首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

To define the biology driving the aggressive nature of breast cancer arising in young women.

Experimental Design

Among 784 patients with early stage breast cancer, using prospectively-defined, age-specific cohorts (young ≤45 years; older ≥65 years), 411 eligible patients (n = 200≤45 years; n = 211≥65 years) with clinically-annotated Affymetrix microarray data were identified. GSEA, signatures of oncogenic pathway deregulation and predictors of chemotherapy sensitivity were evaluated within the two age-defined cohorts.

Results

In comparing deregulation of oncogenic pathways between age groups, a higher probability of PI3K (p = 0.006) and Myc (p = 0.03) pathway deregulation was observed in breast tumors arising in younger women. When evaluating unique patterns of pathway deregulation, a low probability of Src and E2F deregulation in tumors of younger women, concurrent with a higher probability of PI3K, Myc, and β-catenin, conferred a worse prognosis (HR = 4.15). In contrast, a higher probability of Src and E2F pathway activation in tumors of older women, with concurrent low probability of PI3K, Myc and β-catenin deregulation, was associated with poorer outcome (HR = 2.7). In multivariate analyses, genomic clusters of pathway deregulation illustrate prognostic value.

Conclusion

Results demonstrate that breast cancer arising in young women represents a distinct biologic entity characterized by unique patterns of deregulated signaling pathways that are prognostic, independent of currently available clinico-pathologic variables. These results should enable refinement of targeted treatment strategies in this clinically challenging situation.  相似文献   

2.
3.
Chan J  Ko FC  Yeung YS  Ng IO  Yam JW 《PloS one》2011,6(2):e16984

Background

Integrin-linked kinase (ILK) was first discovered as an integrin β1-subunit binding protein. It localizes at the focal adhesions and is involved in cytoskeleton remodeling. ILK overexpression and its dysregulated signaling cascades have been reported in many human cancers. Aberrant expression of ILK influenced a wide range of signaling pathways and cellular functions. Although ILK has been well characterized in many malignancies, its role in hepatocellular carcinoma (HCC) is still largely unknown.

Methodology/Principal Findings

Quantitative PCR analysis was used to examine ILK mRNA expression in HCC clinical samples. It was shown that ILK was overexpressed in 36.9% (21/57) of HCC tissues when compared to the corresponding non-tumorous livers. The overall ILK expression level was significantly higher in tumorous tissues (P = 0.004), with a significant stepwise increase in expression level along tumor progression from tumor stage I to IV (P = 0.045). ILK knockdown stable clones were established in two HCC cell lines, BEL7402 and HLE, and were subjected to different functional assays. Knockdown of ILK significantly suppressed HCC cell growth, motility and invasion in vitro and inhibited tumorigenicity in vivo. Western blot analysis revealed a reduced phosphorylated-Akt (pAkt) at Serine-473 expression in ILK knockdown stable clones when compared to control clones.

Conclusion/Significance

This study provides evidence about the clinical relevance of ILK in hepatocarcinogenesis. ILK was found to be progressively elevated along HCC progression. Here our findings also provide the first validation about the oncogenic capacity of ILK in vivo by suppressing its expression in HCC cells. The oncogenic role of ILK is implicated to be mediated by Akt pathway.  相似文献   

4.

Background

To demonstrate the involvement of tobacco smoking in the pathophysiology of lung disease, the responses of pulmonary epithelial cells to cigarette smoke condensate (CSC) — the particulate fraction of tobacco smoke — were examined.

Methods

The human alveolar epithelial cell line A549 and normal human bronchial epithelial cells (NHBEs) were exposed to 0.4 μg/ml CSC, a concentration that resulted in >90% cell survival and <5% apoptosis. Changes in gene expression and signaling responses were determined by RT-PCR, western blotting and immunocytofluorescence.

