首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
荧光原位杂交技术的研究进展   总被引:2,自引:0,他引:2  
荧光原位杂交(FISH)是在染色体、间期细胞核和DNA纤维上进行DNA序列定位的一种有效手段。近年来,围绕提高检测的分辨率和灵敏性,不断将免疫染色、量子点和微流控芯片等物理化学技术引入到荧光原位杂交中,促进了它的快速发展。本文主要综述了荧光原位杂交的基本原理和发展历程,重点介绍了免疫染色-荧光原位杂交(immuno-FISH)、量子点-荧光原位杂交(QD-FISH)和微流控芯片-荧光原位杂交(FISH on microchip)等多种新技术及其检测特点,如快速、灵敏、动态、多样化等。随着荧光原位杂交技术的不断完善与发展,将在细胞遗传学、表观遗传学及分子生物学等领域发挥更加重要的作用。  相似文献   

2.
This article introduces quantum physics into biology in an intuitive and non-intimidating manner. It extends the quantum aspects of harmonic oscillators, and electromagnetic fields, to their functional roles in biology. Central to this process are the De Broglie wave-particle duality equation, and the adiabatic invariant parameters, magnetic moment, angular momentum and magnetic flux, determined by Ehrenfest as imposing quantum constraints on the dynamics of charges in motion. In mechanisms designed to explain the generation of low-level light emissions in biology we have adopted a biological analog of the electrical circuitry modeled on the parallel plated capacitor, traversed by helical protein structures, capable of generating electromagnetic radiation in the optical spectral region. The charge carrier required for the emissions is an accelerating electron driven, in a cyclotron-type mechanism, by ATP-induced reverse electron transfer with the radial, emission, components, mediated by coulombic forces within the helical configurations. Adenine, an essential nucleotide constituent of DNA, was examined with its long wavelength absorption maximum determining the energetic parameters for the calculations. The calculations were made for a virtual 5-turn helix where each turn of the helix emits a different frequency, generating a biological quantum series. The components of six adiabatic invariant equations were found to be embedded in Planck's constant rendering them discrete, finite, non-random, non-statistical-Planck's constant precludes probability. A mechanism for drug-induced hallucination is described that might provide insights as to the possible role of electromagnetic fields in consciousness. Sodium acceleration through a proposed nerve membrane helical channel generated electromagnetic emissions in the microwave region in confirmation of reported microwave emission for active nerves and may explain saltatory nerve conduction. Theoretical calculations for a helical DNA system gave a conduction resistance in agreement with a experimentally determined parameter.  相似文献   

3.
Jiming Jiang  Bikram S Gill 《Génome》2006,49(9):1057-1068
Fluorescence in situ hybridization (FISH), which allows direct mapping of DNA sequences on chromosomes, has become the most important technique in plant molecular cytogenetics research. Repetitive DNA sequence can generate unique FISH patterns on individual chromosomes for karyotyping and phylogenetic analysis. FISH on meiotic pachytene chromosomes coupled with digital imaging systems has become an efficient method to develop physical maps in plant species. FISH on extended DNA fibers provides a high-resolution mapping approach to analyze large DNA molecules and to characterize large genomic loci. FISH-based physical mapping provides a valuable complementary approach in genome sequencing and map-based cloning research. We expect that FISH will continue to play an important role in relating DNA sequence information to chromosome biology. FISH coupled with immunoassays will be increasingly used to study features of chromatin at the cytological level that control expression and regulation of genes.  相似文献   

4.
量子点在生物学中的研究进展   总被引:6,自引:1,他引:6  
量子点作为一种新型的荧光标记物近年来已在生物学中获得广泛应用。本文总结了量子点的主要光学特性,其中包括荧光激发和发射光谱特性、量子产额、光漂白特性和荧光寿命等。重点综述了量子点在细胞标记、活体和组织成像、组合标记和光动力学治疗等生物学中的应用及其最新研究进展。同时讨论了量子点在应用中可能存在的细胞毒性等主要问题,最后对量子点在生物学中的应用前景作了展望。  相似文献   

