共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
P. M. Matthews R. M. Brown K. Morten D. Marchington J. Poulton G. Brown 《Human genetics》1995,96(3):261-268
Studies in vitro have shown that a respiratorydeficient phenotype is expressed by cells when the proportion of mtDNA with a disease-associated mutation exceeds a threshold level, but analysis of tissues from patients with mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS) have failed to show a consistent relationship between the degree of heteroplasmy and biochemical expression of the defect. One possible explanation for this phenomenon is that there is variation of heteroplasmy between individual cells that is not adequately reflected by the mean heteroplasmy for a tissue. We have confirmed this by study of fibroblast clones from subjects heteroplasmic for the MELAS 3243 (A G) mtDNA mutation. Similar observations were made with fibroblast clones derived from two subjects heteroplasmic for the 11778 (GA) mtDNA mutation of Leber's hereditary optic neuropathy. For the MELAS 3243 mutation, the distribution of mutant mtDNA between different cells was not randomly distributed about the mean, suggesting that selection against cells with high proportions of mutant mtDNA had occurred. To explore the way in which heteroplasmic mtDNA segregates in mitosis we followed the distribution of heteroplasmy between clones over approximately 15 generations. There was either no change or a decrease in the variance of intercellular heteroplasmy for the MELAS 3243 mutation, which is most consistent with segregation of heteroplasmic units of multiple mtDNA molecules in mitosis. After mitochondria from one of the MELAS 3243 fibroblast cultures were transferred to a mitochondrial DNA-free (0) cell line derived from osteosarcoma cells by cytoplast fusion, the mean level and intercellular distribution of heteroplasmy was unchanged. We interpret this as evidence that somatic segregation (rather than nuclear background or cell differentiation state) is the primary determinant of the level of heteroplasmy. 相似文献
3.
A model for polyrtucleotide replication is presented and analyzed by means of perlurbalion theory. Two basic assumptions allow handlmg of sequences up lo a chain length of v ≈ 80 explicitly: point mutations are yestricted to a two-digit model and individual sequences are subsumed into mutant classes. Penurbation theory is in excelleni agreement with the exact results for long enough sequences (V > 20). 相似文献
4.
Mutations of mitochondrial DNA (mtDNA) are frequent in humans and are implicated in many different types of pathology. The high substitution rate and the maternal, asexual mode of transmission of mtDNA make it more likely to accumulate deleterious mutations. Here, we discuss recent evidence that mtDNA transmission is subject to strong purifying selection in the mammalian female germ line, limiting the accumulation of such mutations. This process shapes mitochondrial sequence diversity and is therefore probably of fundamental importance for animal evolution and in human mitochondrial disease. 相似文献
5.
Replication initiation of nanoviruses, plant viruses with a multipartite circular single-stranded DNA genome, is triggered by the master Rep (M-Rep) protein. To enable the study of interactions between M-Rep and viral or host factors involved in replication, we designed oligohistidine-tagged variants of the nanovirus Faba bean necrotic yellows virus (FBNYV) M-Rep protein that allow affinity purification of enzymatically active M-Rep from plant tissue. The tagged M-Rep protein was able to initiate replication of its cognate and other FBNYV DNAs in Nicotiana benthamiana leaf disks and plants. The replicon encoding the tagged M-Rep protein multiplied and moved systemically in FBNYV-infected Vicia faba plants and was transmitted by the aphid vector of the virus. Using the tagged M-Rep protein, we demonstrated the in planta interaction between wild-type M-Rep and its tagged counterpart. Such a tagged and fully functional replication initiator protein will have bearings on the isolation of protein complexes from plants. 相似文献
6.
Robert B. Painter 《Mutation research》1980,70(3):337-341
A model for the production of sister-chromatid exchanges is presented, based on the idea that double-strand breaks are generated at junctions between a completely duplicated replicon cluster and a partially duplicated replicon cluster. Agents that induce absolute blocks to DNA fork displacement will cause this condition to persist longer than normal, whereas agents that inhibit initiation of whole clusters will rarely cause it at all. During the blunt-end repair of the double-strand breaks, sister-chromatid exchange would be initiated when daughter strands of a duplicated cluster recombine with the parental strands of the partially replicated cluster. When the latter finishes replication, sister-chromatid exchange would be completed. 相似文献
7.
8.
