首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Alterations in the expression and activity of the centrosomal kinase, Aurora-A/STK15, affect genomic stability, disrupt the fidelity of centrosome duplication, and induce cellular transformation. A mitotic spindle-associated protein, astrin/DEEPEST, was identified as an Aurora-A interacting protein by a two-hybrid screen. Astrin and Aurora-A co-express at mitosis and co-localize to mitotic spindles. RNAi-mediated depletion of astrin abolishes the localization of Aurora-A on mitotic spindles and leads to a moderate mitotic cell cycle delay, which resembles the mitotic arrest phenotypes in siAurora-A treated cells. However, depletion of Aurora-A does not affect astrin localization, and co-depletion of both astrin and Aurora-A causes a mitotic arrest phenotype similar to depletion of siAurora-A alone. These results suggest that astrin acts upstream of Aurora-A to regulate its mitotic spindle localization.  相似文献   

3.
Aurora kinases have evolved as a new family of mitotic centrosome- and microtubule-associated kinases that regulate the structure and function of centrosomes and spindle. One of its members, Aurora-A, is a potential oncogene. Overexpression of Aurora-A is also implicated in defective centrosome duplication and segregation, leading to aneuploidy and tumorigenesis in various cancer cell types. However, the regulatory pathways for mammalian Aurora-A are not well understood. Exploiting the lethal phenotype associated with the overexpression of Aurora-A in yeast, we performed a dosage suppressor screen in yeast and report here the identification of a novel negative regulator of Aurora-A, named AIP (Aurora-A kinase Interacting Protein). AIP is a ubiquitously expressed nuclear protein that interacts specifically with human Aurora-A in vivo. Ectopic expression of AIP with Aurora-A in NIH 3T3 and COS cells results in the down-regulation of ectopically expressed Aurora-A protein levels, and this down-regulation is demonstrated to be the result of destabilization of Aurora-A through a proteasome-dependent protein degradation pathway. A noninteracting deletion mutant of AIP does not down-regulate Aurora-A protein, suggesting that the interaction is important for the protein degradation. AIP could therefore be a potential useful target gene for anti-tumor drugs.  相似文献   

4.
HURP is part of a Ran-dependent complex involved in spindle formation   总被引:1,自引:0,他引:1  
BACKGROUND: GTP-loaded Ran induces the assembly of microtubules into aster-like and spindle-like structures in Xenopus egg extract. The microtubule-associated protein (MAP), TPX2, can mediate Ran's role in aster formation, but factors responsible for the transition from aster-like to spindle-like structures have not been described. RESULTS: Here we identify a complex that is required for the conversion of aster-like to spindle-like structures. The complex consists of two characterized MAPs (TPX2, XMAP215), a plus end-directed motor (Eg5), a mitotic kinase (Aurora A), and HURP, a protein associated with hepatocellular carcinoma. Formation and function of the complex is dependent on Aurora A activity. HURP protein was further characterized and shown to bind microtubules and affect their organization both in vitro and in vivo. In egg extract, anti-HURP antibodies disrupt the formation of both Ran-dependent and chromatin and centrosome-induced spindles. HURP is also required for the proper formation and function of mitotic spindles in HeLa cells. CONCLUSIONS: HURP is a new and essential component of the mitotic apparatus. HURP acts as part of a multicomponent complex that affects the growth or stability of spindle MTs and is required for spindle MT organization.  相似文献   

5.
Through a functional genomic screen for mitotic regulators, we identified hepatoma up-regulated protein (HURP) as a protein that is required for chromosome congression and alignment. In HURP-depleted cells, the persistence of unaligned chromosomes and the reduction of tension across sister kinetochores on aligned chromosomes resulted in the activation of the spindle checkpoint. Although these defects transiently delayed mitotic progression, HeLa cells initiated anaphase without resolution of these deficiencies. This bypass of the checkpoint arrest provides a tumor-specific mechanism for chromosome missegregation and genomic instability. Mechanistically, HURP colocalized with the mitotic spindle in a concentration gradient increasing toward the chromosomes. HURP binds directly to microtubules in vitro and enhances their polymerization. In vivo, HURP stabilizes mitotic microtubules, promotes microtubule polymerization and bipolar spindle formation, and decreases the turnover rate of the mitotic spindle. Thus, HURP controls spindle stability and dynamics to achieve efficient kinetochore capture at prometaphase, timely chromosome congression to the metaphase plate, and proper interkinetochore tension for anaphase initiation.  相似文献   

