首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human body odor, which contains several volatile organic compounds, possesses various odor qualities. To identify key volatile compounds responsible for the common unpleasant odors derived from human axillae and feet, the odor quality and intensity of 118 human axillae and feet were directly evaluated by sniffing, and odor compounds obtained from the subjects were identified. Furthermore, the sensory differences in odor intensity and quality with and without addition of butane‐2,3‐dione were evaluated by using the visual analog scale (VAS). An acidic odor was a common unpleasant note in human axillae and feet. Butane‐2,3‐dione was identified as a key compound associated with this odor. Strong positive correlations between the amount of butane‐2,3‐dione, and the odor intensities of axillae and feet were observed, and the addition of butane‐2,3‐dione solution to blended short‐chain fatty‐acid solutions caused significantly increased VAS values of axillary‐like odor, unpleasantness, and odor intensity compared to those of each solution without added butane‐2,3‐dione.  相似文献   

3.
In humans, the pleasantness of odors is a major contributor to social relationships and food intake. Smells evoke attraction and repulsion responses, reflecting the hedonic value of the odorant. While olfactory preferences are known to be strongly modulated by experience and learning, it has been recently suggested that, in humans, the pleasantness of odors may be partly explained by the physicochemical properties of the odorant molecules themselves. If odor hedonic value is indeed predetermined by odorant structure, then it could be hypothesized that other species will show similar odor preferences to humans. Combining behavioral and psychophysical approaches, we here show that odorants rated as pleasant by humans were also those which, behaviorally, mice investigated longer and human subjects sniffed longer, thereby revealing for the first time a component of olfactory hedonic perception conserved across species. Consistent with this, we further show that odor pleasantness rating in humans and investigation time in mice were both correlated with the physicochemical properties of the molecules, suggesting that olfactory preferences are indeed partly engraved in the physicochemical structure of the odorant. That odor preferences are shared between mammal species and are guided by physicochemical features of odorant stimuli strengthens the view that odor preference is partially predetermined. These findings open up new perspectives for the study of the neural mechanisms of hedonic perception.  相似文献   

4.
Twenty subjects judged the taste and odor intensity and thetaste and odor pleasantness/unpleasantness of five concentrationsof sucrose, glycerol, a commercial triglycerol, a syntheticlinear diglycerol and a synthetic linear triglycerol. Judgmentsof intensity were made using the method of magnitude estimation;judgments of pleasantness/unpleasantness were made using a graphicline scale. Only the two linear polyglycerols had appreciableodor intensity. Both were described as having an ‘acrid’or ‘burnt caramel’ quality. The odor exponent forthe linear triglycerol was extremely high (1.44) and may beattributed to its intensely unpleasant quality. Sucrose wascharacterized solely by sweet taste, glycerol and the commercialtriglycerol by sweet and bitter tastes, the linear diglycerolby sweet, bitter and sour tastes, and the linear triglycerolby bitter and sour tastes. The relationships between perceivedtaste intensity and concentration were well described by powerfunctions, although the slope of the psychophysical functionfor the linear triglycerol was markedly lower than that forthe other compounds. The relative order of taste intensitieswas: linear triglycerol > sucrose > glycerol = lineardiglycerol > commercial triglycerol. Judgments of taste (andodor) pleasantness/unpleasantness showed only sucrose and glycerolto have positive hedonic qualities. All the polyglycerols werejudged unpleasant at all concentrations. Differences in thetaste and odor characteristics of the commercial and synthetictriglycerols were attributed to the commercial product beinga mixture of over 20 compounds. Although the synthetic lineardi- and triglycerols are effective in lowering water activity,these data suggest that more purified crystalline forms mustbe synthesized before they can be used effectively as humectantsfor intermediate moisture foods.  相似文献   

