首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Digital imaging fluorescence microscopy was used to study the effect of two antioxidants, N-acetyl-cysteine (NAC) and glutathione, on the cytosolic free calcium concentration ([Ca2+]i) induced by cholecystokinin-octapeptide (CCK-8) of mouse pancreatic acinar cells. When acinar cells were preincubated with either NAC or glutathione, subsequent stimulation with CCK-8 in the presence of each antioxidant had no significant effect on the typical pattern of [Ca2+]i transient evoked by the gastrointestinal hormone. However, application of NAC to acinar cells pretreated for 60 min with the same antioxidant, strongly blocked the oscillatory pattern initiated by CCK-8, inhibiting both amplitude and frequency of calcium oscillations. By contrast, glutathione had no effect on the oscillatory pattern evoked by CCK-8. The present results allow us to speculate that during [Ca2+]i oscillation there is a production of oxidants that facilitate oscillations by enhancing release of calcium from internal stores.  相似文献   

2.
BACKGROUND INFORMATION: This paper studies the effect of H(2)O(2) on mitochondrial responses evoked by CCK-8 (cholecystokinin 8) in mouse pancreatic acinar cells. Cytosolic ([Ca(2+)](c)) and mitochondrial ([Ca(2+)](m)) free-calcium concentrations, mitochondrial inner membrane potential (psi(m)) and FAD autofluorescence were monitored using confocal laser scanning microscopy. RESULTS: CCK-8 induced an increase in [Ca(2+)](m) that slowly declined towards the prestimulation level. Depolarization of psi(m) that partially recovered, as well as increases in FAD autofluorescence, could also be observed in response to the hormone. Pretreatment of cells with 1 mM H(2)O(2) alone resulted in marked changes in mitochondrial parameters and, moreover, H(2)O(2) inhibited the CCK-8-evoked changes in [Ca(2+)](m), psi(m) and FAD autofluorescence. The results of the present study have demonstrated that CCK-8 can evoke marked changes in pancreatic acinar cell mitochondrial activity and that CCK-8-evoked responses are blocked by H(2)O(2). Additionally, H(2)O(2) releases Ca(2+) from intracellular stores and inhibits pancreatic acinar cell responses to CCK-8. CONCLUSION: The effects observed reflect an impairment of mitochondrial activity in the presence of H(2)O(2) that could represent some of its mechanisms of action to induce cellular damage leading to cell dysfunction and generation of pathologies.  相似文献   

3.
The effects of the thiol reagent, phenylarsine oxide (PAO, 10(-5)-10(-3) M ), a membrane-permeable trivalent arsenical compound that specifically complexes vicinal sulfhydryl groups of proteins to form stable ring structures, were studied by monitoring intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase dispersed rat pancreatic acinar cells. PAO increased [Ca2+]i by mobilizing calcium from intracellular stores, since this increase was observed in the absence of extracellular calcium. PAO also prevented the CCK-8-induced signal of [Ca2+]i and inhibited the oscillatory pattern initiated by aluminium fluoride (AlF-4). In addition to the effects of PAO on calcium mobilization, it caused a significant increase in amylase secretion and reduced the secretory response to either CCK-8 or AlF-4. The effects of PAO on both [Ca2+]i and amylase release were reversed by the sulfhydryl reducing agent, dithiothreitol (2 mM). Pretreatment of acinar cells with high concentration of ryanodine (50 microM) reduced the PAO-evoked calcium release. However, PAO was still able to release a small fraction of Ca2+ from acinar cells in which agonist-releasable Ca2+ pools had been previously depleted by thapsigargin (0.5 microM) and ryanodine receptors were blocked by 50 microM ryanodine. We conclude that, in pancreatic acinar cells, PAO mainly releases Ca2+ from the ryanodine-sensitive calcium pool and consequently induces amylase secretion. These effects are likely to be due to the oxidizing effects of this compound.  相似文献   

