of the MMR complex by creating recombinant DNA molecules and employing the yeast 2-hybrid assay.  相似文献   

9.
Two missense mutations have been identified in the phenylalanine hydroxylase (PAH) genes of an Italian phenylketonuria (PKU) patient. Both mutations occurred in exon 7 of the PAH gene, resulting in the substitution of Trp for Arg at amino acid 252 (R252W) and of Leu for Pro (P281L) at amino acid 281 of the protein. Expression vectors containing either the normal human PAH cDNA or mutant cDNAs were constructed and transfected into cultured mammalian cells. Extracts from cells transfected with either mutant construct showed negligible enzyme activity and undetectable levels of immunoreactive PAH protein as compared to the normal construct. These results are compatible with the severe classical PKU phenotype observed in this patient. Population genetic studies in the Italian population revealed that both the R252W and the P281L mutations are in linkage disequilibrium with mutant restriction fragment length polymorphism (RFLP) haplotype 1, which is the most prevalent RFLP haplotype in this population. The R252W mutation is present in 10% and the P281L mutation is present in 20% of haplotype 1 mutant chromosomes. These mutations are both very rare among other European populations, suggesting a Mediterranean origin for these mutant chromosomes.  相似文献   

10.
Mutations in one allele of the human LIS1 gene cause a severe brain malformation, lissencephaly. Although most LIS1 mutations involve deletions, several point mutations with a single amino acid alteration were described. Patients carrying these mutations reveal variable phenotypic manifestations. We have analyzed the functional importance of these point mutations by examining protein stability, folding, intracellular localization, and protein-protein interactions. Our data suggest that the mutated proteins were affected at different levels, and no single assay could be used to predict the lissencephaly phenotype. Most interesting are those mutant proteins that retain partial folding and interactions. In the case of LIS1 mutated in F31S, the cellular phenotype may be modified by overexpression of specific interacting proteins. Overexpression of the PAF-AH alpha1 subunit dissolved aggregates induced by this mutant protein and increased its half-life. Overexpression of NudE or NudEL localized this mutant protein to spindle poles and kinetochores but had no effect on protein stability. Our results implicate that there are probably different biochemical and cellular mechanisms obstructed in each patient yielding the varied lissencephaly phenotypes.  相似文献   

11.
12.
Multiple tau gene mutations are pathogenic for hereditary frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), with filamentous tau aggregates as the major lesions in the CNS of these patients. Recent studies have shown that bacterially expressed recombinant tau proteins with FTDP-17 missense mutations cause functional impairments, i.e., a reduced ability of mutant tau to bind to or promote the assembly of microtubules. To investigate the biological consequences of FTDP-17 tau mutants and assess their ability to form filamentous aggregates, we engineered Chinese hamster ovary cell lines to stably express tau harboring one or several different FTDP-17 mutations and showed that different tau mutants produced distinct pathological phenotypes. For example, delta K, but not several other single tau mutants (e.g., V337 M, P301L, R406W), developed insoluble amorphous and fibrillar aggregates, whereas a triple tau mutant (VPR) containing V337M, P301L, and R406W substitutions also formed similar aggregates. Furthermore, the aggregates increased in size over time in culture. Significantly, the formation of aggregated delta K and VPR tau protein correlated with reduced affinity of these mutants to bind microtubules. Reduced phosphorylation and altered proteolysis was also observed in R406W and delta K tau mutants. Thus, distinct pathological phenotypes, including the formation of insoluble filamentous tau aggregates, result from the expression of different FTDP-17 tau mutants in transfected Chinese hamster ovary cells and implies that these missense mutations cause diverse neurodegenerative FTDP-17 syndromes by multiple mechanisms.  相似文献   