5.
In order to comprehend the strategy of odor encoding by odorant receptors, we isolated 2740 mouse receptor neurons from four olfactory epithelial zones and classified them in terms of their sensitivities and tuning specificities to a chiral pair of odorants, S(+)-carvone (caraway-like odor) and R(-)-carvone (spearmint-like odor). Our approach revealed that the majority of receptors at the lowest effective stimulus concentration represented the principal odor qualities characteristic of each enantiomer by means of the principal odor qualities of the odorants for which the receptors were most sensitive. The chiral-non-discriminating receptors were newly recruited 3.7 times of R(-)-carvone-sensitive receptors and totally became 2.8 times (39/14) of R(-)carvone-sensitive receptors in the subpopulations when the stimulus concentration was increased 10-fold [corrected]. More than 80% of the responsive receptors (an estimated 70 +/- alpha types) exhibited overlapping sensitivities between the enantiomers. The signals from the non-discriminating receptors may be reduced to decode the characteristic odor identity for R(-)-carvone in the brain over an adequate range of stimulus strengths. The information processing of odors appears to involve the selective weighting of the signals from the most sensitive receptors. An analysis of the overall receptor codes to carvones indicated that the system employs hierarchical receptor codes: principal odor qualities are encoded by the most sensitive receptors and lower-ranked odor qualities by less sensitive receptors.  相似文献   

6.
One important aspect of odor hedonics is its plasticity during human development. The present study set out to probe the modulators of such olfactory change during that period by testing the hypothesis that language and semantic representations of objects are strong organizers of odor liking. To this end, 15 three-year-old children were tested in a longitudinal study. Participants were exposed to exactly the same 12 odorants once a year over a 3-year period. At each experimental session, they were asked to answer 2 questions: 1) "Do you like or dislike this odor?" and 2) "Can you tell me what it is?" The level of language production was assessed on a standardized test. The 3-year-old children were found to categorize the same number of odorants as liked and as disliked. The follow-up study, in contrast, showed that at 5 years of age they categorized more of these odors as liked and that the shift was significant only in the children with higher language production skills. Taken as a whole, these findings suggest that the 3- to 5-year age range, when children begin to master language, is a turning point in the construction of olfactory hedonic categories during childhood.  相似文献   

7.
Coding of odors by a receptor repertoire   总被引:15,自引:0,他引:15  
Hallem EA  Carlson JR 《Cell》2006,125(1):143-160
We provide a systematic analysis of how odor quality, quantity, and duration are encoded by the odorant receptor repertoire of the Drosophila antenna. We test the receptors with a panel of over 100 odors and find that strong responses are sparse, with response density dependent on chemical class. Individual receptors range along a continuum from narrowly tuned to broadly tuned. Broadly tuned receptors are most sensitive to structurally similar odorants. Strikingly, inhibitory responses are widespread among receptors. The temporal dynamics of the receptor repertoire provide a rich representation of odor quality, quantity, and duration. Receptors with similar odor sensitivity often map to widely dispersed glomeruli in the antennal lobe. We construct a multidimensional "odor space" based on the responses of each individual receptor and find that the positions of odors depend on their chemical class, concentration, and molecular complexity. The space provides a basis for predicting behavioral responses to odors.  相似文献   

8.
The present study was designed to investigate whether thereis a consistent response in ongoing EEG due to repetitive olfactorystimulation. Two odors of different hedonic quality were presentedbilaterally to five male subjects at suprathreshold levels.A room-air blank served as the control stimulus. Each odor waspresented six times to each subject in each of three sessions.Electrocortical activity, heart rate, skin conductance and breathingcycle were recorded continuously. EEG variables assessed weredifference scores of absolute power in the frequency bands theta,alpha1, alpha2 and beta1 at eight locations. Phenylethyl alcoholwas rated pleasant, while valeric acid was judged unpleasant.Within 8 s after stimulus release, valeric acid increased alpha2power, whereas phenylethyl alcohol did not. No further frequencybands were affected by olfactory stimulation. These findingssuggest that smelling an unpleasant odor leads to a corticaldeactivation. Chem. Senses 20: 505–515, 1995.  相似文献   

9.
Context-dependent changes in the perception of odor quality   总被引:3,自引:3,他引:0  
Ambiguous odor compounds, partly citrus-like and partly woodyin odor character, were seen to change in odor quality whenevaluated in the same session as more prototypical odors. Whentested with characteristically citrus odors, the ambiguous compoundsseemed more woody, and when tested with characteristically woodyodors, the ambiguous odorants were higher in citrus character,an example of perceptual contrast. Response frequency biaseswere ruled out as an explanation for this shift by an experimentin which responses other than citrus and woody ratings wereasked of the subjects during the contextual exposure. Simplesensory adaptation was found to be a potential contributor tothe effect, and a sufficient condition to produce similar shiftsin odor quality. However, adaptation was not a necessary conditionto produce the effect. This was seen in reversed pair experimentsin which the contextual odors were presented after the ambiguousstimuli. The contextual shift was robust—it was obtainedwith different ambiguous odors, contextual (conditioning) odors,numbers of contextual odors, orders of presentation of contextualodors relative to ambiguous odors, scale types, and rating tasksduring the presentation of contextual odors.  相似文献   