Results

NHBEs exposed to CSC showed increased expression of the inflammatory mediators sICAM-1, IL-1β, IL-8 and GM-CSF, as determined by RT-PCR. CSC-induced IL-1β expression was reduced by PD98059, a blocker of mitogen-actived protein kinase (MAPK) kinase (MEK), and by PDTC, a NFκB inhibitor. Analysis of intracellular signaling pathways, using antibodies specific for phosphorylated MAPKs (extracellular signal-regulated kinase [ERK]-1/2), demonstrated an increased level of phosphorylated ERK1/2 with increasing CSC concentration. Nuclear localization of phosphorylated ERK1/2 was seen within 30 min of CSC exposure and was inhibited by PD98059. Increased phosphorylation and nuclear translocation of IκB was also seen after CSC exposure. A549 cells transfected with a luciferase reporter plasmid containing a NFκB-inducible promoter sequence and exposed to CSC (0.4 μg/ml) or TNF-α (50 ng/ml) had an increased reporter activity of approximately 2-fold for CSC and 3.5-fold for TNF-α relative to untreated controls.

Conclusion

The acute phase response of NHBEs to cigarette smoke involves activation of both MAPK and NFκB.  相似文献   

5.

Background

Despite recent progress, therapy for metastatic clear cell renal cell carcinoma (CCRCC) is still inadequate. Dysregulated Notch signaling in CCRCC contributes to tumor growth, but the full spectrum of downstream processes regulated by Notch in this tumor form is unknown.

Methodology/Principal Findings

We show that inhibition of endogenous Notch signaling modulates TGF-β dependent gene regulation in CCRCC cells. Analysis of gene expression data representing 176 CCRCCs showed that elevated TGF-β pathway activity correlated significantly with shortened disease specific survival (log-rank test, p = 0.006) and patients with metastatic disease showed a significantly elevated TGF-β signaling activity (two-sided Student''s t-test, p = 0.044). Inhibition of Notch signaling led to attenuation of both basal and TGF-β1 induced TGF-β signaling in CCRCC cells, including an extensive set of genes known to be involved in migration and invasion. Functional analyses revealed that Notch inhibition decreased the migratory and invasive capacity of CCRCC cells.

Conclusion

An extensive cross-talk between the Notch and TGF-β signaling cascades is present in CCRCC and the functional properties of these two pathways are associated with the aggressiveness of this disease.  相似文献   

6.
7.

Background

Preclinical models of non-small cell lung cancer (NSCLC) require better clinical relevance to study disease mechanisms and innovative therapeutics. We sought to compare and refine bioluminescent orthotopic mouse models of human localized NSCLC.

Methods

Athymic nude mice underwent subcutaneous injection (group 1-SC, n = 15, control), percutaneous orthotopic injection (group 2-POI, n = 30), surgical orthotopic implantation of subcutaneously grown tumours (group 3-SOI, n = 25), or transpleural orthotopic injection (group 4-TOI, n = 30) of A549-luciferase cells. Bioluminescent in vivo imaging was then performed weekly. Circulating tumour cells (CTCs) were searched using Cellsearch® system in SC and TOI models.

Results

Group 2-POI was associated with unexpected direct pleural spreading of the cellular solution in 53% of the cases, forbidding further evaluation of any localized lung tumour. Group 3-SOI was characterized by high perioperative mortality, initially localized lung tumours, and local evolution. Group 4-TOI was associated with low perioperative mortality, initially localized lung tumours, loco regional extension, and distant metastasis. CTCs were detected in 83% of nude mice bearing subcutaneous or orthotopic NSCLC tumours.

Conclusions

Transpleural orthotopic injection of A549-luc cells in nude mouse lung induces localized tumour, followed by lymphatic extension and specific mortality, and allowed the first time identification of CTCs in a NSCLC mice model.  相似文献   

8.

Introduction

The identification of specific targets for treatment of ovarian cancer patients remains a challenge. The objective of this study is the analysis of oncogenic pathways in ovarian cancer and their relation with clinical outcome.

Methodology

A meta-analysis of 6 gene expression datasets was done for oncogenic pathway activation scores: AKT, β-Catenin, BRCA, E2F1, EGFR, ER, HER2, INFα, INFγ, MYC, p53, p63, PI3K, PR, RAS, SRC, STAT3, TNFα, and TGFβ and VEGF-A. Advanced serous papillary tumours from uniformly treated patients were selected (N = 464) to find differences independent from stage-, histology- and treatment biases. Survival and correlations with documented prognostic signatures (wound healing response signature WHR/genomic grade index GGI/invasiveness gene signature IGS) were analysed.