5.
Bohr, Delbrück and Schrödinger were physicists who had important influences on biology in the second half of the twentieth century. They thought that future studies of the gene might reveal new principles or paradoxes, analogous to the wave/particle paradox of light propagation, or even new physical laws. This stimulated several physicists to enter the field of biology. Delbrück founded the bacteriophage group which provided one of the roots of molecular biology. Another was X-ray crystallography which led to the discovery of DNA structure. The strength and success of molecular biology came from the many interactions between geneticists, physicists, chemists and biochemists. It was also characterized by a powerful combination of theoretical and experimental approaches.  相似文献   

6.
大片段克隆载体研究进展   总被引:1,自引:0,他引:1  
DNA克隆技术是分子生物学研究中一项重要的技术手段。自第一个质粒载体pSC1 0 1作为克隆载体以来 ,随着分子生物学技术的发展 ,克隆载体的整体结构、容载能力和转化效率都有了很大的改善。尤其是人类基因组计划的实施 ,产生了YAC和BAC克隆体系。随着植物基因组计划的进行 ,又产生了既能够克隆大片段DNA又能够将候选克隆直接通过农杆菌介导进行功能互补实验的载体。综述了几种常用大片段克隆载体YAC、BAC、BIBAC、PAC和TAC的特点及其应用 ,并对克隆载体的发展作了展望。  相似文献   

7.
A molecular model of the living cell has been formulated based on a new theory of enzymic catalysis which takes into account the complementary roles of free energy and genetic information. The elementary units of free energy and genetic information that are necessary and sufficient for effectuating molecular mechanisms responsible for the life of the cell are called conformons. Conformons are visualized as a collection of a small number of catalytic residues of enzymes or segments of nucleic acids that are arranged in space and time with appropriate force vectors so as to cause chemical transformations or physical changes of a substrate or a bound ligand. So defined, conformons provide a plausible molecular means to link the genetic information stored in DNA and its ultimate expression, namely networks of coupled intracellular biochemical reactions and physical processes maintained by a continuous dissipation of free energy--dissipative structures of Prigogine. The proposed model of the living cell appears to possess the potential for bridging the gap between molecular biology and the biology of multicellular systems.  相似文献   

8.
纳米技术的兴起,对生物医学领域的变革产生了深远的影响。纳米材料是纳米技术发展的重要基础,它具有许多传统材料所不具备的独特的理化性质,因此在生物医学、传感器等重要技术领域有着广泛的应用前景。对几类常见的纳米材料包括纳米金、量子点、磁性纳米粒子、碳纳米管和硅纳米线在蛋白质、DNA、金属离子以及生物相关分子检测方面的应用进行综述。  相似文献   

9.
Fluorescent nanoparticles (FNPs) have been widely used in chemistry and medicine for decades, but their employment in biology is relatively recent. Past reviews on FNPs have focused on chemical, physical or medical uses, making the extrapolation to biological applications difficult. In biology, FNPs have largely been used for biosensing and molecular tracking. However, concerns over toxicity in early types of FNPs, such as cadmium-containing quantum dots (QDs), may have prevented wide adoption. Recent developments, especially in non-Cd-containing FNPs, have alleviated toxicity problems, facilitating the use of FNPs for addressing ecological, physiological and molecule-level processes in biological research. Standardised protocols from synthesis to application and interdisciplinary approaches are critical for establishing FNPs in the biologists’ tool kit. Here, we present an introduction to FNPs, summarise their use in biological applications, and discuss technical issues such as data reliability and biocompatibility. We assess whether biological research can benefit from FNPs and suggest ways in which FNPs can be applied to answer questions in biology. We conclude that FNPs have a great potential for studying various biological processes, especially tracking, sensing and imaging in physiology and ecology.  相似文献   

10.
Molecular masses of cholera bacteriophages 493, 7226 and Eltor II were defined by electron microscopic technique. DNA of these bacteriophages was digested by the restriction endonucleases PstI, BglI, MluI and SalI. The number and molecular masses of the obtained restricts were identified. The physical map of bacteriophage 493 was constructed using three restriction endonucleases. The obtained data can be used for classification and molecular biology research of cholera bacteriophages.  相似文献   