10.
Sixty-three subjects were selected on the basis of their relativeability (n = 30) or inability (n = 33) to detect the intenseurine–sweaty odor of the diastereoisomeric ketone, cis-4-(4'-t-butylcyclohexyl)-4-methyl-2-pentanone (pemenone). Absolute thresholds were determined,and quality reports and hedonic ratings were obtained for near-thresholdconcentrations of pemenone and five other odorous compounds.Several of these compounds were selected because large individualdifferences in sensitivity (specific anosmias) were known toexist. A principal compound analysis of threshold concentrationsindicated that three orthogonal factors well described the relationshipsbetween sensitivities to the compounds. Threshold concentrationsof pemenone and androstenone were highly correlated and thefirst factor was defined by relationships between those odorantsand isovaleric acid, all modally putrid-smelling compounds.Subjects relatively osmic for pemenone generally reported aputrid odor for pemenone, but anosmics reported mostly otherqualities. These relationships between relative sensitivityand the quality reports elicited by the different compoundsare consistent with a multiple-profile model of odor qualityperception. That model postulates that most odor molecules interactwith more than one perceptual channel (receptor process) andthat any individual alteration in the relative specificity ordeletion in the number of such receptor processes could alterthe pattern of interaction and thus should give rise to alterationsin the quality or intensity of the resulting odor perception.  相似文献   

11.
EVALUATION OF WINE QUALITY USING A SMALL-PANEL HEDONIC SCALING METHOD   总被引:1,自引:0,他引:1  
A hedonic scoring method for evaluating wines with a small panel was examined for reliability, effects of training level and agreement with a traditional 20-point scoring technique. The method was found to differentiate among qualities of 14 domestic Sauvignon Blanc wines with good reliability. Four panels were tested, three with a high degree of experience in wine judging and a fourth consisting of fine wine consumers with no special training. The three experienced panels agreed well about the wines' quality scores. Mean panel scores were less highly correlated (although still positive) with the untrained panel, which showed higher variability and lower reliability. Mean scores from the hedonic method were correlated at r =+0.94 with mean scores from a 20-point quality judging procedure. The small panel hedonic method is suitable for generating quality scores for consumer guidance in large scale wine surveys, as are commonly found in popular wine periodicals.  相似文献   

12.
Li W  Luxenberg E  Parrish T  Gottfried JA 《Neuron》2006,52(6):1097-1108
It is widely presumed that odor quality is a direct outcome of odorant structure, but human studies indicate that molecular knowledge of an odorant is not always sufficient to predict odor quality. Indeed, the same olfactory input may generate different odor percepts depending on prior learning and experience. Combining functional magnetic resonance imaging with an olfactory paradigm of perceptual learning, we examined how sensory experience modifies odor perception and odor quality coding in the human brain. Prolonged exposure to a target odorant enhanced perceptual differentiation for odorants related in odor quality or functional group, an effect that was paralleled by learning-induced response increases in piriform cortex and orbitofrontal cortex (OFC). Critically, the magnitude of OFC activation predicted subsequent improvement in behavioral differentiation. Our findings suggest that neural representations of odor quality can be rapidly updated through mere perceptual experience, a mechanism that may underlie the development of odor perception.  相似文献   

13.
The rise of Next Generation Sequencing (NGS) technologies has transformed de novo genome sequencing into an accessible research tool, but obtaining high quality eukaryotic genome assemblies remains a challenge, mostly due to the abundance of repetitive elements. These also make it difficult to study nucleotide polymorphism in repetitive regions, including certain types of structural variations. One solution proposed for resolving such regions is Sequence Assembly aided by Mutagenesis (SAM), which relies on the fact that introducing enough random mutations breaks the repetitive structure, making assembly possible. Sequencing many different mutated copies permits the sequence of the repetitive region to be inferred by consensus methods. However, this approach relies on molecular cloning in order to isolate and amplify individual mutant copies, making it hard to scale-up the approach for use in conjunction with high-throughput sequencing technologies. To address this problem, we propose NG-SAM, a modified version of the SAM protocol that relies on PCR and dilution steps only, coupled to a NGS workflow. NG-SAM therefore has the potential to be scaled-up, e.g. using emerging microfluidics technologies. We built a realistic simulation pipeline to study the feasibility of NG-SAM, and our results suggest that under appropriate experimental conditions the approach might be successfully put into practice. Moreover, our simulations suggest that NG-SAM is capable of reconstructing robustly a wide range of potential target sequences of varying lengths and repetitive structures.  相似文献   