Results

The GGI, WHR, IGS score were unexpectedly increased in chemosensitive versus chemoresistant patients. PR and RAS activation score were associated with survival outcome (p = 0.002;p = 0.004). Increased activations of β-Catenin (p = 0.0009), E2F1 (p = 0.005), PI3K (p = 0.003) and p63 (p = 0.05) were associated with more favourable clinical outcome and were consistently correlated with three prognostic gene signatures.

Conclusions

Oncogenic pathway profiling of advanced serous ovarian tumours revealed that increased β-Catenin, E2F1, p63, PI3K, PR and RAS –pathway activation scores were significantly associated with favourable clinical outcome. WHR, GGI and IGS scores were unexpectedly increased in chemosensitive tumours. Earlier studies have shown that WHR, GGI and IGS are strongly associated with proliferation and that high-proliferative ovarian tumours are more chemosensitive. These findings may indicate opposite confounding of prognostic versus predictive factors when studying biomarkers in epithelial ovarian cancer.  相似文献   

9.

Introduction

Nonalcoholic fatty liver disease (NAFLD) can be seen as a manifestation of overnutrition. The muscle is a central player in the adaptation to energy overload, and there is an association between fatty-muscle and -liver. We aimed to correlate muscle morphology, mitochondrial function and insulin signaling with NAFLD severity in morbid obese patients.

Methods

Liver and deltoid muscle biopsies were collected during bariatric surgery in NAFLD patients. NAFLD Activity Score and Younossi''s classification for nonalcoholic steatohepatitis (NASH) were applied to liver histology. Muscle evaluation included morphology studies, respiratory chain complex I to IV enzyme assays, and analysis of the insulin signaling cascade. A healthy lean control group was included for muscle morphology and mitochondrial function analyses.

Results

Fifty one NAFLD patients were included of whom 43% had NASH. Intramyocellular lipids (IMCL) were associated with the presence of NASH (OR 12.5, p<0.001), progressive hepatic inflammation (p = 0.029) and fibrosis severity (p = 0.010). There was a trend to an association between IMCL and decreased Akt phosphorylation (p = 0.059), despite no association with insulin resistance. In turn, hepatic steatosis (p = 0.015) and inflammation (p = 0.013) were associated with decreased Akt phosphoryation. Citrate synthase activity was lower in obese patients (p = 0.047) whereas complex I (p = 0.040) and III (p = 0.036) activities were higher, compared with controls. Finally, in obese patients, complex I activity increased with progressive steatosis (p = 0.049) and with a trend with fibrosis severity (p = 0.056).

Conclusions

In morbid obese patients, presence of IMCL associates with NASH and advanced fibrosis. Muscle mitochondrial dysfunction does not appear to be a major driving force contributing to muscle fat accumulation, insulin resistance or liver disease. Importantly, insulin resistance in muscle might occur at a late point in the insulin signaling cascade and be associated with IMCL and NAFLD severity.  相似文献   

10.

Background

Aberrant activation of signaling pathways drives many of the fundamental biological processes that accompany tumor initiation and progression. Inappropriate phosphorylation of intermediates in these signaling pathways are a frequently observed molecular lesion that accompanies the undesirable activation or repression of pro- and anti-oncogenic pathways. Therefore, methods which directly query signaling pathway activation via phosphorylation assays in individual cancer biopsies are expected to provide important insights into the molecular “logic” that distinguishes cancer and normal tissue on one hand, and enables personalized intervention strategies on the other.

Results

We first document the largest available set of tyrosine phosphorylation sites that are, individually, differentially phosphorylated in lung cancer, thus providing an immediate set of drug targets. Next, we develop a novel computational methodology to identify pathways whose phosphorylation activity is strongly correlated with the lung cancer phenotype. Finally, we demonstrate the feasibility of classifying lung cancers based on multi-variate phosphorylation signatures.

