首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms of selenite toxicity and mutagenicity in S. typhimurium have been characterized. In contrast to previous reports, selenite toxicity was shown not to involve nonspecific incorporation into protein via the sulfur metabolic pathways. Selenite toxicity was, however, shown to involve its ability to act as an oxidizing agent, primarily through reactions with sulfhydryls. Strains which lack glutathione (GSH) are more sensitive to killing by sulfhydryl reagents. The selenite sensitivity of such a mutant was a biphasic phenomenon. The mutant was much more sensitive than a strain which contained GSH at lower selenite concentrations whereas, at higher concentrations, the mutant was much more resistant to selenite. The mechanism of selenite toxicity at lower concentrations in this mutant thus appeared to involve damage to intracellular sulfhydryls. The sensitization to higher doses of selenite by GSH could be explained by the generation of toxic oxygen species. The in vitro reactions of selenite with both cysteine and GSH readily produced H2O2 and O2-. A S. typhimurium strain which overproduces superoxide dismutase (SOD) and catalase was more resistant to high concentrations of selenite, but not killing by the lower doses. Pretreatment of cells with a nonlethal dose of selenite induced the synthesis of proteins which protected the cells from killing by H2O2 or high doses of selenite. Selenite was also a mutagen in the tester strain TA104, in which a number of other oxidizing agents have also been found to be mutagens. These results were consistent with a model in which the reactions of selenite and intracellular thiols with concomitant production of active oxygen species are the primary causal agents of selenite mutagenicity and toxicity in S. typhimurium.  相似文献   

2.
Genetic effects of 5-azacytidine in Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
The base analog 5-azacytidine induced a variety of genetic and epigenetic effects in different organisms. It was tested in two diploid strains of the yeast Saccharomyces cerevisiae to study the induction of point mutation, mitotic reciprocal crossing-over, mitotic gene conversion (strain D7) and mitotic aneuploidy (strain D61.M). It was used on cells growing in its presence for 4-5 generations. There was a strong induction of both types of mitotic recombination and point mutation. However, there was no induction of mitotic chromosomal malsegregation under the same conditions.  相似文献   

3.
Selenite has been shown to undergo intracellular metabolism that results in its conversion to other low molecular weight Secontaining species and also to its incorporation into a selenocysteine residue in selenoprotein. In order to investigate whether the incorporation into protein is required for the cytotoxic effects of selenite, we have examined whether inhibition of protein synthesis prevents the inhibitory effect of selenite on the ability of cells to form colonies or to synthesize RNA. We have found that treatment of HeLa cells with cycloheximide inhibited protein synthesis by >90% but had no effect on the inhibitory effect of selenite on cell colony formation or RNA synthesis. Since protein synthesis is not necessary for these cytotoxic effects of selenite they are unlikely to result from an increase in the synthesis of selenoproteins.  相似文献   

4.
The siderophore of Pseudomonas stutzeri KC, pyridine-2,6-bis(thiocarboxylic acid) (pdtc), is shown to detoxify selenium and tellurium oxyanions in bacterial cultures. A mechanism for pdtc's detoxification of tellurite and selenite is proposed. The mechanism is based upon determination using mass spectrometry and energy-dispersive X-ray spectrometry of the chemical structures of compounds formed during initial reactions of tellurite and selenite with pdtc. Selenite and tellurite are reduced by pdtc or its hydrolysis product H(2)S, forming zero-valent pdtc selenides and pdtc tellurides that precipitate from solution. These insoluble compounds then hydrolyze, releasing nanometer-sized particles of elemental selenium or tellurium. Electron microscopy studies showed both extracellular precipitation and internal deposition of these metalloids by bacterial cells. The precipitates formed with synthetic pdtc were similar to those formed in pdtc-producing cultures of P. stutzeri KC. Culture filtrates of P. stutzeri KC containing pdtc were also active in removing selenite and precipitating elemental selenium and tellurium. The pdtc-producing wild-type strain KC conferred higher tolerance against selenite and tellurite toxicity than a pdtc-negative mutant strain, CTN1. These observations support the hypothesis that pdtc not only functions as a siderophore but also is involved in an initial line of defense against toxicity from various metals and metalloids.  相似文献   