14.
Human studies indicate that alcohol exposure during gestation not only increases the chance for later alcohol abuse, but also nicotine dependence. The flavor attributes of both alcohol and nicotine can be important determinants of their initial acceptance and they both share the component chemosensory qualities of an aversive odor, bitter taste and oral irritation. There is a growing body of evidence demonstrating epigenetic chemosensory mechanisms through which fetal alcohol exposure increases adolescent alcohol acceptance, in part, by decreasing the aversion to alcohol''s bitter and oral irritation qualities, as well as its odor. Given that alcohol and nicotine have noteworthy chemosensory qualities in common, we investigated whether fetal exposure to alcohol increased the acceptability of nicotine''s odor and taste in adolescent rats. Study rats were alcohol-exposed during fetal development via the dams'' liquid diet. Control animals received ad lib access to an iso-caloric, iso-nutritive diet throughout gestation. Odorant-induced innate behavioral responses to nicotine odor (Experiment 1) or orosensory-mediated responses to nicotine solutions (Experiment 2) were obtained, using whole-body plethysmography and brief access lick tests, respectively. Compared to controls, rats exposed to fetal alcohol showed an enhanced nicotine odor response that was paralleled by increased oral acceptability of nicotine. Given the common aversive component qualities imbued in the flavor profiles of both drugs, our findings demonstrate that like postnatal alcohol avidity, fetal alcohol exposure also influences nicotine acceptance, at a minimum, by decreasing the aversion of both its smell and taste. Moreover, they highlight potential chemosensory-based mechanism(s) by which fetal alcohol exposure increases the later initial risk for nicotine use, thereby contributing to the co-morbid expression with enhanced alcohol avidity. Where common chemosensory mechanisms are at play, our results suggest broader implications related to the consequence of fetal exposure with one substance of abuse and initial acceptability of others.  相似文献   

15.
Fibroblast growth factors (FGFs) are polypeptide mitogens for a wide variety of cell types and are involved in other processes such as angiogenesis and cell differentiation. FGFs mediate their biological responses by activating high-affinity tyrosine kinase receptors. Currently, there are four human fibroblast growth factor receptor (FGFR) genes. To investigate the mechanisms by which αFGF and βFGF may mediate mitogenic signal transduction in human skin-derived fibroblasts, we analyzed these cells for the presence of high-affinity FGFRs. We show that normal human dermal fibroblasts express a single high-affinity FGFR gene, FGFR-1. Cloning and sequencing of two distinct FGFR-1 cDNAs suggested that normal human dermal fibroblasts express a membrane-bound and a putatively secreted form of FGFR-1. We show that normal human dermal fibroblasts produce two FGFR-1 proteins, one of which exists in conditioned media. The mRNA for the putatively secreted form of FGFR-1 appears to be down-regulated by serum treatment of the cells.  相似文献   

16.
Gustatory processing is dynamic and distributed   总被引:1,自引:0,他引:1  
The process of gustatory coding consists of neural responses that provide information about the quantity and quality of food, its generalized sensation, its hedonic value, and whether it should be swallowed. Many of the models presently used to analyze gustatory signals are static in that they use the average neural firing rate as a measure of activity and are unimodal in the sense they are thought to only involve chemosensory information. We have recently elaborated upon a dynamic model of gustatory coding that involves interactions between neurons in single as well as in spatially separate, gustatory and somatosensory regions. We propose that the specifics of gustatory responses grow not only out of information ascending from taste receptor cells, but also from the cycling of information around a massively interconnected system.  相似文献   