6.
At the onset of mitosis, the Golgi complex undergoes a multistep fragmentation process that is required for its correct partitioning into the daughter cells. Inhibition of this Golgi fragmentation results in cell cycle arrest at the G2 stage, suggesting that correct inheritance of the Golgi complex is monitored by a “Golgi mitotic checkpoint.” However, the molecular basis of this G2 block is not known. Here, we show that the G2-specific Golgi fragmentation stage is concomitant with centrosome recruitment and activation of the mitotic kinase Aurora-A, an essential regulator for entry into mitosis. We show that a block of Golgi partitioning impairs centrosome recruitment and activation of Aurora-A, which results in the G2 block of cell cycle progression. Overexpression of Aurora-A overrides this cell cycle block, indicating that Aurora-A is a major effector of the Golgi checkpoint. Our findings provide the basis for further understanding of the signaling pathways that coordinate organelle inheritance and cell duplication.  相似文献   

7.
Understanding the regulation of mitotic entry is one of the most important goals of modern cell biology, and computational modeling of mitotic entry has been a subject of several recent studies. However, there are still many regulation mechanisms that remain poorly characterized. Two crucial aspects are how mitotic entry is controlled by its upstream regulators Aurora-A and Plk1, and how mitotic entry is coordinated with other biological events, especially G2/M checkpoint. In this context, we reconstructed a comprehensive computational model that integrates the mitotic entry network and the G2/M checkpoint system. Computational simulation of this model and subsequent experimental verification revealed that Aurora-A and Plk1 are redundant to the activation of cyclin B/Cdk1 during normal mitotic entry, but become especially important for cyclin B/Cdk1 activation during G2/M checkpoint recovery. Further analysis indicated that, in response to DNA damage, Chk1-mediated network rewiring makes cyclin B/Cdk1 more sensitive to the down-regulation of Aurora-A and Plk1. In addition, we demonstrated that concurrently targeting Aurora-A and Plk1 during G2/M checkpoint recovery achieves a synergistic effect, which suggests the combinational use of Aurora-A and Plk1 inhibitors after chemotherapy or radiotherapy. Thus, the results presented here provide novel insights into the regulation mechanism of mitotic entry and have potential value in cancer therapy.  相似文献   

8.
BACKGROUND: Formation of a bipolar mitotic spindle in somatic cells requires the cooperation of two assembly pathways, one based on kinetochore capture by centrosomal microtubules, the other on RanGTP-mediated microtubule organization in the vicinity of chromosomes. How RanGTP regulates kinetochore-microtubule (K-fiber) formation is not presently understood. RESULTS: Here we identify the mitotic spindle protein HURP as a novel target of RanGTP. We show that HURP is a direct cargo of importin beta and that in interphase cells, it shuttles between cytoplasm and nucleus. During mitosis, HURP localizes predominantly to kinetochore microtubules in the vicinity of chromosomes. Overexpression of importin beta or RanT24N (resulting in low RanGTP) negatively regulates its spindle localization, whereas overexpression of RanQ69L (mimicking high RanGTP) enhances HURP association with the spindle. Thus, RanGTP levels control HURP localization to the mitotic spindle in vivo, a conclusion supported by the analysis of tsBN2 cells (mutant in RCC1). Upon depletion of HURP, K-fiber stabilization is impaired and chromosome congression is delayed. Nevertheless, cells eventually align their chromosomes, progress into anaphase, and exit mitosis. HURP is able to bundle microtubules and, in vitro, this function is abolished upon complex formation with importin beta and regulated by Ran. These data indicate that HURP stabilizes K-fibers by virtue of its ability to bind and bundle microtubules. CONCLUSIONS: Our study identifies HURP as a novel component of the Ran-importin beta-regulated spindle assembly pathway, supporting the conclusion that K-fiber formation and stabilization involves both the centrosome-dependent microtubule search and capture mechanism and the RanGTP pathway.  相似文献   

