首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assaf Alon  Colin Thorpe 《FEBS letters》2010,584(8):1521-1525
Quiescin sulfhydryl oxidase (QSOX) catalyzes formation of disulfide bonds between cysteine residues in substrate proteins. Human QSOX1 is a multi-domain, monomeric enzyme containing a module related to the single-domain sulfhydryl oxidases of the Erv family. A partial QSOX1 crystal structure reveals a single-chain pseudo-dimer mimicking the quaternary structure of Erv enzymes. However, one pseudo-dimer “subunit” has lost its cofactor and catalytic activity. In QSOX evolution, a further concatenation to a member of the protein disulfide isomerase family resulted in an enzyme capable of both disulfide formation and efficient transfer to substrate proteins.  相似文献   

2.
Brohawn SG  Miksa IR  Thorpe C 《Biochemistry》2003,42(37):11074-11082
Metal- and flavin-dependent sulfhydryl oxidases catalyze the generation of disulfide bonds with reduction of oxygen to hydrogen peroxide. The mammalian skin enzyme has been reported to be copper-dependent, but a recent protein sequence shows it belongs to the Quiescin/sulfhydryl oxidase (QSOX) flavoprotein family. This work demonstrates that avian QSOX is not a metalloenzyme, and that copper and zinc ions inhibit the oxidation of reduced pancreatic ribonuclease by the enzyme. Studies with Zn(2+), as a redox inactive surrogate for copper, show that one Zn(2+) binds to four-electron-reduced QSOX by diverting electrons away from the flavin and into two of the three redox active disulfide bridges in the enzyme. The resulting zinc complex is modestly air-stable, reverting to a spectrum of the native protein with a t(1/2) of 40 min, whereas the four-electron-reduced native QSOX is reoxidized in less than a second under comparable conditions. Using tris(2-carboxyethyl)phosphine hydrochloride (TCEP), an alternate substrate of QSOX that binds Zn(2+) relatively weakly (unlike dithiothreitol), allows rapid inhibition of oxidase activity to be demonstrated at low micromolar metal levels. Zinc binding was followed by rapid-scanning spectrophotometry. Copper also binds the four-electron-reduced form of QSOX with a visible spectrum suggestive of active site occupancy. In addition to interactions with the reduced enzyme, dialysis experiments show that multiple copper and zinc ions can bind to the oxidized enzyme without the perturbation of the flavin spectrum seen earlier. These data suggest that a reinvestigation of the metal content of skin sulfhydryl oxidases is warranted. The redox-modulated binding of zinc to QSOX is considered in light of evidence for a role of zinc-thiolate interactions in redox signaling and zinc mobilization.  相似文献   

3.
The Quiescin-sulfhydryl oxidase (QSOX) family of flavoenzymes catalyzes the direct and facile insertion of disulfide bonds into unfolded reduced proteins with concomitant reduction of oxygen to hydrogen peroxide. This review discusses the chemical mechanism of these enzymes and the involvement of thioredoxin and flavin-binding domains in catalysis. The variability of CxxC motifs in the QSOX family is highlighted and attention is drawn to the steric factors that may promote efficient thiol/disulfide exchange during oxidative protein folding. The varied cellular location of these multi-domain sulfhydryl oxidases is reviewed and potential intracellular and extracellular roles are summarized. Finally, this review identifies important unresolved questions concerning this ancient family of sulfhydryl oxidases.  相似文献   