13.
Sokolsky T  Alani E 《Genetics》2000,155(2):589-599
In Saccharomyces cerevisiae, Msh2p, a central component in mismatch repair, forms a heterodimer with Msh3p to repair small insertion/deletion mismatches and with Msh6p to repair base pair mismatches and single-nucleotide insertion/deletion mismatches. In haploids, a msh2Delta mutation is synthetically lethal with pol3-01, a mutation in the Poldelta proofreading exonuclease. Six conditional alleles of msh2 were identified as those that conferred viability in pol3-01 strains at 26 degrees but not at 35 degrees. DNA sequencing revealed that mutations in several of the msh2(ts) alleles are located in regions with previously unidentified functions. The conditional inviability of two mutants, msh2-L560S pol3-01 and msh2-L910P pol3-01, was suppressed by overexpression of EXO1 and MSH6, respectively. Partial suppression was also observed for the temperature-sensitive mutator phenotype exhibited by msh2-L560S and msh2-L910P strains in the lys2-Bgl reversion assay. High-copy plasmids bearing mutations in the conserved EXO1 nuclease domain were unable to suppress msh2-L560S pol3-01 conditional lethality. These results, in combination with a genetic analysis of msh6Delta pol3-01 and msh3Delta pol3-01 strains, suggest that the activity of the Msh2p-Msh6p heterodimer is important for viability in the presence of the pol3-01 mutation and that Exo1p plays a catalytic role in Msh2p-mediated mismatch repair.  相似文献   

14.
15.
Calpainopathy-a survey of mutations and polymorphisms.   总被引:5,自引:0,他引:5       下载免费PDF全文
Limb-girdle muscular dystrophy type 2A (LGMD2A) is an autosomal recessive disorder characterized mainly by symmetrical and selective atrophy of the proximal limb muscles. It derives from defects in the human CAPN3 gene, which encodes the skeletal muscle-specific member of the calpain family. This report represents a compilation of the mutations and variants identified so far in this gene. To date, 97 distinct pathogenic calpain 3 mutations have been identified (4 nonsense mutations, 32 deletions/insertions, 8 splice-site mutations, and 53 missense mutations), 56 of which have not been described previously, together with 12 polymorphisms and 5 nonclassified variants. The mutations are distributed along the entire length of the CAPN3 gene. Thus far, most mutations identified represent private variants, although particular mutations have been found more frequently. Knowledge of the mutation spectrum occurring in the CAPN3 gene may contribute significantly to structure/function and pathogenesis studies. It may also help in the design of efficient mutation-screening strategies for calpainopathies.  相似文献   

16.
In cell populations of Saccharomyces cerevisiae homogeneous for sensitivity to X-irradiation, induction of base insertions/deletions and base substitutions was quantitatively analyzed in a reversion system. The repair mechanisms phenotypically unexpressed in the sensitive cell fraction and fully operating in resistant cells did not affect point mutations of either type.  相似文献   

17.
Predicting the phenotypes of missense mutations uncovered by large‐scale sequencing projects is an important goal in computational biology. High‐confidence predictions can be an aid in focusing experimental and association studies on those mutations most likely to be associated with causative relationships between mutation and disease. As an aid in developing these methods further, we have derived a set of random mutations of the enzymatic domains of human cystathionine beta synthase. This enzyme is a dimeric protein that catalyzes the condensation of serine and homocysteine to produce cystathionine. Yeast missing this enzyme cannot grow on medium lacking a source of cysteine, while transfection of functional human CBS into yeast strains missing endogenous enzyme can successfully complement for the missing gene. We used PCR mutagenesis with error‐prone Taq polymerase to produce 948 colonies and compared cell growth in the presence or absence of a cysteine source as a measure of CBS function. We were able to infer the phenotypes of 204 single‐site mutants, 79 of them deleterious and 125 neutral. This set was used to test the accuracy of six publicly available prediction methods for phenotype prediction of missense mutations: SIFT, PolyPhen, PMut, SNPs3D, PhD‐SNP, and nsSNPAnalyzer. The top methods are PolyPhen, SIFT, and nsSNPAnalyzer, which have similar performance. Using kernel discriminant functions, we found that the difference in position‐specific scoring matrix values is more predictive than the wild‐type PSSM score alone, and that the relative surface area in the biologically relevant complex is more predictive than that of the monomeric proteins. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Neurofibromatosis 2 (NF2) is an autosomal inherited disorder that predisposes carriers to nervous system tumors. To examine genotype-phenotype correlations in NF2, we performed mutation analyses and gadolinium-enhanced magnetic resonance imaging of the head and full spine in 59 unrelated NF2 patients. In patients with vestibular schwannomas (VSs) or identified NF2 mutations, the mild phenotype was defined as <2 other intracranial tumors and ≤ 4 spinal tumors, and the severe phenotype as either ≥ 2 other intracranial tumors or > 4 spinal tumors. Nineteen mutations were found in 20 (34%) of the patients and were distributed in 12 of the 17 exons of the NF2 gene, including intron-exon boundaries. Seven mutations were frameshift, six were nonsense, four were splice site, two were missense, and one was a 3-bp in frame deletion. The nonsense mutations included one codon 57 and two codon 262 C→T transitions in CpG dinucleotides. The frameshift and nonsense NF2 mutations occurred primarily in patients with severe phenotypes. The two missense mutations occurred in patients with mild phenotypes, and three of the four splice site mutations occurred in families with both mild and severe phenotypes. Truncating NF2 mutations are usually associated with severe phenotypes, but the association of some mutations with mild and severe phenotypes indicates that NF2 expression is influenced by stochastic, epigenetic, or environmental factors. Received: 4 July 1996  相似文献   