4.
In the present study we have studied how [Ca2+] i is influenced by H2O2 in collagenase-dispersed mouse pancreatic acinar cells and the mechanism underlying this effect by using a digital microspectrofluorimetric system. In the presence of normal extracellular calcium concentration, perfusion of pancreatic acinar cells with 1 mm H2O2 caused a slow sustained [Ca2+] i increase, reaching a stable plateau after 10–15 min of perfusion. This increase induced by H2O2 was also observed in a nominally calcium-free medium, reflecting the release of calcium from intracellular store(s). Application of 1 mm H2O2 to acinar cells, in which nonmitochondrial agonist-releasable calcium pools had been previously depleted by a maximal concentration of CCK-8 (1 nm) or thapsigargin (0.5 μm) was still able to induce calcium release. Similar results were observed when thapsigargin was substituted for the mitochondrial uncoupler FCCP (0.5 μm). By contrast, simultaneous addition of thapsigargin and FCCP clearly abolished the H2O2-induced calcium increase. Interestingly, co-incubation of intact pancreatic acinar cells with CCK-8 plus thapsigargin and FCCP in the presence of H2O2 did not significantly affect the transient calcium spike induced by the depletion of nonmitochondrial and mitochondrial agonist-releasable calcium pools, but was followed by a sustained increase of [Ca2+] i . In addition, H2O2 was able to block calcium efflux evoked by CCK and thapsigargin. Finally, the transient increase in [Ca2+] i induced by H2O2 was abolished by an addition of 2 mm dithiothreitol (DTT), a sulfhydryl reducing agent. Our results show that H2O2 releases calcium from CCK-8- and thapsigargin-sensitive intracellular stores and from mitochondria. The action of H2O2 is likely mediated by oxidation of sulfhydryl groups of calcium-ATPases. Received: 15 May 2000/Revised: 4 October 2000  相似文献   

5.
The present study investigates the effect of reactive oxygen species (ROS) on actin filament reorganisation and its relevance to exocytosis in pancreatic acinar cells. Treatment of pancreatic acini with cholecystokinin (CCK-8) induced spatial and temporal changes in actin filament reorganisation with an initial depolymerisation of the apical actin barrier followed by an increase in the actin filament content in the subapical area leading to amylase release. Hydrogen peroxide (H(2)O(2)) increased actin filament content and potentiated the polymerizing effects of CCK-8 in these cells but abolished the disruption of the apical actin layer and amylase release induced by CCK-8. Similar to CCK-8, ROS generated by the oxidation of hypoxanthine (HX) with xanthine oxidase (XOD) induced an initial decrease in actin filaments located under the apical membrane followed by a smaller increase in the content of actin filaments in the subapical area. XOD-generated ROS are able to increase amylase release in pancreatic acini although combination with CCK-8 leads to abnormal exocytosis. We provide evidence that indicates that CCK-8- and ROS-induced actin reorganisation is entirely dependent on Ca(2+) mobilisation and independent of PKC activation. The regulation of the actin cytoskeleton by ROS might be involved in radical-induced cell injury in pancreatic acinar cells.  相似文献   

6.
血糖浓度对糖尿病大鼠胰腺外分泌功能的影响   总被引:2,自引:0,他引:2  
用链佐霉素诱导大鼠产生尿病,其胰腺组织淀粉的含量降低,胆囊收缩素(CCK-8)刺激所引起的胰淀粉酶分泌也明显降低。用一种可以降低糖尿病大鼠血糖,但不影响其血清胰岛素水平的药物--钒酸钠灌胃,可翻转上述变化。体外实验分析表明,高糖可抑制胰腺泡蛋白质的合成,还可以引起胰腺泡膜丙二醛含量增加,从而提示,糖尿病大鼠胰外分泌功能障碍与血液葡萄浓度过高有密切关系。  相似文献   

7.
The antiapoptotic protein Bcl-2 plays important roles in Ca(2+) signaling by influencing inositol triphosphate receptors and regulating Ca(2+)-induced Ca(2+) release. Here we investigated whether Bcl-2 affects Ca(2+) extrusion in pancreatic acinar cells. We specifically blocked the Ca(2+) pumps in the endoplasmic reticulum and assessed the rate at which the cells reduced an elevated cytosolic Ca(2+) concentration after a period of enhanced Ca(2+) entry. Because external Ca(2+) was removed and endoplasmic reticulum Ca(2+) pumps were blocked, Ca(2+) extrusion was the only process responsible for recovery. Cells lacking Bcl-2 restored the basal cytosolic Ca(2+) level much faster than control cells. The enhanced Ca(2+) extrusion in cells from Bcl-2 knockout (Bcl-2 KO) mice was not due to increased Na(+)/Ca(2+) exchange activity, because removal of external Na(+) did not influence the Ca(2+) extrusion rate. Overexpression of Bcl-2 in the pancreatic acinar cell line AR42J decreased Ca(2+) extrusion, whereas silencing Bcl-2 expression (siRNA) had the opposite effect. Loss of Bcl-2, while increasing Ca(2+) extrusion, dramatically decreased necrosis and promoted apoptosis induced by oxidative stress, whereas specific inhibition of Ca(2+) pumps in the plasma membrane (PMCA) with caloxin 3A1 reduced Ca(2+) extrusion and increased necrosis. Bcl-2 regulates PMCA function in pancreatic acinar cells and thereby influences cell fate.  相似文献   