4.
A sensitive new plate-reader assay has been developed showing that adult mammalian blood serum contains circulating soluble sulfhydryl oxidase activity that can introduce disulfide bonds into reduced proteins with the reduction of oxygen to hydrogen peroxide. The activity was purified 5000-fold to >90% homogeneity from bovine serum and found by mass spectrometry to be consistent with the short isoform of quiescin-sulfhydryl oxidase 1 (QSOX1). This FAD-dependent enzyme is present at comparable activity levels in fetal and adult commercial bovine sera. Thus cell culture media that are routinely supplemented with either fetal or adult bovine sera will contain this facile catalyst of protein thiol oxidation. QSOX1 is present at approximately 25 nM in pooled normal adult human serum. Examination of the unusual kinetics of QSOX1 toward cysteine and glutathione at low micromolar concentrations suggests that circulating QSOX1 is unlikely to significantly contribute to the oxidation of these monothiols in plasma. However, the ability of QSOX1 to rapidly oxidize conformationally mobile protein thiols suggests a possible contribution to the redox status of exofacial and soluble proteins in blood plasma. Recent proteomic studies showing that plasma QSOX1 can be utilized in the diagnosis of pancreatic cancer and acute decompensated heart failure, together with the overexpression of this secreted enzyme in a number of solid tumors, suggest that the robust QSOX assay developed here may be useful in the quantitation of enzyme levels in a wide range of biological fluids.  相似文献   

5.
The participation of thiol-oxidoreductases such as thioredoxin during implantation, embryogenesis and fetal development has been extensively studied. Here, we analyzed the expression of the thioredoxin superfamily enzyme quiescin Q6/sulfhydryl oxidase (QSOX) during development. Results show that QSOX is present in fetal bovine serum (4 months' gestation), but its levels decrease with time after birth (from P1 to P60). We also demonstrate that a sulfhydryl oxidase activity correlates with QSOX expression in such sera, suggesting a putative role in the redox modulation of developmental programs.  相似文献   

6.
Wang W  Winther JR  Thorpe C 《Biochemistry》2007,46(11):3246-3254
The FAD prosthetic group of the ERV/ALR family of sulfhydryl oxidases is housed at the mouth of a 4-helix bundle and communicates with a pair of juxtaposed cysteine residues that form the proximal redox active disulfide. Most of these enzymes have one or more additional distal disulfide redox centers that facilitate the transfer of reducing equivalents from the dithiol substrates of these oxidases to the isoalloxazine ring where the reaction with molecular oxygen occurs. The present study examines yeast Erv2p and compares the redox behavior of this ER luminal protein with the augmenter of liver regeneration, a sulfhydryl oxidase of the mitochondrial intermembrane space, and a larger protein containing the ERV/ALR domain, quiescin-sulfhydryl oxidase (QSOX). Dithionite and photochemical reductions of Erv2p show full reduction of the flavin cofactor after the addition of 4 electrons with a midpoint potential of -200 mV at pH 7.5. A charge-transfer complex between a proximal thiolate and the oxidized flavin is not observed in Erv2p consistent with a distribution of reducing equivalents over the flavin and distal disulfide redox centers. Upon coordination with Zn2+, full reduction of Erv2p requires 6 electrons. Zn2+ also strongly inhibits Erv2p when assayed using tris(2-carboxyethyl)phosphine (TCEP) as the reducing substrate of the oxidase. In contrast to QSOX, Erv2p shows a comparatively low turnover with a range of small thiol substrates, with reduced Escherichia coli thioredoxin and with unfolded proteins. Rapid reaction studies confirm that reduction of the flavin center of Erv2p is rate-limiting during turnover with molecular oxygen. This comparison of the redox properties between members of the ERV/ALR family of sulfhydryl oxidases provides insights into their likely roles in oxidative protein folding.  相似文献   

7.
The discovery that the flavoprotein oxidase, Erv2p, provides oxidizing potential for disulfide bond formation in yeast, has led to investigations into the roles of the mammalian homologues of this protein. Mammalian homologues of Erv2p include QSOX (sulfhydryl oxidases) from human lung fibroblasts, guinea-pig endometrial cells and rat seminal vesicles. In the present study we show that, when expressed in mammalian cells, the longer version of human QSOX1 protein (hQSOX1a) is a transmembrane protein localized primarily to the Golgi apparatus. We also present the first evidence showing that hQSOX1a can act in vivo as an oxidase. Overexpression of hQSOX1a suppresses the lethality of a complete deletion of ERO1 (endoplasmic reticulum oxidase 1) in yeast and restores disulfide bond formation, as assayed by the folding of the secretory protein carboxypeptidase Y.  相似文献   