Conclusions

Highly predictive and biologically transparent phosphorylation signatures of lung cancer provide evidence for the existence of a robust set of phosphorylation mechanisms (captured by the signatures) present in the majority of lung cancers, and that reliably distinguish each lung cancer from normal. This approach should improve our understanding of cancer and help guide its treatment, since the phosphorylation signatures highlight proteins and pathways whose phosphorylation should be inhibited in order to prevent unregulated proliferation.  相似文献   

11.

Objective

Disturbances in lipid metabolism are strongly associated with insulin resistance and type 2 diabetes (T2D). We hypothesized that activation of cAMP/PKA and calcium signaling pathways in cultured human myotubes would provide further insight into regulation of lipid storage, lipolysis, lipid oxidation and insulin responsiveness.

Methods

Human myoblasts were isolated from vastus lateralis, purified, cultured and differentiated into myotubes. All cells were incubated with palmitate during differentiation. Treatment cells were pulsed 1 hour each day with forskolin and ionomycin (PFI) during the final 3 days of differentiation to activate the cAMP/PKA and calcium signaling pathways. Control cells were not pulsed (control). Mitochondrial content, 14C lipid oxidation and storage were measured, as well as lipolysis and insulin-stimulated glycogen storage. Myotubes were stained for lipids and gene expression measured.

Results

PFI increased oxidation of oleate and palmitate to CO2 (p<0.001), isoproterenol-stimulated lipolysis (p = 0.01), triacylglycerol (TAG) storage (p<0.05) and mitochondrial DNA copy number (p = 0.01) and related enzyme activities. Candidate gene and microarray analysis revealed increased expression of genes involved in lipolysis, TAG synthesis and mitochondrial biogenesis. PFI increased the organization of lipid droplets along the myofibrillar apparatus. These changes in lipid metabolism were associated with an increase in insulin-mediated glycogen storage (p<0.001).

Conclusions

Activation of cAMP/PKA and calcium signaling pathways in myotubes induces a remodeling of lipid droplets and functional changes in lipid metabolism. These results provide a novel pharmacological approach to promote lipid metabolism and improve insulin responsiveness in myotubes, which may be of therapeutic importance for obesity and type 2 diabetes.  相似文献   

12.

Background

Recent studies suggest that HCV infection is associated with progressive declines in pulmonary function in patients with underlying pulmonary diseases such as asthma and chronic obstructive pulmonary disease. Few molecular studies have addressed the inflammatory aspects of HCV-associated pulmonary disease. Because IL-8 plays a fundamental role in reactive airway diseases, we examined IL-8 signaling in normal human lung fibroblasts (NHLF) in response to the HCV nucleocapsid core protein, a viral antigen shown to modulate intracellular signaling pathways involved in cell proliferation, apoptosis and inflammation.

Methods

NHLF were treated with HCV core protein and assayed for IL-8 expression, phosphorylation of the p38 MAPK pathway, and for the effect of p38 inhibition.

Results

Our studies demonstrate that soluble HCV core protein induces significant increases in both IL-8 mRNA and protein expression in a dose- and time-dependent manner. Treatment with HCV core led to phosphorylation of p38 MAPK, and expression of IL-8 was dependent upon p38 activation. Using TNFα as a co-stimulant, we observed additive increases in IL-8 expression. HCV core-mediated expression of IL-8 was inhibited by blocking gC1qR, a known receptor for soluble HCV core linked to MAPK signaling.

Conclusion

These studies suggest that HCV core protein can lead to enhanced p38- and gC1qR-dependent IL-8 expression. Such a pro-inflammatory role may contribute to the progressive deterioration in pulmonary function recently recognized in individuals chronically infected with HCV.  相似文献   

13.

Background

In older adults, an independent association exists between impaired lung function and cardiovascular disease. This interaction might be related to the effects of aging and/or smoking. In order to explore possible childhood antecedents to this association, we hypothesized that decreased lung function and vascular stiffness might be related, in early life.

Objective

To determine the relationship between lung function and carotid augmentation index (AIx), a measure of vascular stiffness, in 8-year old children.