8.
This study investigates the effects of dephostatin, a new tyrosine phosphatase inhibitor, on intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase dispersed rat pancreatic acinar cells. Dephostatin evoked a sustained elevation in [Ca2+]i by mobilizing calcium from intracellular calcium stores in either the absence of extracellular calcium or the presence of lanthanium chloride (LaCl3). Pretreatment of acinar cells with dephostatin prevented cholecystokinin-octapeptide (CCK-8)-induced signal of [Ca2+]i and inhibited the oscillatory pattern initiated by aluminium fluoride (AlF- 4), whereas co-incubation with CCK-8 enhances the plateau phase of calcium response to CCK-8 without modifying the transient calcium spike. The effects of dephostatin on calcium mobilization were reversed by the presence of the sulfhydryl reducing agent, dithiothreitol. Stimulation of acinar cells with thapsigargin in the absence of extracellular Ca2+ resulted in a transient rise in [Ca2+]i . Application of dephostatin in the continuous presence of thapsigargin caused a small but sustained elevation in [Ca2+]i . These results suggest that dephostatin can mobilize Ca2+ from both a thapsigargin-sensitive and thapsigargin-insensitive intracellular stores in pancreatic acinar cells. In addition, dephostatin can stimulate the release of amylase from pancreatic acinar cells and moreover, reduce the secretory response to CCK-8. The results indicate that dephostatin can release calcium from intracellular calcium pools and consequently induces amylase secretion in pancreatic acinar cells. These effects are likely due to the oxidizing effects of this compound.  相似文献   

9.
We recently reported that store-operated Ca2+ entry (SOCE) in nonexcitable cells is likely to be mediated by a reversible interaction between Ca2+ channels in the plasma membrane and the endoplasmic reticulum, a mechanism known as "secretion-like coupling." As for secretion, in this model the actin cytoskeleton plays a key regulatory role. In the present study we have explored the involvement of the secretory proteins synaptosome-associated protein (SNAP-25) and vesicle-associated membrane protein (VAMP) in SOCE in pancreatic acinar cells. Cleavage of SNAP-25 and VAMPs by treatment with botulinum toxin A (BoNT A) and tetanus toxin (TeTx), respectively, effectively inhibited amylase secretion stimulated by the physiological agonist CCK-8. BoNT A significantly reduced Ca2+ entry induced by store depletion using thapsigargin or CCK-8. In addition, treatment with BoNT A once SOCE had been activated reduced Ca2+ influx, indicating that SNAP-25 is needed for both the activation and maintenance of SOCE in pancreatic acinar cells. VAMP-2 and VAMP-3 are expressed in mouse pancreatic acinar cells. Both proteins associate with the cytoskeleton upon Ca2+ store depletion, although only VAMP-2 seems to be sensitive to TeTx. Treatment of pancreatic acinar cells with TeTx reduced the activation of SOCE without affecting its maintenance. These findings support a role for SNAP-25 and VAMP-2 in the activation of SOCE in pancreatic acinar cells and show parallels between this process and secretion in a specialized secretory cell type. synaptosome-associated protein; vesicle-associated membrane protein; pancreatic acinar cells; cytoskeleton; calcium entry  相似文献   