8.
Abstract

The participation of thiol-oxidoreductases such as thioredoxin during implantation, embryogenesis and fetal development has been extensively studied. Here, we analyzed the expression of the thioredoxin superfamily enzyme quiescin Q6/sulfhydryl oxidase (QSOX) during development. Results show that QSOX is present in fetal bovine serum (4 months' gestation), but its levels decrease with time after birth (from P1 to P60). We also demonstrate that a sulfhydryl oxidase activity correlates with QSOX expression in such sera, suggesting a putative role in the redox modulation of developmental programs.  相似文献   

9.
Raje S  Thorpe C 《Biochemistry》2003,42(15):4560-4568
Flavoproteins of the quiescin/sulfhydryl oxidase (QSOX) family catalyze oxidation of peptide and protein thiols to disulfides with the reduction of oxygen to hydrogen peroxide. QSOX family members contain several domains, including an N-terminal thioredoxin domain (Trx) and an FAD-binding-domain (ERV) toward the C-terminus. Partial proteolysis of avian QSOX leads to two fragments, designated 30 and 60 kDa from their apparent mobilities on SDS-PAGE. The 30 kDa fragment is a monomer under nondenaturing conditions and contains a Trx domain with a CxxC sequence typical of protein disulfide isomerase (WCGHC). This QSOX fragment is not detectably glycosylated, contains no detectable FAD, and shows undetectable sulfhydryl oxidase activity. In contrast, the 60 kDa fragment is a dimeric glycoprotein that binds FAD tightly and oxidizes dithiothreitol about 1000-fold slower than intact QSOX. Reduced RNase is not a significant substrate of the 60 kDa fragment. The redox behavior of the 60 kDa flavoprotein fragment is profoundly different from that of intact QSOX. Thus, dithionite or photochemical reduction of the 60 kDa fragment leads to two-electron reduction of the FAD without subsequent reduction of the other two CxxC motifs or the appearance of a thiolate to flavin charge-transfer complex. Further characterization of the fragments and insights gained from the crystal structure of yeast ERV2p (Gross, E., Sevier, C. S., Vala, A., Kaiser, C. A., and Fass, D. (2002) Nat. Struct. Biol. 9, 61-67) suggest that the flow of reducing equivalents in intact avian QSOX is dithiol substrate --> C80/83 --> C519/522 --> C459/462 --> FAD --> oxygen. The ancient fusion of thioredoxin domains to a catalytically more limited ERV domain has produced an efficient catalyst for the direct introduction of disulfide bonds into a wide range of proteins and peptides in multicellular organisms.  相似文献   

10.
Quiescin sulfhydryl oxidase 1 (QSOX1) is a catalyst of disulfide bond formation that undergoes regulated secretion from fibroblasts and is over-produced in adenocarcinomas and other cancers. We have recently shown that QSOX1 is required for incorporation of particular laminin isoforms into the extracellular matrix (ECM) of cultured fibroblasts and, as a consequence, for tumor cell adhesion to and penetration of the ECM. The known role of laminins in integrin-mediated cell survival and motility suggests that controlling QSOX1 activity may provide a novel means of combating metastatic disease. With this motivation, we developed a monoclonal antibody that inhibits the activity of human QSOX1. Here, we present the biochemical and structural characterization of this antibody and demonstrate that it is a tight-binding inhibitor that blocks one of the redox-active sites in the enzyme, but not the site at which de novo disulfides are generated catalytically. Sulfhydryl oxidase activity is thus prevented without direct binding of the sulfhydryl oxidase domain, confirming the model for the interdomain QSOX1 electron transfer mechanism originally surmised based on mutagenesis and protein dissection. In addition, we developed a single-chain variant of the antibody and show that it is a potent QSOX1 inhibitor. The QSOX1 inhibitory antibody will be a valuable tool in studying the role of ECM composition and architecture in cell migration, and the recombinant version may be further developed for potential therapeutic applications based on manipulation of the tumor microenvironment.  相似文献   