9.
Aurora family kinases contribute to regulation of mitosis. Using RNA interference in synchronized HeLa cells, we now show that Aurora-A is required for mitotic entry. We found that initial activation of Aurora-A in late G2 phase of the cell cycle is essential for recruitment of the cyclin B1-Cdk1 complex to centrosomes, where it becomes activated and commits cells to mitosis. A two-hybrid screen identified the LIM protein Ajuba as an Aurora-A binding protein. Ajuba and Aurora-A interact in mitotic cells and become phosphorylated as they do so. In vitro analyses revealed that Ajuba induces the autophosphorylation and consequent activation of Aurora-A. Depletion of Ajuba prevented activation of Aurora-A at centrosomes in late G2 phase and inhibited mitotic entry. Overall, our data suggest that Ajuba is an essential activator of Aurora-A in mitotic commitment.  相似文献   

10.
11.
Aurora-A is an oncogenic kinase that plays essential roles in mitosis as well as cell survival. Aurora-A interacting protein (AIP) was identified as a negative regulator of Aurora-A with its ectopic over expression inducing destabilization of Aurora-A protein. Here we present evidence that in human cells, contrary to the earlier report, AIP functions in stabilizing rather than destabilizing Aurora-A. Furthermore, AIP is phosphorylated on Serine 70 by Aurora-A but not Aurora-B and expression of phosphorylation mimic mutant of AIP results in prolonged protein stability compared to unphosphorylatable mutant. We observed that when co-expressed with AIP, protein levels of both Aurora-A and Aurora-B are markedly elevated regardless of their kinase activities and phosphorylation state of AIP. Interaction of Aurora kinases with AIP is necessary for this elevated stability. This phenomenon is commonly detected in several human cancer cell lines used in this study. Depletion of AIP by RNA interference decreased Aurora-A but not Aurora-B in two of the three cell lines analyzed, indicating that under physiological condition, AIP functions in stabilization of Aurora-A but not Aurora-B, though this regulation may be dependent on additional factors as well. Further, AIP siRNA induced cell cycle arrest at G2/M, which is consistent with anticipated loss of function of Aurora-A in these cells. Thus, our study provides the first evidence of a role for AIP in G2/M cell cycle progression by cooperatively regulating protein stabilization of its up-stream regulator, Aurora-A kinase through protein-protein interaction as well as protein phosphorylation.  相似文献   

12.
HURP is a spindle-associated protein that mediates Ran-GTP-dependent assembly of the bipolar spindle and promotes chromosome congression and interkinetochore tension during mitosis. We report here a biochemical mechanism of HURP regulation by Aurora A, a key mitotic kinase that controls the assembly and function of the spindle. We found that HURP binds to microtubules through its N-terminal domain that hyperstabilizes spindle microtubules. Ectopic expression of this domain generates defects in spindle morphology and function that reduce the level of tension across sister kinetochores and activate the spindle checkpoint. Interestingly, the microtubule binding activity of this N-terminal domain is regulated by the C-terminal region of HURP: in its hypophosphorylated state, C-terminal HURP associates with the microtubule-binding domain, abrogating its affinity for microtubules. However, when the C-terminal domain is phosphorylated by Aurora A, it no longer binds to N-terminal HURP, thereby releasing the inhibition on its microtubule binding and stabilizing activity. In fact, ectopic expression of this C-terminal domain depletes endogenous HURP from the mitotic spindle in HeLa cells in trans, suggesting the physiological importance for this mode of regulation. We concluded that phosphorylation of HURP by Aurora A provides a regulatory mechanism for the control of spindle assembly and function.  相似文献   

13.
Regulation of Aurora-A kinase on the mitotic spindle   总被引:4,自引:0,他引:4  
Kufer TA  Nigg EA  Silljé HH 《Chromosoma》2003,112(4):159-163
The error-free segregation of duplicated chromosomes during cell division is essential for the maintenance of an intact genome. This process is brought about by a highly dynamic bipolar array of microtubules, the mitotic spindle. The formation and function of the mitotic spindle during M-phase of the cell cycle is regulated by protein phosphorylation, involving multiple protein kinases and phosphatases. Prominent among the enzymes implicated in spindle assembly is the serine/threonine-specific protein kinase Aurora-A. In several common human tumors, Aurora-A is overexpressed, and deregulation of this kinase was shown to result in mitotic defects and aneuploidy. Moreover, recent genetic evidence directly links the human Aurora-A gene to cancer susceptibility. Several of the physiological substrates of Aurora-A presumably await identification, but recent studies are beginning to shed light on the regulation of this critical mitotic kinase. Here, we review these findings with particular emphasis on the role of TPX2, a prominent spindle component implicated in a Ran-GTP-mediated spindle assembly pathway.Communicated by E.A. Nigg  相似文献   