Endometriosis is one of the most common causes of chronic pelvic pain and infertility in women in the reproductive age group. Although the existence of this disease has been known for over 100 years our current knowledge of its pathogenesis and the pathophysiology of its related infertility remains unclear. Several reasons contribute to our lack of knowledge, the most critical being the difficulty in carrying out objective long-term studies in women. Thus, we and others have developed a model of this disease in the non-human primate, the baboon (Papio anubis). Intraperitoneal inoculation of autologous menstrual endometrium results in the development of endometriotic lesions with gross morphological characteristics similar to those seen in the human. Multiple factors have been implicated in endometriosis-associated infertility. We have described aberrant levels of factors involved in multiple pathways important in the establishment of pregnancy, in the endometrium of baboons induced with endometriosis. Specifically, we have observed dysregulation of proteins involved in invasion, angiogenesis, methylation, cell growth, immunomodulation, and steroid hormone action. These data suggest that, in an induced model of endometriosis in the baboon, an increased angiogenic capacity, decreased apoptotic potential, progesterone resistance, estrogen hyper-responsiveness, and an inability to respond appropriately to embryonic signals contribute to the reduced fecundity associated with this disease. 相似文献
9.
PrP expression and replication by Schwann cells: implications in prion spreading 总被引:4,自引:0,他引:4
下载免费PDF全文

Follet J Lemaire-Vieille C Blanquet-Grossard F Podevin-Dimster V Lehmann S Chauvin JP Decavel JP Varea R Grassi J Fontès M Cesbron JY 《Journal of virology》2002,76(5):2434-2439
Prion infection relies on a continuous chain of PrP(c)-expressing tissues to spread from peripheral sites to the central nervous system (CNS). Direct neuroinvasion via peripheral nerves has long been considered likely. However, the speed of axonal flow is incompatible with the lengthy delay prior to the detection of PrP(Sc) in the brain. We hypothesized that Schwann cells could be the candidate implicated in this mechanism; for that, it has to express PrP(c) and to allow PrP(Sc) conversion. We investigated in vivo localization of PrP(c) in sciatic nerve samples from different strains of mice. We demonstrated that PrP(c) is mainly localized at the cell membrane of the Schwann cell. We also studied in vitro expression of PrP(c) in the Schwann cell line MSC-80 and demonstrated that it expresses PrP(c) at the same location. More specifically, we demonstrated that this glial cell line, when infected in vitro with the mouse Chandler prion strain, both produces the PrP(Sc) till after 18 passages and is able to transmit disease to mice, which then develop the typical signs of prion diseases. It is the first time that infection and replication of PrP(Sc) are shown in a peripheral glial cell line. 相似文献
10.
Ham DJ Knez WL Young WB 《Journal of strength and conditioning research / National Strength & Conditioning Association》2007,21(3):967-972
Increasing vertical jump height is a critical component for performance enhancement in many sports. It takes on a number of different forms and conditions, including double and single legged jumps and stationary and run-up jumps. In an attempt to understand the factors that influence vertical jump performance, an extensive analysis was undertaken using the deterministic model. Once identified, practical training strategies enabling improvement in these factors were elucidated. Our analysis showed that a successful vertical jump performance was the result of a complex interplay of run-up speed, reactive strength, concentric action power of the take-off leg(s), hip flexors, shoulders, body position, body mass, and take-off time. Of special interest, our analysis showed that the concentric action power of the legs was the critical factor affecting stationary double leg vertical jumps, whereas reactive strength was the critical component for a single leg jump from a run-up. 相似文献
11.
RecG and RuvAB are proposed to act at stalled DNA replication forks to facilitate replication restart. To define the roles of these proteins in fork regression, we used a combination of assays to determine whether RecG, RuvAB or both are capable of acting at a stalled fork. The results show that RecG binds to the C-terminus of single-stranded DNA binding protein (SSB) forming a stoichiometric complex of 2 RecG monomers per SSB tetramer. This binding occurs in solution and to SSB protein bound to single stranded DNA (ssDNA). The result of this binding is stabilization of the interaction of RecG with ssDNA. In contrast, RuvAB does not bind to SSB. Side-by-side analysis of the catalytic efficiency of the ATPase activity of each enzyme revealed that (−)scDNA and ssDNA are potent stimulators of the ATPase activity of RecG but not for RuvAB, whereas relaxed circular DNA is a poor cofactor for RecG but an excellent one for RuvAB. Collectively, these data suggest that the timing of repair protein access to the DNA at stalled forks is determined by the nature of the DNA available at the fork. We propose that RecG acts first, with RuvAB acting either after RecG or in a separate pathway following protein-independent fork regression. 相似文献
12.
John M. Heumann 《Nucleic acids research》1976,3(11):3167-3171
Linear chromosomes possessing internal repeats of their terminal sequences can form intramolecular crossed-strand exchanges that allow replication of the chromosome ends. Evidence is discussed that such a mechanism may be utilized during replication of herpes simplex virus DNA and during replication of macronuclear DNA from the hypotrichous ciliate Oxytricha. 相似文献
13.