11.
Codding JA  Israel BA  Thorpe C 《Biochemistry》2012,51(20):4226-4235
This work explores the substrate specificity of the quiescin sulfhydryl oxidase (QSOX) family of disulfide-generating flavoenzymes to provide enzymological context for investigation of the physiological roles of these facile catalysts of oxidative protein folding. QSOX enzymes are generally unable to form disulfide bonds within well-structured proteins. Use of a temperature-sensitive mutant of ubiquitin-conjugating enzyme 4 (Ubc4') as a model substrate shows that QSOX activity correlates with the unfolding of Ubc4' monitored by circular dichroism. Fusion of Ubc4' with the more stable glutathione-S-transferase domain demonstrates that QSOX can selectively introduce disulfides into the less stable domain of the fusion protein. In terms of intermolecular disulfide bond generation, QSOX is unable to cross-link well-folded globular proteins via their surface thiols. However, the construction of a septuple mutant of RNase A, retaining a single cysteine residue, demonstrates that flexible protein monomers can be directly coupled by the oxidase. Steady- and pre-steady-state kinetic experiments, combined with static fluorescence approaches, indicate that while QSOX is an efficient catalyst for disulfide bond formation between mobile elements of structure, it does not appear to have a significant binding site for unfolded proteins. These aspects of protein substrate discrimination by QSOX family members are rationalized in terms of the stringent steric requirements for disulfide exchange reactions.  相似文献   

12.
Purification and properties of mouse liver coproporphyrinogen oxidase   总被引:2,自引:0,他引:2  
Coproporphyrinogen oxidase was purified to homogeneity from mouse liver. The specific activity of the pure enzyme was 3500 nmol.h-1.mg-1; its apparent molecular mass (35 kDa) was confirmed by immunological characterization of the enzyme in a trichloroacetic-acid-precipitated total-liver-protein extract. The native enzyme appeared to be a dimer of 70 kDa as determined by gel filtration under nondenaturating conditions. The Km value for coproporphyrinogen III was 0.3 microM. The purified enzyme was activated by neutral detergents and phospholipids (affecting both Vmax and Km) but inhibited by ionic detergents. Reactivity toward sulfhydryl agents suggested the possible involvement of (an) SH group(s) for the activity. When compared to the previously purified coproporphyrinogen oxidases (from bovine liver and yeast), the mouse liver coproporphyrinogen oxidase appears to share many common catalytic properties with both enzymes. However, its apparent molecular mass is very different from that of the bovine liver enzyme (71.6 kDa) but identical to that found for the yeast (Saccharomyces cerevisiae) enzyme.  相似文献   

13.
A radioimmunoassay for sulfhydryl oxidase, a membrane enzyme, was developed using antibodies raised to the bovine milk enzyme which had been purified by transient covalent affinity chromatography on a cysteinylsuccinamidopropyl-glass matrix. Bovine milk sulfhydryl oxidase and bovine kidney sulfhydryl oxidase (“glutathione oxidase”) appear to be immunologically identical as evidenced by parallel responses in radioimmunoassays. Antibodies raised to the purified milk sulfhydryl oxidase can immunoprecipitate glutathione oxidase activity, but not γ-glutamyltransferase (“transpeptidase”) activity, from bovine kidney preparations.  相似文献   

14.
Quiescin Q6/sulfhydryl oxidases (QSOX) are revisited thiol oxidases considered to be involved in the oxidative protein folding, cell cycle control and extracellular matrix remodeling. They contain thioredoxin domains and introduce disulfide bonds into proteins and peptides, with the concomitant hydrogen peroxide formation, likely altering the redox environment. Since it is known that several developmental processes are regulated by the redox state, here we assessed if QSOX could have a role during mouse fetal development. For this purpose, an anti-recombinant mouse QSOX antibody was produced and characterized. In E13.5, E16.5 fetal tissues, QSOX immunostaining was confined to mesoderm- and ectoderm-derived tissues, while in P1 neonatal tissues it was slightly extended to some endoderm-derived tissues. QSOX expression, particularly by epithelial tissues, seemed to be developmentally-regulated, increasing with tissue maturation. QSOX was observed in loose connective tissues in all stages analyzed, intra and possibly extracellularly, in agreement with its putative role in oxidative folding and extracellular matrix remodeling. In conclusion, QSOX is expressed in several tissues during mouse development, but preferentially in those derived from mesoderm and ectoderm, suggesting it could be of relevance during developmental processes. Kelly F. Portes, Cecília M. Ikegami have contributed equally to this work.  相似文献   