10.
This study investigates the effects of the islet hormones insulin (Ins), glucagon (Glu), and somatostatin (Som) with nerve stimulation (EFS) acetylcholine (ACh) and cholecytokinin-octapeptide (CCK-8) on amylase secretion and intracellular free calcium concentration [Ca(2+)](i) in the pancreas of age-matched control and diabetic rats. Either Ins, Glu or Som elicited small increases in amylase secretion from the pancreas of age-matched control animals compared to a much larger increase in amylase secretion with either EFS, ACh or CCK-8. Combining the islet hormones with either EFS, ACh or CCK-8 resulted in marked potentiation of amylase output. In the diabetic pancreas, the islet hormones had no effect on amylase secretion compared to diabetic control. Moreover, either EFS, ACh or CCK-8 evoked a much smaller increase in amylase output compared to age-matched control. In addition, the islet hormones failed to potentiate the secretory effects of either EFS, ACh or CCK-8. In fura-2 loaded acinar cells from age-matched control pancreas either Ins or Glu elicited a small increase in [Ca(2+)](i) whereas Som had no effect. Both ACh and CCK-8 evoked large increases in [Ca(2+)](i) compared to control. Combining either Ins, Glu or Som with either ACh or CCK-8 resulted in a marked elevation in [Ca(2+)](i) compared to the responses obtained with either the islet hormones, ACh or CCK-8 alone. In diabetic fura-2 loaded pancreatic acinar cells, the islet hormones had no effect on [Ca(2+)](i) compared to control and moreover, the responses were much smaller than those obtained in acinar cells from age-matched control. Both ACh and CCK-8 induced large increases in [Ca(2+)]( i) in diabetic acinar cells. However, combining the islet hormones with either ACh or CCK-8 failed to enhance [Ca(2+)](i) compared to the reponses obtained in acinar cells from age-matched control. The results suggests that [Ca(2+)](i) homeostasis is deranged during diabetes mellitus and this in turn is probably associated with reduced pancreatic amylase secretion.  相似文献   

11.
Cholecystokinin (CCK) has been shown to increase cytosolic calcium and stimulate enzyme release from pancreatic acinar cells and a rat acinar cell line, AR42J. CCK is also trophic to normal pancreas and pancreatic cancer; however, the cellular mechanisms which regulate CCK-stimulated growth are unknown. The effect of CCK on intracellular calcium was evaluated in four human pancreatic cancer cell lines known to grow in response to CCK but not secrete enzymes (SW-1990, MIA PaCa-2, BXPC-3 and PANC-1) and a rat acinar cell line (AR42J) shown to secrete enzymes but not grow with CCK. By using single cell fluorescence microscopy in fura-2 loaded cells, intracellular calcium [Ca2+]i was measured. After obtaining baseline fluorescent cell images, synthetic CCK-octapeptide (CCK8) was added to the cells and images of cell fluorescence captured. [Ca2+]i of the rat acinar cells increased (603%) over the baseline within the first minute after the addition of CCK (4.10(-13) M to 4.10(-10) M) in 77% of cells tested. In contrast [Ca2+]i failed to significantly change in the human cancer cells treated with CCK. To further localize the defect in hormone signal transduction in cancer cells, cells were suspended in low calcium media and the plasma membranes were selectively permeabilized with digitonin. Media free calcium concentration was continuously monitored by fura-2 fluorescence. Addition of inositol 1,4,5-trisphosphate (IP3) resulted in a marked increase in medium calcium concentration indicating IP3 was capable of releasing calcium from intracellular stores in both the AR42J rat acinar cell line and in the human pancreas cancer cell lines. In conclusion, CCK does not increase cytosolic calcium in human pancreatic cancer cells in contrast to rat acinar cells although all contain IP3-sensitive intracellular Ca2+ pools. Our results suggest that growth promoting and secretory effects of CCK on pancreatic cells may occur via two independent signalling pathways.  相似文献   

12.
To investigate the role of phospholipids in exocytotic secretory events, we utilized rat pancreatic acinar AR42J cells that secreted amylase in response to cholecystokinin octapeptide (CCK-8). Wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K), was found to inhibit the secretion in a dose-dependent manner. When changes in cell membrane phospholipids were investigated before and after CCK-8 stimulation using [32P]orthophosphoric acid-labeled AR42J cells, we observed a rapid increase in phosphatidic acid (PtdOH) levels right after stimulation, which was not observed in non-stimulated cells. The increase, however, was suppressed by wortmannin pre-treatment, which also inhibited amylase secretion. Changes in other major phospholipids were not significant. These results indicate that CCK-8 induces amylase secretion through PI3K-regulated production of PtdOH in cell membranes.  相似文献   

13.
The activated c-Met receptor has potent effects on normal tissues and tumors. c-Met levels are regulated by hepatocyte growth factor (HGF); however, it is unknown if they can be regulated by gastrointestinal (GI) hormones. c-Met is found in many GI tissues/tumors that possess GI hormone receptors. We studied the effect of GI hormones on c-Met in rat pancreatic acini, which possess both receptors. CCK-8, carbachol, and bombesin, but not VIP/secretin, decreased c-Met. CCK-8 caused rapid and potent c-Met down-regulation and abolished HGF-induced c-Met and Gab1 tyrosine phosphorylation, while stimulating c-Met serine phosphorylation. The effect of cholecystokinin (CCK) was also seen in intact acini using immunofluorescence, in a biotinylated fraction representing membrane proteins, in single acinar cells, in Panc-1 tumor cells, and in vivo in rats injected with CCK. CCK-8 did not decrease cell viability or overall responsiveness. GF109203X, thapsigargin, or their combination partially reversed the effect of CCK-8. In contrast to HGF-induced c-Met down-regulation, the effect of CCK was decreased by a lysosome inhibitor (concanamycin) but not the proteasome inhibitor lactacystin. Inhibitors of clathrin-mediated endocytosis blocked the effect of CCK. HGF but not CCK-8 caused c-Met ubiquitination. These results show CCK and other GI hormones can cause rapid c-Met down-regulation, which occurs by a novel mechanism. These results could be important for c-Met regulation in normal as well as in neoplastic tissue in the GI tract.  相似文献   