17.
Taste and olfaction are each tuned to a unique set of chemicals in the outside world, and their corresponding sensory spaces are mapped in different areas in the brain. This dichotomy matches categories of receptors detecting molecules either in the gaseous or in the liquid phase in terrestrial animals. However, in Drosophila olfactory and gustatory neurons express receptors which belong to the same family of 7-transmembrane domain proteins. Striking overlaps exist in their sequence structure and in their expression pattern, suggesting that there might be some functional commonalities between them. In this work, we tested the assumption that Drosophila olfactory receptor proteins are compatible with taste neurons by ectopically expressing an olfactory receptor (OR22a and OR83b) for which ligands are known. Using electrophysiological recordings, we show that the transformed taste neurons are excited by odor ligands as by their cognate tastants. The wiring of these neurons to the brain seems unchanged and no additional connections to the antennal lobe were detected. The odor ligands detected by the olfactory receptor acquire a new hedonic value, inducing appetitive or aversive behaviors depending on the categories of taste neurons in which they are expressed i.e. sugar- or bitter-sensing cells expressing either Gr5a or Gr66a receptors. Taste neurons expressing ectopic olfactory receptors can sense odors at close range either in the aerial phase or by contact, in a lipophilic phase. The responses of the transformed taste neurons to the odorant are similar to those obtained with tastants. The hedonic value attributed to tastants is directly linked to the taste neurons in which their receptors are expressed.  相似文献   

18.
We have tested the effects of an mAb directed against the protein core of the extracellular domain of the human EGF receptor (mAb108), on the binding of EGF, and on the early responses of cells to EGF presentation. We used NIH 3T3 cells devoid of murine EGF receptor, transfected with a cDNA encoding the full-length human EGF receptor gene, and fully responsive to EGF. The binding to saturation of mAb108 to the surface of these cells at 4 degrees C and at other temperatures specifically reduced high-affinity binding of EGF, but did not change the dissociation constant or the estimated number of binding sites for low-affinity binding of EGF. The kinetics of EGF binding to the transfected cells were measured to determine the effects of the mAb on the initial rate of EGF binding at 37 degrees C. Interestingly, high-affinity EGF receptor bound EGF with an intrinsic on-rate constant 40-fold higher (9.8 x 10(6) M-1.s-1) than did low-affinity receptor (2.5 x 10(5) M-1.s-1), whereas the off-rate constants, measured at 4 degrees C were similar. Cells treated with the mAb or with phorbol myristate acetate displayed single on-rate constants similar to that for the low-affinity receptors. At low doses of EGF ranging from 0.4 to 1.2 nM, pretreatment of cells with mAb108 inhibited by 50-100% all of the early responses tested, including stimulation of tyrosine-specific phosphorylation of the EGF receptor, turnover of phosphatidyl inositol, elevation of cytoplasmic pH, and release of Ca2+ from intracellular stores. At saturating doses of EGF (20 nM) the inhibition of these early responses by prebinding of mAb108 was overcome. On the basis of these results, we propose that the high-affinity EGF receptors are necessary for EGF receptor signal transduction.  相似文献   

19.
Does hedonic appreciation evolve differently for pleasant odors and unpleasant odors during normal aging? To answer this question we combined psychophysics and electro-encephalographic recordings in young and old adults. A first study showed that pleasant odorants (but not unpleasant ones) were rated as less pleasant by old adults. A second study validated this decrease in hedonic appreciation for agreeable odors and further showed that smelling these odorants decreased beta event-related synchronization in aged participants. In conclusion, the study offers new insights into the evolution of odor hedonic perception during normal aging, highlighting for the first time a change in processing pleasant odors.  相似文献   

20.
This paper proposes a neural network model for prediction of olfactory glomerular activity aimed at future application to the evaluation of odor qualities. The model's input is the structure of an odorant molecule expressed as a labeled graph, and it employs the graph kernel method to quantify structural similarities between odorants and the function of olfactory receptor neurons. An artificial neural network then converts odorant molecules into glomerular activity expressed in Gaussian mixture functions. The authors also propose a learning algorithm that allows adjustment of the parameters included in the model using a learning data set composed of pairs of odorants and measured glomerular activity patterns. We observed that the defined similarity between odorant structure has correlation of 0.3-0.9 with that of glomerular activity. Glomerular activity prediction simulation showed a certain level of prediction ability where the predicted glomerular activity patterns also correlate the measured ones with middle to high correlation in average for data sets containing 363 odorants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号