14.
15.
Aurora-A kinase is a mitotic spindle-pole-associated protein that has been implicated in duplication and separation of centrosomes and in spindle assembly. The proper timing and amplitude of Aurora-A expression seems to be important, as elevated levels of this protein have been associated with centrosome abnormalities and aneuploidy in mammalian cells. We show that Aurora-A increases at the G2–M transistion and disappears completely at G1 in XL2 cells. Using Xenopus oocyte extracts, we demonstrate that degradation of Aurora-A is mediated by the anaphase-promoting complex (APC) and is regulated by Fizzy-Related but not by Fizzy. Degradation of Aurora-A depends on a D-Box, but not on its KEN-Box motif, as mutation of its C-terminal D-Box sequence induces stabilization of the protein. Accordingly, addition into the extracts of a cyclin B-type D-Box-motif-containing peptide completely suppresses its degradation. Furthermore, APC/Fizzy-Related ubiquitylates the wild type but not a D-Box mutant form of Aurora-A in vitro. Consistent with these data, ectopic expression of Fizzy-Related in Xenopus oocytes induces complete degradation of endogenous Aurora-A. Aurora-A is thus the first protein, at least in our assay system, that undergoes a D-Box-dependent degradation mediated by APC/Fizzy-Related but not by APC/Fizzy.  相似文献   

16.
Chromosome biorientation and congression during mitosis require precise control of microtubule dynamics [1-4]. The?dynamics of kinetochore microtubules (K-MTs) are regulated by a variety of microtubule-associated proteins (MAPs) [4-9]. Recently, a MAP known as HURP (hepatoma upregulated protein) was identified [10-12]. During mitosis, Ran-guanosine 5'-triphosphate (RanGTP) releases HURP from the importin β inhibitory complex and allows it to localize to the kinetochore fiber (k-fiber) [12, 13]. HURP stabilizes k-fibers and promotes chromosome congression [12, 14, 15]. However, the molecular mechanism underlying the role of HURP in regulating chromosome congression remains elusive. Here, we show that overexpression of the N-terminal microtubule binding domain (1-278 aa, HURP(278)) of HURP induces a series of mitotic defects that mimic the effects of Kif18A depletion. In addition, coimmunoprecipitation and bimolecular fluorescence complementation assays identify Kif18A as a novel interaction partner of HURP. Furthermore, quantitative results from live-cell imaging analyses illustrate that HURP regulates Kif18A localization and dynamics at the plus end of K-MTs. Lastly, misaligned chromosomes in HURP(278)-overexpressing cells can be partially rescued by the overexpression of Kif18A. Our results demonstrate in part the regulatory mechanism for Kif18A during chromosome congression and provide new insights into the mechanism of chromosome movement at the metaphase plate.  相似文献   

17.
Determinants for Aurora-A activation and Aurora-B discrimination by TPX2   总被引:1,自引:0,他引:1  
The mitotic kinases Aurora-A and Aurora-B have similar amino-acid sequences but are differently localised and regulated during cell division. The basis for their interactions with different and specific regulators is unclear. Surprisingly, our recent structural studies indicate that TPX2 regulates Aurora-A activity by binding at a site that is conserved almost completely on Aurora-B. Here we investigate molecular determinants of TPX2-Aurora-A recognition. Using structure-based mutagenesis, we show that a single amino-acid difference on the surface of the kinase catalytic domain is key to the precision with which TPX2 discriminates between Aurora-A and Aurora-B. The conservation at this amino-acid position suggests that this discriminatory mechanism is likely to be conserved in higher eukaryotes.  相似文献   