14.
15.
Abstract

Association of 125I-Bolton-Hunter labelled substance P (125I-BH-SP) to suspended pancreatic acinar cells of the guinea pig was studied. Cellular association at 37°C and 22°C was inhibited by cholecystokinin octapeptide (CCK-8) in concentrations from 10?9 to 10?6M, whereas another pancreatic secretagogue, carbachol, was uneffective. The CCK induced inhibition disappeared at low temperatures. CCK-8 mainly interfered with internalization of 125I-BH-SP into acinar cells. Increased extracellular Ca2+ and the Ca2+ ionophores A23187 and ionomycin reduced association of 125I-BH-SP to cells whereas extracellular Ca2+ chelation with EGTA had the opposite effect. However, extra- and intracellular Ca2+ chelation did not affect the degree of CCK-induced reduction of 125I-BH-SP association to acinar cells but eliminated the effect of the calcium ionophore ionomycin. Three agents known to interfere with receptor recycling, namely monensin, methylamine and ammonium chloride reduced cell-associated 125I-BH-SP. In a series of experiments, the cytoplasmic calcium concentrations ([Ca2+) during exposure to these three agents, to the CCK-8-analogue caerulein and to ionomycin were determined. In all cases, [Ca2+] was raised. The results indicate that endocytosis of receptor-bound 125I-BH-SP is regulated by CCK and that the endocytotic process is influenced by calcium.  相似文献   

16.
柴胡皂甙(I)对胰腺腺泡的拟膜受体激动剂作用   总被引:4,自引:0,他引:4  
应用检测淀粉酶分泌和单细胞[Ca^2 ]的技术,研究了Bt2-cGMP和GDP对柴胡皂甙(Ⅰ)[SA(I)]和CCK-8促大鼠胰腺腺泡分泌和增加[Ca^2 ]i的抑制作用。Bt2-cGMP对SA(I)和CCK-8促酶分泌的抑制有相似的剂量依赖性。Bt2-cGMP对SA(I)刺激的酶分泌动力学的抑制较对CCK-8滞后并持续。SA(I)诱发的胰腺腺泡单细胞[Ca^2 ]i的变化与CCK-8的作用有所不同;[Ca^2 ]i峰值上升较慢且持续较长,并在峰后[Ca^2 ]i再次升高。GDP亦抑制SA(I)刺激的酶分泌和[Ca^2 ]i增加的峰值。结果表明,SA(I)可激活胰腺腺泡细胞膜受体从而升高[Ca^2 ]i和促酶分泌。  相似文献   

17.
应用检测淀粉酶分泌和单细胞[Ca2 ]i 的技术 ,研究了Bt2-cGMP和GDP对柴胡皂甙(I)[SA(I)]和CCK -8促大鼠胰腺腺泡酶分泌和增加[Ca2 ]i 的抑制作用。Bt2-cGMP对SA(I)和CCK -8促酶分泌的抑制有相似的剂量依赖性。Bt2 -cGMP对SA(I)刺激的酶分泌动力学的抑制较对CCK -8滞后并持续。SA(I)诱发的胰腺腺泡单细胞[Ca2 ]i 的变化与CCK -8的作用有所不同 :[Ca2 ]i 峰值上升较慢且持续较长 ,并在峰后[Ca2 ]i 再次升高。GDP亦抑制SA(I)刺激的酶分泌和[Ca2 ]i 增加的峰植。结果表明 ,SA(I)可激活胰腺腺泡细胞膜受体从而升高[Ca2 ]i 和促酶分泌。  相似文献   