5.
Malignant mesothelioma cells differentiate into sarcomatoid or epithelioid phenotypes. The sarcomatoid cell type is more resistant to chemotherapy and gives a worse prognosis. We have investigated whether selenite alone and in combination with doxorubicin induced apoptosis in variously differentiated mesothelioma cells. Selenite in concentrations that could potentially be administered to patients strongly inhibited the growth of the sarcomatoid mesothelioma cells (IC50 = 7.5 microM), whereas epithelioid cells were more sensitive to doxorubicin. Benign mesothelial cells remained largely unaffected. Selenite potentiated doxorubicin treatment. Apoptosis was the dominating mode of cell death. The toxicity of selenite was mediated by oxidative stress. Furthermore the activity of the thioredoxin system was directly dependent on the concentration of selenite. This offers a possible mechanism of action of selenite treatment. Our findings suggest that selenite is a promising new drug for the treatment of malignant mesothelioma.  相似文献   

6.
The siderophore of Pseudomonas stutzeri KC, pyridine-2,6-bis(thiocarboxylic acid) (pdtc), is shown to detoxify selenium and tellurium oxyanions in bacterial cultures. A mechanism for pdtc's detoxification of tellurite and selenite is proposed. The mechanism is based upon determination using mass spectrometry and energy-dispersive X-ray spectrometry of the chemical structures of compounds formed during initial reactions of tellurite and selenite with pdtc. Selenite and tellurite are reduced by pdtc or its hydrolysis product H2S, forming zero-valent pdtc selenides and pdtc tellurides that precipitate from solution. These insoluble compounds then hydrolyze, releasing nanometer-sized particles of elemental selenium or tellurium. Electron microscopy studies showed both extracellular precipitation and internal deposition of these metalloids by bacterial cells. The precipitates formed with synthetic pdtc were similar to those formed in pdtc-producing cultures of P. stutzeri KC. Culture filtrates of P. stutzeri KC containing pdtc were also active in removing selenite and precipitating elemental selenium and tellurium. The pdtc-producing wild-type strain KC conferred higher tolerance against selenite and tellurite toxicity than a pdtc-negative mutant strain, CTN1. These observations support the hypothesis that pdtc not only functions as a siderophore but also is involved in an initial line of defense against toxicity from various metals and metalloids.  相似文献   

7.
Procarbazine [N-isopropyl-alpha-(2-methylhydrazino)-p-toluamide hydrochloride] is used to treat Hodgkin's disease. This compound was tested in vitro without and with S10 fraction from mice liver (microsomal assay) using Saccharomyces cerevisiae strain D7, Salmonella typhimurium (strains TA98, TA100, TA1535) and in vivo in Swiss albino mice (host-mediated assay) using D7. Procarbazine, without S10 fraction, is highly toxic and induced mitotic crossover, gene conversion, and reverse mutation in D7. It had a toxic effect on all the Salmonella strains; but did not induce reverse mutations at the histidine loci. Procarbazine, with S10 fraction, was less toxic and did not induce genetic effects in yeast or Salmonella. In the host-mediated assay, no genetic effects were seen.  相似文献   

8.
In order to evaluate the optimal experimental conditions and to identify the best growth phase for yeast genotoxicity studies, comparative experiments were performed with stationary and growing cells. Methyl methanesulfonate (MMS) and cyclophosphamide (CP) were used as chemical mutagens and strain D7 of Saccharomyces cerevisiae as detector of induced mitotic gene conversion (trp+ convertants) and point reverse mutation (ilv+ revertants) in log or stationary phase cells after either 4 or 16 h of treatment. The highest MMS-induced toxicity and genotoxicity were observed after 16 h of exposure in a suspension test with log phase cells, which is consistent with the greater permeability and sensitivity of growing yeast cells. The maximal induction of genetic effects and toxicity by CP was conversely obtained after 16 h of treatment in stationary phase cells. This may be ascribed to the greater ability of detoxication of growing cells as compared to resting cells. Our results suggest that in evaluating the mutagenicity of chemicals in yeast systems it is important to consider factors such as growth phase and exposure time.  相似文献   