A model for the initiation of replication in Escherichia coli 总被引:7,自引:0,他引:7
The role of the protein DnaA as the principal control of replication initiation is investigated by a mathematical model. Data showing that DnaA is growth rate regulated suggest that its concentration alone is not the only factor determining the timing of initiation. A mathematical model with stochastic and deterministic components is constructed from known experimental evidence and subdivides the total pool of DnaA protein into four forms. The active form, DnaA.ATP, can be bound to the origin of replication, oriC, where it is assumed that a critical level of these bound molecules is needed to initiate replication. The active form can also exist in a reserve pool bound to the chromosome or a free pool in the cytoplasm. Finally, a large inactive pool of DnaA protein completes the state variables and provides an explanation for how the DnaA.ATP form could be the principal controlling element in the timing of initiation. The fact that DnaA protein is an autorepressor is used to derive its synthesis rate. The model studies a single exponentially growing cell through a series of cell divisions. Computer simulations are performed, and the results compare favorably to data for different cell cycle times. The model shows synchrony of initiation events in agreement with experimental results. 相似文献
14.
15.
L. F. Abbott 《Journal of molecular evolution》1988,27(2):114-120
Summary The catalytic effects that existing polymer chains have on the formation of new chains are modeled using ideas from spin glasses and neural networks. Computer simulation shows that isolated groups of chains in this model are capable of accurately replicating a wide variety of complex structures without templating. Replication in the model arises spontaneously and rapidly, leading to an extremely simple realization of a system exhibiting Darwinian evolution. 相似文献
16.
Oke M Kerou M Liu H Peng X Garrett RA Prangishvili D Naismith JH White MF 《Journal of virology》2011,85(2):925-931
The Rudiviridae are a family of rod-shaped archaeal viruses with covalently closed, linear double-stranded DNA (dsDNA) genomes. Their replication mechanisms remain obscure, although parallels have been drawn to the Poxviridae and other large cytoplasmic eukaryotic viruses. Here we report that a protein encoded in the 34-kbp genome of the rudivirus SIRV1 is a member of the replication initiator (Rep) superfamily of proteins, which initiate rolling-circle replication (RCR) of diverse viruses and plasmids. We show that SIRV Rep nicks the viral hairpin terminus, forming a covalent adduct between an active-site tyrosine and the 5' end of the DNA, releasing a 3' DNA end as a primer for DNA synthesis. The enzyme can also catalyze the joining reaction that is necessary to reseal the DNA hairpin and terminate replication. The dimeric structure points to a simple mechanism through which two closely positioned active sites, each with a single tyrosine residue, work in tandem to catalyze DNA nicking and joining. We propose a novel mechanism for rudivirus DNA replication, incorporating the first known example of a Rep protein that is not linked to RCR. The implications for Rep protein function and viral replication are discussed. 相似文献
17.
We sequenced 2800 bp of mitochondrial DNA from each of 33 species and 2 subspecies (35 taxa) of terns (Sternini), and employed Bayesian methods to derive a phylogeny with good branch support based on posterior probabilities. The resulting tree confirmed many of the generally accepted taxonomic groups, and led us to suggest a revision of the terns that recognizes 12 genera, 11 of which correspond to a distinct clade on the tree or a highly divergent species (1 genus was not represented in the phylogeny). As an example of how the molecular phylogeny reflects similarities in morphology and behavior among the terns, we used the phylogeny to examine the evolution of the breeding (alternate) head plumage patterns among the terns to test the hypothesis that this character is phylogenetically informative. The three basic types of head plumage (white crown, black cap, and black cap with a white blaze on the forehead) were highly conserved within clades, with notable exceptions in two white-crowned species that evolved independently among the black-capped terns. Based on the appearance of the close relatives of these exceptional species, their white crowns appear to be due to the retention of either winter (basic) plumage characteristics or perhaps juvenile characteristics when the birds molt into their breeding plumage. Examination of the evolutionary history of head plumage indicated that the white-crowned species such as the noddies (Anous) and the white tern (Gygis alba) are probably most representative of ancestral terns. 相似文献
18.
Christiane M.-R. Fauron Mark Casper Raymond Gesteland Marc Albertsen 《The Plant journal : for cell and molecular biology》1992,2(6):949-958
Regeneration of plants from maize cytoplasmic male sterile type T (cmsT) callus tissue culture promotes, in some instances, genetic variability in their mitochondrial genomes. These mutations have been analyzed in various cmsT regenerated plants that have or have not regained the male fertile phenotype. A unique multi-recombination model explains the various mitochondrial genome rearrangements. First, recombination involving two different sets of direct repeats gives rise to subgenomic recombinant circles. Second, intermolecular recombination between some selected subgenomes gives rise to a new rearranged master chromosome. The consequence of these events is the formation of a new master chromosome containing sequence deletions and duplications when compared to the progenitor. This new mitochondrial genome seems stable, although it does not contain the entire genetic complexity of the progenitor. 相似文献
19.
20.