15.
Thioredoxin superfamily proteins introduce disulfide bonds into substrates, catalyze the removal of disulfides, and operate in electron relays. These functions rely on one or more dithiol/disulfide exchange reactions. The flavoenzyme quiescin sulfhydryl oxidase (QSOX), a catalyst of disulfide bond formation with an interdomain electron transfer step in its catalytic cycle, provides a unique opportunity for exploring the structural environment of enzymatic dithiol/disulfide exchange. Wild‐type Rattus norvegicus QSOX1 (RnQSOX1) was crystallized in a conformation that juxtaposes the two redox‐active di‐cysteine motifs in the enzyme, presenting the entire electron‐transfer pathway and proton‐transfer participants in their native configurations. As such a state cannot generally be enriched and stabilized for analysis, RnQSOX1 gives unprecedented insight into the functional group environments of the four cysteines involved in dithiol/disulfide exchange and provides the framework for analysis of the energetics of electron transfer in the presence of the bound flavin adenine dinucleotide cofactor. Hybrid quantum mechanics/molecular mechanics (QM/MM) free energy simulations based on the X‐ray crystal structure suggest that formation of the interdomain disulfide intermediate is highly favorable and secures the flexible enzyme in a state from which further electron transfer via the flavin can occur.  相似文献   

16.
Quiescin sulfhydryl oxidase 1 (QSOX1) oxidizes sulfhydryl groups to form disulfide bonds in proteins. We previously mapped a peptide in plasma from pancreatic ductal adenocarcinoma (PDA) patients back to an overexpressed QSOX1 parent protein. In addition to overexpression in pancreatic cancer cell lines, 29 of 37 patients diagnosed with PDA expressed QSOX1 protein in tumor cells, but QSOX1 was not detected in normal adjacent tissues or in a transformed, but nontumorigenic cell line. To begin to evaluate the advantage QSOX1 might provide to tumors, we suppressed QSOX1 protein expression using short hairpin (sh) RNA in two pancreatic cancer cell lines. Growth, cell cycle, apoptosis, invasion, and matrix metalloproteinase (MMP) activity were evaluated. QSOX1 shRNA suppressed both short and long isoforms of the protein, showing a significant effect on cell growth, cell cycle, and apoptosis. However, QSOX1 shRNA dramatically inhibited the abilities of BxPC-3 and Panc-1 pancreatic tumor cells to invade through Matrigel in a modified Boyden chamber assay. Mechanistically, gelatin zymography indicated that QSOX1 plays an important role in activation of MMP-2 and MMP-9. Taken together, our results suggest that the mechanism of QSOX1-mediated tumor cell invasion is by activation of MMP-2 and MMP-9.  相似文献   

17.
Quiescin sulfhydryl oxidases (QSOXs) catalyze the formation of disulfide bonds in peptides and proteins, and in vertebrates comprise two proteins: QSOX1 and QSOX2. QSOX1, the most extensively studied type, has been implicated in protein folding, production of extracellular matrix, redox regulation, protection from apoptosis, angiogenesis, and cell differentiation. Atherosclerosis is an immunopathological condition in which redox processes, apoptosis, cell differentiation, and matrix secretion/maturation have critical roles. Considering these data, we hypothesized that QSOX1 could be involved in this disease, possibly reducing apoptosis and angiogenesis inside the plaque. QSOX1 labeling in normal human carotid vessels showed predominant expression by endothelium, subendothelium, and adventitia. In atherosclerotic plaques, however, QSOX1 was highly expressed in macrophages at the lipid core. QSOX1 expression was also studied in terms of mRNA and protein in cell types present in plaques under apoptotic or activating stimuli, emulating conditions found in the atherosclerotic process. QSOX1 mRNA increased in endothelial cells and macrophages after the induction of apoptosis. At the protein level, the correlation between apoptosis and QSOX1 expression was not evident in all cell types, possibly because of a rapid secretion of QSOX1. Our results propose for the first time possible roles for QSOX1 in atherosclerosis, being upregulated in endothelial cells and macrophages by apoptosis and cell activation, and possibly controlling these processes, as well as angiogenesis. The quantitative differences in QSOX1 induction may depend on the cell type and also on local factors.  相似文献   