18.
A large number of patients are resistant to taxane-based chemotherapy. Functional mitotic checkpoints are essential for taxane sensitivity. Thus, mitotic regulators are potential markers for therapy response and could be targeted for anticancer therapy. In this study, we identified a novel function of ubiquitin (Ub)-specific processing protease-7 (USP7) that interacts and cooperates with protein death domain-associated protein (Daxx) in the regulation of mitosis and taxane resistance. Depletion of USP7 impairs mitotic progression, stabilizes cyclin B and reduces stability of the mitotic E3 Ub ligase, checkpoint with forkhead and Ring-finger (CHFR). Consequently, cells with depleted USP7 accumulate Aurora-A kinase, a CHFR substrate, thus elevating multipolar mitoses. We further show that these effects are independent of the USP7 substrate p53. Thus, USP7 and Daxx are necessary to regulate proper execution of mitosis, partially via regulation of CHFR and Aurora-A kinase stability. Results from colony formation assay, in silico analysis across the NCI60 platform and in breast cancer patients suggest that USP7 levels inversely correlate with response to taxanes, pointing at the USP7 protein as a potential predictive factor for taxane response in cancer patients. In addition, we demonstrated that inhibition of Aurora-A attenuates USP7-mediated taxane resistance, suggesting that combinatorial drug regimens of Taxol and Aurora-A inhibitors may improve the outcome of chemotherapy response in cancer patients resistant to taxane treatment. Finally, our study offers novel insights on USP7 inhibition as cancer therapy.  相似文献   

19.
Human TPX2 is required for targeting Aurora-A kinase to the spindle   总被引:24,自引:0,他引:24       下载免费PDF全文
Aurora-A is a serine-threonine kinase implicated in the assembly and maintenance of the mitotic spindle. Here we show that human Aurora-A binds to TPX2, a prominent component of the spindle apparatus. TPX2 was identified by mass spectrometry as a major protein coimmunoprecipitating specifically with Aurora-A from mitotic HeLa cell extracts. Conversely, Aurora-A could be detected in TPX2 immunoprecipitates. This indicates that subpopulations of these two proteins undergo complex formation in vivo. Binding studies demonstrated that the NH2 terminus of TPX2 can directly interact with the COOH-terminal catalytic domain of Aurora-A. Although kinase activity was not required for this interaction, TPX2 was readily phosphorylated by Aurora-A. Upon siRNA-mediated elimination of TPX2 from cells, the association of Aurora-A with the spindle microtubules was abolished, although its association with spindle poles was unaffected. Conversely, depletion of Aurora-A by siRNA had no detectable influence on the localization of TPX2. We propose that human TPX2 is required for targeting Aurora-A kinase to the spindle apparatus. In turn, Aurora-A might regulate the function of TPX2 during spindle assembly.  相似文献   

20.
We previously reported that Aurora-A and the hNinein binding protein AIBp facilitate centrosomal structure maintenance and contribute to spindle formation. Here, we report that AIBp also interacts with Plk1, raising the possibility of functional similarity to Bora, which subsequently promotes Aurora-A–mediated Plk1 activation at Thr210 as well as Aurora-A activation at Thr288. In kinase assays, AIBp acts not only as a substrate but also as a positive regulator of both Aurora-A and Plk1. However, AIBp functions as a negative regulator to block phosphorylation of hNinein mediated by Aurora-A and Plk1. These findings suggest a novel AIBp-dependent regulatory machinery that controls mitotic entry. Additionally, knockdown of hNinein caused failure of AIBp to target the centrosome, whereas depletion of AIBp did not affect the localization of hNinein and microtubule nucleation. Notably, knockdown of AIBp in HeLa cells impaired both Aurora-A and Plk1 kinase, resulting in phenotypes with multiple spindle pole formation and chromosome misalignment. Our data show that depletion of AIBp results in the mis-localization of TACC3 and ch-TOG, but not CEP192 and CEP215, suggesting that loss of AIBp dominantly affects the Aurora-A substrate to cause mitotic aberrations. Collectively, our data demonstrate that AIBp contributes to mitotic entry and bipolar spindle assembly and may partially control localization, phosphorylation, and activation of both Aurora-A and Plk1 via hNinein during mitotic progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号