Methods

Data on brachial blood pressure, lung function (FEV1, FVC, FEV1/FVC, obtained by spirometry) and carotid AIx75 (AIx standardised to an arbitrary heart rate of 75 beats per minute, obtained by applanation tonometry) was available in 249 community-based 8-year old children. These healthy children had been subjects in a randomised controlled trial of two interventions (omega-3 fatty acid supplementation and house-dust mite avoidance) to prevent asthma. Smoking in pregnancy and childhood environmental tobacco smoke (ETS) exposure was prospectively collected by questionnaire. The association between lung function and carotid AIx75 was assessed in multivariate models that included sex, height, smoking status during pregnancy, ETS exposure and randomisation groups (house dust mite avoidance and dietary intervention) as covariates.

Results

In the fully adjusted models, Carotid AIx75 was independently associated with FEV1 (standardised β = −0.17,b = −6.72, partial R2 = .02, p = 0.03), FVC (standardised β = −0.29, b = −9.31, partial R2 = 0.04, p<0.001) and FEV1/FVC (standardised β = .13, b = 18.4, partial R2 = 0.02, p = 0.04).

Conclusion

Lower lung volumes are associated with increased vascular stiffness at an early age. The interaction between lung function and vascular stiffness may thus represent more than just age-related alterations in both the pulmonary and vascular systems.  相似文献   

14.

Objectives

Autocrine and paracrine chemokine/chemokine receptor-based interactions promote non-small-cell-lung-cancer (NSCLC) carcinogenesis. CCL20/CCR6 interactions are involved in prostatic and colonic malignancy pathogenesis. The expression and function of CCL20/CCR6 and its related Th-17 type immune response in NSCLC is not yet defined. We sought to characterize the role of the CCL20/CCR6/IL-17 axis in NSCLC tumor growth.

Methods

A specialized histopathologist blindly assessed CCL20/CCR6 expression levels in 49 tissue samples of NSCLC patients operated in our department. Results were correlated to disease progression. Colony assays, ERK signaling and chemokine production were measured to assess cancer cell responsiveness to CCL20 and IL-17 stimulation.

Results

CCL20 was highly expressed in the majority (38/49, 77.5%) of tumor samples. Only a minority of samples (8/49, 16.5%) showed high CCR6 expression. High CCR6 expression was associated with a shorter disease-free survival (P = 0.008) and conferred a disease stage-independent 4.87-fold increased risk for disease recurrence (P = 0.0076, CI 95% 1.52–15.563). Cancerous cell colony-forming capacity was increased by CCL20 stimulation; this effect was dependent in part on ERK phosphorylation and signaling. IL-17 expression was detected in NSCLC; IL-17 potentiated the production of CCL20 by cancerous cells.

Conclusion

Our findings suggest that the CCL20/CCR6 axis promotes NSCLC disease progression. CCR6 is identified as a potential new prognostic marker and the CCL20/CCR6/IL-17 axis as a potential new therapeutic target. Larger scale studies are required to consolidate these observations.  相似文献   

15.

Background

Lung cancer causes approximately 1.2 million deaths per year worldwide, and non-small cell lung cancer (NSCLC) represents 85% of all lung cancers. Understanding the molecular events in non-small cell lung cancer (NSCLC) is essential to improve early diagnosis and treatment for this disease.

Methodology and Principal Findings

In an attempt to identify novel NSCLC related genes, we performed a genome-wide screening of chromosomal copy number changes affecting gene expression using microarray based comparative genomic hybridization and gene expression arrays on 32 radically resected tumor samples from stage I and II NSCLC patients. An integrative analysis tool was applied to determine whether chromosomal copy number affects gene expression. We identified a deletion on 14q32.2-33 as a common alteration in NSCLC (44%), which significantly influenced gene expression for HSP90, residing on 14q32. This deletion was correlated with better overall survival (P = 0.008), survival was also longer in patients whose tumors had low expression levels of HSP90. We extended the analysis to three independent validation sets of NSCLC patients, and confirmed low HSP90 expression to be related with longer overall survival (P = 0.003, P = 0.07 and P = 0.04). Furthermore, in vitro treatment with an HSP90 inhibitor had potent antiproliferative activity in NSCLC cell lines.