9.
Comparison of short-term toxicity between Nano-Se and selenite in mice   总被引:10,自引:0,他引:10  
Zhang J  Wang H  Yan X  Zhang L 《Life sciences》2005,76(10):1099-1109
We previously reported that, as compared with selenite, nano red elemental selenium (Nano-Se) had lower acute toxicity in mice and similar bioavailability in terms of up-regulating seleno-enzymes. The short-term toxicity of both selenite and Nano-Se in mice was further compared in this study. At an oral dose of 6 mg/kg bw per day administered for consecutive 12 days, selenite and Nano-Se completely and partially suppressed mice growth respectively. Abnormal liver function was more pronounced with selenite treatment than Nano-Se as indicated by the increase of both alanine aminotransferase and aspartate aminotransferase in serum. Selenite inhibited liver catalase and superoxide dismutase activities, whereas, Nano-Se did not affect these two antioxidant enzymes. Selenite increased the malondialdehyde content of liver, but Nano-Se decreased it. Both Se forms had similar effects on depletion of reduced glutathione and up-regulated glutathione peroxidase. Nano-Se was more potent than selenite in the induction of glutathione S-transferase. At oral doses of 2 or 4 mg/kg bw per day for consecutive 15 days, selenite was more active than Nano-Se in supressing growth, deleting reduced glutathione, and inhibiting superoxide dismutase activities. Taken together, these results indicate that over a short-term, a high-dose of selenite caused more pronounced oxidative stress, greater liver injury, and prominent retardation of growth as compared to Nano-Se.  相似文献   

10.
The effects of hydrogen peroxide on yeast Saccharomyces cerevisiae were assessed by measuring gene conversion at the trp 5 locus and the amount of thymine glycols in DNA using a monoclonal antibody specific to this base modification.Our results show that: (a) hydrogen peroxide-induced mitotic gene conversion in yeast strain D7M1 was dose-dependent in the low dose range where no toxicity was observed; (b) in the low dose range, the frequency of gene conversion depended on the temperature of the treatment, with more conversion at 25°C than at 15°C; (c) thymine glycols were induced in DNA in a dose-dependent manner following exposure of cells to up to 400 mM hydrogen peroxide; (d) there was little difference in the amount of thymine glycols formed in DNA when treatment occurred at either 25°C or 15°C.  相似文献   

11.
Jen1p: A High Affinity Selenite Transporter in Yeast   总被引:1,自引:0,他引:1  
Selenium is a micronutrient in most eukaryotes, including humans, which is well known for having an extremely thin border between beneficial and toxic concentrations. Soluble tetravalent selenite is the predominant environmental form and also the form that is applied in the treatment of human diseases. To acquire this nutrient from low environmental concentrations as well as to avoid toxicity, a well-controlled transport system is required. Here we report that Jen1p, a proton-coupled monocarboxylate transporter in S. cerevisiae, catalyzes high-affinity uptake of selenite. Disruption of JEN1 resulted in selenite resistance, and overexpression resulted in selenite hypersensitivity. Transport assay showed that overexpression of Jen1p enables selenite accumulation in yeast compared with a JEN1 knock out strain, indicating the Jen1p transporter facilitates selenite accumulation inside cells. Selenite uptake by Jen1p had a Km of 0.91 mM, which is comparable to the Km for lactate. Jen1p transported selenite in a proton-dependent manner which resembles the transport mechanism for lactate. In addition, selenite and lactate can inhibit the transport of each other competitively. Therefore, we postulate selenite is a molecular mimic of monocarboxylates which allows selenite to be transported by Jen1p.  相似文献   