11.
Quorum sensing is the efficient mode of communication in the bacterial world. After a lot of advancements in the classical theory of quorum sensing few basic questions of quorum sensing still remain unanswered. The sufficient progresses in quantum biology demands to explain these questions from the quantum perspective as non trivial quantum effects already have manifested in various biological processes like photosynthesis, magneto-reception etc. Therefore, it’s the time to review the bacterial communications from the quantum view point. In this article we carefully accumulate the latest results and arguments to strengthen quantum biology through the addition of quorum sensing mechanism in the light of quantum mechanics.  相似文献   

12.
Ma B  Nussinov R 《Physical biology》2004,1(3-4):P23-P26
Computations are being integrated into biological research at an increasingly fast pace. This has not only changed the way in which biological information is managed; it has also changed the way in which experiments are planned in order to obtain information from nature. Can experiments and computations be full partners? Computational chemistry has expanded over the years, proceeding from computations of a hydrogen molecule toward the challenging goal of systems biology, which attempts to handle the entire living cell. Applying theories from ab initio quantum mechanics to simplified models, the virtual worlds explored by computations provide replicas of real-world phenomena. At the same time, the virtual worlds can affect our perception of the real world. Computational biology targets a world of complex organization, for which a unified theory is unlikely to exist. A computational biology model, even if it has a clear physical or chemical basis, may not reduce to physics and chemistry. At the molecular level, computational biology and experimental biology have already been partners, mutually benefiting from each other. For the perception to become reality, computation and experiment should be united as full partners in biological research.  相似文献   

13.
In this note we illustrate on a few examples of cells and proteins behavior that microscopic biological systems can exhibit a complex probabilistic behavior which cannot be described by classical probabilistic dynamics. These examples support authors conjecture that behavior of microscopic biological systems can be described by quantum-like models, i.e., models inspired by quantum-mechanics. At the same time we do not couple quantum-like behavior with quantum physical processes in bio-systems. We present arguments that such a behavior can be induced by information complexity of even smallest bio-systems, their adaptivity to context changes. Although our examples of the quantum-like behavior are rather simple (lactose-glucose interference in E. coli growth, interference effect for differentiation of tooth stem cell induced by the presence of mesenchymal cell, interference in behavior of PrP(C) and PrP(Sc) prions), these examples may stimulate the interest in systems biology to quantum-like models of adaptive dynamics and lead to more complex examples of nonclassical probabilistic behavior in molecular biology.  相似文献   

14.
Pathogenic members of the genus Leptospira have been refractory to genetic study due to lack of known mechanisms of genetic exchange. To bypass this limitation, several techniques have been useful for Leptospira gene discovery, including heterologous complementation of Escherichia coli mutants, screening of DNA libraries with probes, and random sequence analysis. Construction of combined physical and genetic maps revealed the presence of two circular chromosomal replicons. The organization of the L. interrogans genome is quite variable, with genetically similar strains differentiated by many rearrangements. These rearrangements likely occur through recombination between repetitive DNA elements found scattered throughout the genome. Analysis of intervening sequences and genes encoding LPS biosynthetic enzymes provide evidence of lateral transfer of DNA between Leptospira spp. We have also gained insight into the biology of these bacteria by analyzing genes encoding LPS and outer membrane proteins (OMPs). Some of these OMPs are differentially expressed. Characterization of mechanisms governing the expression of the OMP genes should provide insight into host-parasite interactions. Furthermore, recent advances in heterologous expression of leptospiral OMP genes are opening new avenues of vaccine development.  相似文献   

15.
合成生物学是一门21世纪生物学的新兴学科,它着眼生物科学与工程科学的结合,把生物系统当作工程系统"从下往上"进行处理,由"单元"(unit)到"部件"(device)再到"系统"(system)来设计,修改和组装细胞构件及生物系统.合成生物学是分子和细胞生物学、进化系统学、生物化学、信息学、数学、计算机和工程等多学科交叉的产物.目前研究应用包括两个主要方面:一是通过对现有的、天然存在的生物系统进行重新设计和改造,修改已存在的生物系统,使该系统增添新的功能.二是通过设计和构建新的生物零件、组件和系统,创造自然界中尚不存在的人工生命系统.合成生物学作为一门建立在基因组方法之上的学科,主要强调对创造人工生命形态的计算生物学与实验生物学的协同整合.必须强调的是,用来构建生命系统新结构、产生新功能所使用的组件单元既可以是基因、核酸等生物组件,也可以是化学的、机械的和物理的元件.本文跟踪合成生物学研究及应用,对其在DNA水平编程、分子修饰、代谢途径、调控网络和工业生物技术等方面的进展进行综述.  相似文献   