Conclusions

We suggest that targeting HSP90 will have clinical impact for NSCLC patients.  相似文献   

16.
S Siegl  S Uhlig 《PloS one》2012,7(7):e41464

Introduction

The mechanisms of ventilator-induced lung injury (VILI), including the role of MAP kinases, are frequently studied in different mouse strains. A useful model for such studies is the isolated perfused mouse lung. As a further development we present the one-lung method that permits to continue perfusion and ventilation of the right lung after removal of the left lung. This method was used to compare the effect of high pressure ventilation (HPV) on pro-inflammatory signaling events in two widely used mouse strains (C57BL/6, BALB/c) and to further define the role of p38 in VILI.

Methods

Lungs were perfused and ventilated for 30 min under control conditions before they were randomized to low (8 cm H2O) or high (25 cm H2O) pressure ventilation (HPV) for 210 min, with the left lung being removed after 180 min. In the left lung we measured the phosphorylation of p38, JNK, ERK and Akt kinase, and in the right lung gene expression and protein concentrations of Il1b, Il6, Tnf, Cxcl1, Cxcl2, and Areg.

Results

Lung mechanics and kinase activation were similar in both mouse strains. HPV increased all genes (except Tnf in BALB/c) and all mediators in both strains. The gene expression of mRNA for Il1b, Il6, Cxcl1 and Cxcl2 was higher in BALB/c mice. Backward regression of the kinase data at t = 180 min with the gene and protein expression data at t = 240 min suggested that p38 controls HPV-induced gene expression, but not protein production. This hypothesis was confirmed in experiments with the p38-kinase inhibitor SB203580.

Conclusions

The one-lung method is useful for mechanistic studies in the lungs. While C57BL/6 show diminished pro-inflammatory responses during HPV, lung mechanics and mechanotransduction processes appear to be similar in both mouse strains. Finally, the one-lung method allowed us to link p38 to gene expression during VILI.  相似文献   

17.
X Zhang  Y Li  H Li  Y Qin  C Bai  F Xu  T Zhu  J Xu  M Wu  C Wang  L Wei  J He 《PloS one》2012,7(8):e40178

Background

Lung cancer is a heterogeneous disease with multiple signaling pathways influencing tumor cell survival and proliferation, and it is likely that blocking only one of these pathways allows others to act as salvage or escape mechanisms for cancer cells. Whether combined inhibition therapy has greater anti-tumor activity than single inhibition therapy is a matter of debate. Hence, a meta-analysis comparing therapy inhibiting both VEGFR and EGFR signaling pathways with that inhibiting EGFR signaling pathway alone was performed.

Methodology and Principal Findings

We searched PubMed, EMBASE database and the proceedings of major conferences for relevant clinical trials. Outcomes analyzed were objective tumor response rate (ORR), progression-free survival (PFS), overall survival (OS) and toxicity. Besides, subgroup analyses were performed to investigate whether the combined inhibition therapy is best performed using combination of selective agents or a single agent with multiple targets.Six trials recruiting 3,302 patients were included in the analysis. Combined inhibition therapy was associated with a 3% improvement in OS as compared with single-targeted therapy, but this difference was not statistically significant (HR, 0.97; 95% CI, 0.89–1.05; P = 0.472). Patients receiving combined inhibition therapy had significant longer PFS than the group with single-targeted therapy (HR, 0.80; 95% CI, 0.67–0.95; P = 0.011). There was no difference in the ORR between the groups (OR, 1.44; 95% CI, 0.95–2.18; P = 0.085). Subgroup analysis revealed that combined inhibition therapy using combination regimens was associated with statistically significant improvement in both ORR and PFS. Toxicity was greater in combined inhibition therapy.

Conclusions

There is no evidence to support the use of combined inhibition therapy in unselected patients with advanced NSCLC. However, given the significant advantage in ORR and PFS, combined inhibition therapy using combination regimens may be considered for further evaluation in subsets of patients who may benefit from this treatment.  相似文献   

18.
J Yang  H Lan  X Huang  B Liu  Y Tong 《PloS one》2012,7(8):e42978

Background

It is controversial whether microRNA-126 is a tumor suppressive or oncogenic miRNA. More experiments are needed to determine whether microRNA-126 is associated with non-small cell lung cancer risk and prognosis.