12.
Isolated hepatocytes incubated with selenite (30–100 μM) exhibited changes in the glutathione redox system as shown by an increase in O2 consumption, oxidation of glutathione and loss of NADPH. Selenite (50 μM) raised O2 consumption within the 1 h and induced an partial depletion of thiols with a concomitant increase in oxidized glutathione, as well as a decrease in NADPH levels within 2 h. With 100 μM selenite more pronounced effects were obtained such as a total depletion of thiols. This concentration of selenite also lysed cells within 3 h. Arsenite, HgCl2 and KCN prevented the increase in O2 uptake, counteracted loss of thiols and delayed selenite induced lysis. p-Tert-butylbenzoic acid, an inhibitor of gluconeogenesis, decreased selenite dependent O2 consumption and potentiated the effect on NADPH levels as well as the toxic effect. Finally, methionine further enhanced O2 consumption by selenite and also delayed loss of thiols and potentiated selenite toxicity. These results indicated that selenite catalyzed a reduction of O2 in glutathione dependent redox cycles with NADPH as an electron donor. With subtoxic concentrations of selenite (50 μM) there were indications that O2 reduction was terminated by selenite biotransformation to methylated metabolites. With toxic concentrations of selenite (100 μM) it appeared that O2 reduction was eventually limited by the capacity of the cell to regenerate NADPH. It is suggested that a depletion of NADPH mediated the observed cytotoxicity of selenite.  相似文献   

13.
14.
Selenite, selenate and selenocystine catalyzed the reduction of methemoglobin (metHb) by glutathione (GSH), while selenomethionine did not. Maximal reduction of metHb was observed with 10?5 M selenite and 2 mM GSH, at pH 7.4. Selenite also catalyzed the reduction of metHb with cysteine or 2-mercaptoethylamine in place of GSH. Heavy metals and arsenite completely prevented the effect of selenite. These findings suggest that certain seleno-compounds catalyze the reduction of metHb by thiol compounds.  相似文献   

15.
The pamoate, chloride, and iodide salts of pyrvinium, a cyanine dye with anthelmintic properties, were studied in a diploid mitotic recombination and gene conversion assay system (strain D5 of Saccharomyces cerevisiae) and a haploid yeast reversion assay (strain XV185-14C). With the use of a thin-layer chromatographic (TLC) detection technique, samples of pyrvinium pamoate from several sources were found to contain different numbers and quantities of impurities. All samples of pyrvinium pamoate and the monopyrvinium salts were recombinogenic in strain D5 and mutagenic in strain XV185-14C; the degree of genetic activity varied among the tested medical grades of pyrvinium pamoate. Monopotassium pamoate was found to be genetically inactive in both strains. Light-catalyzed degradation did not enhance the genetic activity of pyrvinium in either of the yeast strains; the degraded samples were not mutagenic.  相似文献   

16.
Large clinical trials and model systems studies suggest that the chemical form of selenium dictates chemopreventive and chemotherapeutic efficacy. Selenite induces excess ROS production, which mediates autophagy and eventual cell death in non‐small cell lung cancer adenocarcinoma A549 cells. As the mechanisms underlying these phenotypic effects are unclear, the clinical relevance of selenite for cancer therapy remains to be determined. The authors' previous stable isotope‐resolved metabolomics and gene expression analysis showed that selenite disrupts glycolysis, the Krebs cycle, and polyamine metabolism in A549 cells, potentially through perturbed glutaminolysis, a vital anaplerotic process for proliferation of many cancer cells. Herein, the role of the glutaminolytic enzyme glutaminase 1 (GLS1) in selenite's toxicity in A549 cells and in patient‐derived lung cancer tissues is investigated. Using [13C6]‐glucose and [13C5,15N2]‐glutamine tracers, selenite's action on metabolic networks is determined. Selenite inhibits glutaminolysis and glutathione synthesis by suppressing GLS1 expression, and blocks the Krebs cycle, but transiently activates pyruvate carboxylase activity. Glutamate supplementation partially rescues these anti‐proliferative and oxidative stress activities. Similar metabolic perturbations and necrosis are observed in selenite‐treated human patients' cancerous lung tissues ex vivo. The results support the hypothesis that GLS1 suppression mediates part of the anti‐cancer activity of selenite both in vitro and ex vivo.  相似文献   