16.
Balázs A 《Bio Systems》2004,77(1-3):1-10
In the present paper, the metapsychological "Nirvana Principle" is investigated evolutionarily at the earliest forms of life in a highly tentative way. A corresponding "molecular Nirvana Principle" is proposed, where the recent suggestions of the "internal measurement" biophysical quantum-molecular research programme of modern quantum biology are introduced, in relation to the former metapsychological theory, conceived to be valid in the entire realm of living systems (just as it was intended by the original author). By an appropriate introduction of a special primordeal dynamical time inversion symmetry breaking, originating in a premeval self-measurement in a composite nucleic acid-protein system, a special internal symmetry restoration time series is defined. In this way, a strictly physically defined self-identity ("molecular Nirvana," special physical symmetry restored) is derived, which is put equal to the quantum physical equivalent and root of the goals of evolutionarily higher level fundamental drives (the "Nirvana Principle"). It is shown that it is a natural requirement that the following internal regressive time (-reversal) physical molecular relations (and so the ultimate time symmetry) is mapped onto space, as is also suggested by some symbol-theoretical propositions.  相似文献   

17.
The last decade has witnessed extensive, and widespread, changes in scientific technologies that have impacted significantly upon the study of the life sciences. Arguably, the biggest advances in our comprehension of simple and complex biological processes have come as a consequence of obtaining the complete DNA sequence of organisms. It is likely that we will become accustomed to hearing of quantum leaps in the study and understanding of the biology of higher eukaryotes in the coming years, now that (near) complete genome sequences are available for man, mouse and rat. In this review, we will discuss the impact of genome sequence data, and the use of new scientific technologies that have emerged largely as consequence of the availability of this information, on the study of the master regulator of sporulation, Spo0A, in low G+C Gram-positive endospore-forming bacteria.  相似文献   

18.
The role of non-trivial quantum mechanical effects in biology has been the subject of intense scrutiny over the past decade. Much of the focus on potential “quantum biology” has been on energy transfer processes in photosynthetic light harvesting systems. Ultrafast laser spectroscopy of several light harvesting proteins has uncovered coherent oscillations dubbed “quantum beats” that persist for hundreds of femtoseconds and are putative signatures for quantum transport phenomena. This review describes the language and basic quantum mechanical phenomena that underpin quantum transport in open systems such as light harvesting and photosynthetic proteins, including the photosystem reaction centre. Coherent effects are discussed in detail, separating various meanings of the term, from delocalized excitations, or excitons, to entangled states and coherent transport. In particular, we focus on the time, energy and length scales of energy transport processes, as these are critical in understanding whether or not coherent processes are important. The role played by the protein in maintaining chromophore systems is analysed. Finally, the spectroscopic techniques that are used to probe energy transfer dynamics and that have uncovered the quantum beats are described with reference to coherent phenomena in light harvesting.  相似文献   

19.
From the mechanical complexity in biology. Through history, each century has brought new discoveries and beliefs that have resulted in different perspectives to study life organisms. In this essay, 1 define three periods: in the first, organisms were studied in the context of their environment, in the second, on the basis of physical and chemical laws, and on the third, systemically. My analysis starts with primitive humans, continues to Aristoteles and Newton, Lamarck and Darwin, the DNA doble helix discovery, and the beginnings of reduccionism in science. I propose that life is paradigmatical, that it obeys physical and chemical laws but cannot be explained by them I review the systemic theory, autopoiesis, discipative structures and non- linear dynamics. 1 propose that the deterministic, lineal and quantitative paradigm of nature are not the only way to study nature and invite the reader to explore the complexity paradigm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号