18.
Members of the Quiescin-sulfhydryl oxidase (QSOX) family utilize a thioredoxin domain and a small FAD-binding domain homologous to the yeast ERV1p protein to oxidize sulfhydryl groups to disulfides with the reduction of oxygen to hydrogen peroxide. QSOX enzymes are found in all multicellular organisms for which complete genomes exist and in Trypanosoma brucei, but are not found in yeast. The avian QSOX is the best understood enzymatically: its preferred substrates are peptides and proteins, not monothiols such as glutathione. Mixtures of avian QSOX and protein disulfide isomerase catalyze the rapid insertion of the correct disulfide pairings in reduced RNase. Immunohistochemical studies of human tissues show a marked and highly localized concentration of QSOX in cell types associated with heavy secretory loads. Consistent with this role in the formation of disulfide bonds, QSOX is typically found in the cell in the endoplasmic reticulum and Golgi and outside the cell. In sum, this review suggests that QSOX enzymes play a significant role in oxidative folding of a large variety of proteins in a wide range of multicellular organisms.  相似文献   

19.
Xanthine oxidase may be isolated from various mammalian tissues as one of two interconvertible forms, viz., a dehydrogenase (NAD+ dependent, form D) or an oxidase (O2 utilizing, form O). A crude preparation of rat liver xanthine dehydrogenase (form D) was treated with an immobilized preparation of crude bovine sulfhydryl oxidase. Comparison of the rates of conversion of xanthine dehydrogenase to the O form in the presence and absence of the immobilized enzyme indicated that sulfhydryl oxidase catalyzes such conversion. These results were substantiated in a more definitive study in which purified bovine milk xanthine oxidase, which had been converted to the D form by treatment with dithiothreitol, was incubated with purified bovine milk sulfhydryl oxidase. Comparison of measured rates of conversion (in the presence and absence of active sulfhydryl oxidase and in the presence of thermally denatured sulfhydryl oxidase) revealed that sulfhydryl oxidase enzymatically catalyzes the conversion of type D activity to type O activity in xanthine oxidase with the concomitant disappearance of its sulfhydryl groups. It is possible that the presence or absence of sulfhydryl oxidase in a given tissue may be an important factor in determining the form of xanthine-oxidizing activity found in that tissue.  相似文献   

20.
Sulfhydryl oxidase isolated from bovine skim milk membrane vesicles catalyzes de novo formation of disulfide bonds with the substrates cysteine, cysteine-containing peptides, and reduced proteins using molecular oxygen as the electron acceptor. Initial rates for sulfhydryl oxidase-catalyzed oxidation of reduced ribonuclease exhibited typical Michaelis-Menten kinetics at low substrate concentrations. Substrate inhibition of the oxidative activity was observed at ribonuclease concentrations greater than 40 microM, similar to that observed with reduced glutathione or other small thiol substrates. The inhibition was more pronounced when ribonuclease activity was used to monitor the rates, presumably due to concentration-dependent formation of nonnative disulfide bonds. Thus, a maximum in the rate of regain of ribonuclease activity was observed at a 40 microM concentration, while optimum recovery was observed at 30 microM. The Michaelis constant obtained with reduced ribonuclease is 17.4 microM which corresponds to a sulfhydryl concentration of 0.14 mM, a value that compares favorably with the best small thiol substrate, reduced glutathione. Disulfide-containing intermediates in the oxidation pathway, as determined by ion-exchange chromatography of alkylated reaction mixtures, appeared to be similar for air oxidation and enzyme-catalyzed oxidation of the protein. The pH optimum, tissue location, and kinetic characteristics of sulfhydryl oxidase are compatible with a suggested physiological function of direct catalysis of disulfide bond formation in secretory proteins or indirect participation through provision of oxidized glutathione for protein disulfide-isomerase-catalyzed thiol/disulfide interchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号