17.
The effect on cell viability and growth rate of sodium selenite, selenocystine, sodium selenate, and selenomethionine at selenium concentrations of 6.25 and 12.5 uM was studied in vitro on cells of the human mammary tumor cell line HTB123/DU4475. Selenite and selenocystine affected both cell viability and growth rate of the tumor cells at these selenium concentrations. Selenite and selenocystine decreased intracellular glutathione concentrations, but did not affect tumor cell glutathione peroxidase activity. After six days of exposure to either selenate or selenomethionine, the viability of tumor cells remained stable, but cell growth, as measured by numbers of cells, was retarded. Neither selenate nor selenomethionine produced changes in concentrations of intracellular glutathione. The toxic effect of selenite on tumor cells was enhanced by addition of 0.25 mM glutathione to the growth medium. Preincubation of the tumor cells with 62.5 uM buthionine sulfoximine decreased cellular glutathione to 15% of controls at 24 h and enhanced the toxicity of selenite toward the tumor cells. Glutathione, 2-mercaptoethanol, and L-cysteine were all toxic to the tumor cells in a dose-dependent manner.  相似文献   

18.
Ralstonia metallidurans CH34, a soil bacterium resistant to a variety of metals, is known to reduce selenite to intracellular granules of elemental selenium (Se(0)). We have studied the kinetics of selenite (Se(IV)) and selenate (Se(VI)) accumulation and used X-ray absorption spectroscopy to identify the accumulated form of selenate, as well as possible chemical intermediates during the transformation of these two oxyanions. When introduced during the lag phase, the presence of selenite increased the duration of this phase, as previously observed. Selenite introduction was followed by a period of slow uptake, during which the bacteria contained Se(0) and alkyl selenide in equivalent proportions. This suggests that two reactions with similar kinetics take place: an assimilatory pathway leading to alkyl selenide and a slow detoxification pathway leading to Se(0). Subsequently, selenite uptake strongly increased (up to 340 mg Se per g of proteins) and Se(0) was the predominant transformation product, suggesting an activation of selenite transport and reduction systems after several hours of contact. Exposure to selenate did not induce an increase in the lag phase duration, and the bacteria accumulated approximately 25-fold less Se than when exposed to selenite. Se(IV) was detected as a transient species in the first 12 h after selenate introduction, Se(0) also occurred as a minor species, and the major accumulated form was alkyl selenide. Thus, in the present experimental conditions, selenate mostly follows an assimilatory pathway and the reduction pathway is not activated upon selenate exposure. These results show that R. metallidurans CH34 may be suitable for the remediation of selenite-, but not selenate-, contaminated environments.  相似文献   

19.
Exposure of A2780 human ovarian tumor cells to a low concentration of melphalan in vitro for 7 d results in the development of melphalan resistance, which is dependent on elevated cellular levels of glutathione and glutathioneS-transferase. The inclusion of selenite (at concentrations as low as 0.2 ΜM) during the exposure to melphalan completely prevented the development of resistance. Selenite did not prevent the melphalan-induced increase in glutathione, but it did prevent the increase in the activity of glutathioneS-transferase. It also prevented the increase in the expression of the glutathioneS-transferase gene, suggesting that this may be the mechanism by which it prevents the development of melphalan resistance. The results of this in vitro study suggest that selenite may prove to be useful in preventing the development of drug resistance in vivo.  相似文献   

20.
An XAD-2 resin concentrate of chlorination-stage pulp mill effluent was found to induce mutations in Salmonella typhimurium strains TA1535, TA100 and TA98 but not in strains TA1537 or TA1538. The presence of either S9 mix, S9 mix without cofactors, or heat-inactivated S9 mix, reduced the mutagenic effects. Dose-related increases in gene conversion, mitotic recombination and aberrant colony formation in Saccharomyces cerevisiae strain D7 also were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号