18.
We have employed confocal laser scanning microscopy to investigate how intracellular free calcium concentration ([Ca2+]i) is influenced by hydrogen peroxide (H2O2) in collagenase-dispersed mouse pancreatic acinar cells. In the absence of extracellular calcium, treatment of cells with increasing concentrations of H2O2 resulted in an increase in [Ca2+]i, indicating the release of calcium from intracellular stores. Micromolar concentrations of H2O2 induced an oscillatory pattern, whereas 1 mmol H2O2/L caused a slow and sustained increase in [Ca2+]i. H2O2 abolished the typical calcium release stimulated by thapsigargin or by the physiological agonist cholecystokinin octapeptide (CCK-8). Depletion of either agonist-sensitive or mitochondrial calcium pools was unable to prevent calcium release induced by 1 mmol H2O2/L, but depletion of both stores abolished it. Additionally, lower H2O2 concentrations were able to release calcium only after depletion of mitochondrial calcium stores. Treatment with either the phospholipase C inhibitor U-73122 or the inhibitor of the inositol 1,4,5-trisphosphate (IP3) receptor xestospongin C did not modify calcium release from the agonist-sensitive pool induced by 100 micromol H2O2/L, suggesting the involvement of a mechanism independent of IP3 generation. In addition, H2O2 reduced amylase release stimulated by CCK-8. Finally, either the H2O2-induced calcium mobilization or the inhibitory effect of H2O2 on CCK-8-induced amylase secretion was abolished by dithiothreitol, a sulphydryl reducing agent. We conclude that H2O2 at micromolar concentrations induces calcium release from agonist-sensitive stores, and at millimolar concentrations H2O2 can also evoke calcium release from the mitochondria. The action of H2O2 is mediated by oxidation of sulphydryl groups of calcium ATPases independently of IP3 generation.  相似文献   

19.
In the present work, we have evaluated the effect of an acute addition of melatonin on cholecystokinin octapeptide (CCK-8)-evoked Ca2+ signals and amylase secretion in mouse pancreatic acinar cells. For this purpose, freshly isolated mouse pancreatic acinar cells were loaded with fura-2 to study intracellular free Ca2+ concentration ([Ca2+]c). Amylase release and cell viability were studied employing colorimetric methods. Our results show that CCK-8 evoked a biphasic effect on amylase secretion, finding a maximum at a concentration of 0.1 nM and a reduction of secretion at higher concentrations. Pre-incubation of cells with melatonin (1 μM–1 mM) significantly attenuated enzyme secretion in response to high concentrations of CCK-8. Stimulation of cells with 1 nM CCK-8 led to a transient increase in [Ca2+]c, followed by a decrease towards a constant level. In the presence of 1 mM melatonin, stimulation of cells with CCK-8 resulted in a smaller [Ca2+]c peak response, a faster rate of decay of [Ca2+]c and lower values for the steady state of [Ca2+]c, compared with the effect of CCK-8 alone. Melatonin also reduced the oscillatory pattern of Ca2+ mobilization evoked by a physiological concentration of CCK-8 (20 pM), and completely inhibited Ca2+ mobilization induced by 10 pM CCK-8. On the other hand, Ca2+ entry from the extracellular space was not affected in the presence of melatonin. Finally, melatonin alone did not change cell viability. We conclude that melatonin, at concentrations higher than those found in blood, might regulate exocrine pancreatic function via modulation of Ca2+ signals.  相似文献   

20.
In this study, AR42J pancreatic acinar cells were used to investigate if glucagon-like peptide-1 (GLP-1) or glucagon might influence amylase release and acinar cell function. We first confirmed the presence of GLP-1 receptors on AR42J cells by reverse trasncriptase-polymerase chain reaction (RT-PCR), Western blotting, and partial sequencing analysis. While cholecystokinin (CCK) increased amylase release from AR42J cells, GLP-1, alone or in the presence of CCK, had no effect on amylase release but both CCK and GLP-1 increased intracellular calcium. Similar to GLP-1, glucagon increased both cyclic adenosine monophosphate (cAMP) and intracellular calcium in AR42J cells but it actually decreased CCK-mediated amylase release (n = 20, P < 0.01). CCK stimulation resulted in an increase in tyrosine phosphorylation of several cellular proteins, unlike GLP-1 treatment, where no such increased phosphorylation was seen. Instead, GLP-1 decreased such protein phosphorylations. Genestein blocked CCK-induced phosphorylation events and amylase secretion while vanadate increased amylase secretion. These results provide evidence that tyrosine phosphorylation is necessary for amylase release and that signaling through GLP-1 receptors does not mediate amylase release in AR42J cells. J. Cell. Physiol. 181:470-478, 1999. Published 1999 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号