Methods

Over-expression of microRNA-126 was performed to evaluate the cell invasion and tumor growth in non-small cell lung cancer (NSCLC) cell lines and nude mouse xenograft model. Gain-of-function experiments and luciferase assays were performed to reveal the relationship between microRNA-126 and PI3K-Akt signal pathway in A549 cells. We analyzed the associations of the microRNA-126 expression between genetic variants within microRNA-126 and clinical information including smoking status, sex, age, and histological type and the tumor stage.

Results

Over-expression of microRNA-126 in NSCLC cell lines decreased cell proliferation in vitro and tumor growth in the nude mouse xenograft model. And microRNA-126 repressed the activity of PI3K-Akt pathway by targeting binding sites in the 3′-untranslated region of PI3KR2 mRNA. The expression level of microRNA-126 was decreased in NSCLC lines and tumor tissues. The patients with low microRNA-126 expression had significantly poorer survival time than those with high microRNA-126 expression (means for survival time (month): 24.392±1.055 vs. 29.282±1.140, P = 0.005). However, there was no significant difference in the genotype and allele frequencies of the microRNA-126 variant (G>A, rs4636297) between cases and controls (P = 0.366). In addition, there was no association between SNP rs4636297 and survival time in NSCLC patients (P = 0.992). And microRNA-126 expression had no significant difference among the three genotype groups (P = 0.972).

Conclusions

Our data indicate that microRNA-126 is a tumor-suppressor gene in NSCLC and low microRNA-126 expression is a unfavorable prognostic factor in NSCLC patients. However, the regulatory mechanism of microRNA-126 remains to be elucidated in different normal and malignant tissues. Therefore, further research is needed to explore the tumor suppressive functions of microRNA-126 in NSCLC.  相似文献   

19.

Background

Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls.

Methodology/Principal Findings

ICU patients were systemically inflamed, moderately hyperglycemic, received insulin therapy, and showed a tendency to lower plasma branched chain amino acids compared with controls. Using Western blotting we measured Akt, GSK3β, mTOR, ribosomal protein S6 kinase (S6k), eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), and muscle ring finger protein 1 (MuRF1); and by RT-PCR we determined mRNA expression of, among others, insulin-like growth factor 1 (IGF-1), FoxO 1, 3 and 4, atrogin1, MuRF1, interleukin-6 (IL-6), tumor necrosis factor α (TNF-α) and myostatin. Unexpectedly, in critically ill ICU patients Akt-mTOR-S6k signaling was substantially higher compared with controls. FoxO1 mRNA was higher in patients, whereas FoxO3, atrogin1 and myostatin mRNAs and MuRF1 protein were lower compared with controls. A moderate correlation (r2 = 0.36, p<0.05) between insulin infusion dose and phosphorylated Akt was demonstrated.

Conclusions/Significance

We present for the first time muscle protein turnover signaling in critically ill ICU patients, and we show signaling pathway activity towards a stimulation of muscle protein synthesis and a somewhat inhibited proteolysis.  相似文献   

20.

Background and Objectives

To weight ischemic and bleeding events according to their severity to be used in a composite outcome in RCTs in the field of thrombosis prevention.

Method

Using a Delphi consensus method, a panel of anaesthesiology and cardiology experts rated the severity of thrombotic and bleeding clinical events. The ratings were expressed on a 10-point scale. The median and quartiles of the ratings of each item were returned to the experts. Then, the panel members evaluated the events a second time with knowledge of the group responses from the first round. Cronbach''s a was used as a measure of homogeneity for the ratings. The final rating for each event corresponded to the median rating obtained at the last Delphi round.

Results

Of 70 experts invited, 32 (46%) accepted to participate. Consensus was reached at the second round as indicated by Cronbach''s a value (0.99 (95% CI 0.98-1.00)) so the Delphi was stopped. Severity ranged from under-popliteal venous thrombosis (median = 3, Q1 = 2; Q3 = 3) to ischemic stroke or intracerebral hemorrhage with severe disability at 7 days and massive pulmonary embolism (median = 9, Q1 = 9; Q3 = 9). Ratings did not differ according to the medical specialty of experts.

Conclusions

These ratings could be used to weight ischemic and bleeding events of various severity comprising a composite outcome in the field of thrombosis prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号