19.
Leigh syndrome is a common clinical manifestation in children with mitochondrial disease and other types of inborn errors of metabolism. We characterised clinical symptoms, prognosis, respiratory chain function and performed extensive genetic analysis of 25 Swedish children suffering from Leigh syndrome with the aim to obtain insights into the molecular pathophysiology and to provide a rationale for genetic counselling. We reviewed the clinical history of all patients and used muscle biopsies in order to perform molecular, biochemical and genetic investigations, including sequencing the entire mitochondrial DNA (mtDNA), the mitochondrial DNA polymerase (POLGA) gene and the surfeit locus protein 1 (SURF1) gene. Respiratory chain enzyme activity measurements identified five patients with isolated complex I deficiency and five with combined enzyme deficiencies. No patient presented with isolated complex IV deficiency. Seven patients had a decreased ATP production rate. Extensive sequence analysis identified eight patients with pathogenic mtDNA mutations and one patient with mutations in POLGA. Mutations of mtDNA are a common cause of LS and mtDNA analysis should always be included in the diagnosis of LS patients, whereas SURF1 mutations are not a common cause of LS in Sweden. Unexpectedly, age of onset, clinical symptoms and prognosis did not reveal any clear differences in LS patients with mtDNA or nuclear DNA mutations.  相似文献   

20.
Functional consequences of PRODH missense mutations   总被引:5,自引:0,他引:5       下载免费PDF全文
PRODH maps to 22q11 in the region deleted in the velocardiofacial syndrome/DiGeorge syndrome (VCFS/DGS) and encodes proline oxidase (POX), a mitochondrial inner-membrane enzyme that catalyzes the first step in the proline degradation pathway. At least 16 PRODH missense mutations have been identified in studies of type I hyperprolinemia (HPI) and schizophrenia, 10 of which are present at polymorphic frequencies. The functional consequences of these missense mutations have been inferred by evolutionary conservation, but none have been tested directly. Here, we report the effects of these mutations on POX activity. We find that four alleles (R185Q, L289M, A455S, and A472T) result in mild (<30%), six (Q19P, A167V, R185W, D426N, V427M, and R431H) in moderate (30%-70%), and five (P406L, L441P, R453C, T466M, and Q521E) in severe (>70%) reduction in POX activity, whereas one (Q521R) increases POX activity. The POX encoded by one severe allele (T466M) shows in vitro responsiveness to high cofactor (flavin adenine dinucleotide) concentrations. Although there is limited information on plasma proline levels in individuals of known PRODH genotype, extant data suggest that severe hyperprolinemia (>800 microM) occurs in individuals with large deletions and/or PRODH missense mutations with the most-severe effect on function (L441P and R453C), whereas modest hyperprolinemia (300-500 microM) is associated with PRODH alleles with a moderate reduction in activity. Interestingly, three of the four alleles associated with or found in schizophrenia (V427M, L441P, and R453C) resulted in severe reduction of POX activity and hyperprolinemia. These observations plus the high degree of polymorphism at the PRODH locus are consistent with the hypothesis that reduction in POX function is a risk factor for schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号