首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of the nucleotide sequences at the 5' ends of RNA-primed nascent DNA chains (Okazaki fragments) and of their locations in replicating simian virus 40 (SV40) DNA revealed the precise nature of Okazaki fragment initiation sites in vivo. The primary initiation site for mammalian DNA primase was 3'-purine-dT-5' in the DNA template and the secondary site was 3'-purine-dC-5', with the 5' end of the RNA primer complementary to either the dT or dC. The third position of the initiation site was variable with a preference for dT or dA. About 81% of the available 3'-purine-dT-5' sites and 20% of the 3'-purine-dC-5' sites were used. Purine-rich sites, such as PuPuPu and PyPuPu , were excluded. The 5'-terminal ribonucleotide composition of Okazaki fragments corroborated these conclusions. Furthermore, the length of individual RNA primers was not unique, but varied in size from six to ten bases with some appearing as short as three bases and some as long as 12 bases, depending on the initiation site used. This result was consistent with the average size (9 to 11 bases) of RNA primers isolated from specific regions of the genome. Excision of RNA primers did not appear to stop at the RNA-DNA junction, but removed a variable number of deoxyribonucleotides from the 5' end of the nascent DNA chain. Finally, only one-fourth of the replication forks contained an Okazaki fragment, and the distribution of their initiation sites between the two arms revealed that Okazaki fragments were initiated exclusively (99%) on retrograde DNA templates. The data obtained at two genomic sites about 350 and 1780 bases from ori were essentially the same as that reported for the ori region (Hay & DePamphilis , 1982), suggesting that the mechanism used to synthesize the first DNA chain at ori is the same as that used to synthesize Okazaki fragments throughout the genome.  相似文献   

2.
A step-wise method for cloning intron-containing genes from genomic DNA is described. The two exons of the human proinsulin gene were separately amplified in two steps using, in the first step, completely homologous primers. This reduces unwanted interactions between mismatched primers and a complex DNA template such as genomic DNA. The fragments were amplified in a second step polymerase chain reaction (PCR) using mismatched primers that incorporated additional bases complementary to the other exon, and these products were spliced together in a third step PCR.  相似文献   

3.
C F Arias  S Lpez    R T Espejo 《Journal of virology》1986,57(3):1207-1209
The nucleotide sequences for several complementary DNA clones of the rotavirus genome were determined. When the sequences obtained from different clones for the same regions (16,000 bases) were compared, differences in eight base positions were observed. These discrepancies, approximately 1 in 2,000 bases, may be due to differences in individual RNA genomes resulting from multiple passages; infidelity of DNA synthesis in the cloning procedure; or both factors. Whatever the cause, this frequency of base substitution found in sequences of complementary DNA obtained from the same isolate should be considered when comparing DNA sequences obtained from independent isolates. On the other hand, the frequency of base changes observed suggests that the rotavirus genome is very conserved since the virus used for cDNA synthesis has been continuously passaged for 6 years without plaque purification.  相似文献   

4.
Based on the amino acid sequence of the molt-inhibiting hormone of Carcinus maenas, two degenerated oligonucleotide primers were synthesized and used in the polymerase chain reaction. By use of complementary DNA of a library constructed from medulla terminalis-X-organ RNA of C. maenas as template, the specific complementary DNA between the primers was amplified, cloned and sequenced. This strategy revealed a DNA sequence for which the deduced amino acid sequence is identical to the recently published C. maenas molt-inhibiting hormone sequence as determined by Edman degradation. Visualization of messenger RNAs encoding molt-inhibiting hormone and crustacean hyperglycemic hormone in different perikarya of the X-organ was obtained using digoxigenin-labelled complementary RNA probes. Combination of immunocytochemical staining using polyclonal antisera against the native C. maenas neuropeptides and in situ hybridization performed on alternating sections confirmed the specificity of the reaction. The results show that there is no co-localization of molt-inhibiting hormone and crustacean hyperglycemic hormone at the messenger RNA and the protein level.  相似文献   

5.
The reversed-phase chromatography technique was employed in the measurement of DNA synthesis at the primers d(pT)n, r(pU)n, d(pA)n, and r(pA)n (n = 1-16) in the presence of template poly(dA) or poly(dT). DNA synthesis was catalyzed by Escherichia coli DNA polymerase I Klenow fragment, Physarum polycephalum DNA polymerase beta-like, P. polycephalum DNA polymerase alpha, and human placenta DNA polymerase alpha. Values of Km and Vmax were measured as functions of the primer chain lengths. It was found that all mononucleotides and small oligonucleotides served as primers of DNA synthesis. Values of the logarithm of both Km and Vmax increased linearly until primers had attained a chain length of 9-12 nucleotides, where a break was observed. The incremental as well as the absolute values of Km were interpreted in terms of free binding energies. These together with other data indicate that the 3'-ultimate nucleotide of the primer contributes a decisive amount of free energy of binding to DNA polymerase both from the nucleoside and from the phosphate moiety. The incremental increase is due to a complementary interaction between bases of primer and template buried in the binding cleft of the polymerase. It is also the ultimate nucleotide that determines whether the ribonucleotide or the deoxyribonucleotide is an efficient primer. It is of interest that the major results seem preserved for all four DNA polymerases. An energetic model for the binding of the template-primer was proposed and compared with available crystallographic data.  相似文献   

6.
The use of DNA primers with 3'-ends complementary to specific genetic point mutations allowed for the rapid detection of such mutations in genomic DNA by polymerase chain reaction. The sensitivity of this approach was such that mutations could be detected in DNA samples mixed with a 10(7)-fold excess of normal non-mutated DNA. To increase the practicality of this approach for the detection of point mutations affecting all 3 of the known ras oncogenes we synthesized mutation-specific primers complementary to all 3 genes by substituting inosine residues at positions corresponding to ambiguous bases on the genes.  相似文献   

7.
The relative quantities of bases in DNA were determined chemically many years before sequencing technologies permitted direct counting of bases. Apparently unaware of the rich literature on the topic, bioinformaticists are today rediscovering the 'wheels' of Chargaff, Wyatt and other biochemists. It follows from Chargaff's second parity rule (%A = %T, %G = %C for single stranded DNA) that the symmetries observed for the two pairs of complementary mononucleotide bases, should also apply to the eight pairs of complementary dinucleotide bases, the thirty-two pairs of complementary trinucleotide bases, etc. This was made explicit by Prabhu in 1993 in a study of complete genomes and long genome segments from a wide range of taxa, and was rediscovered by Qi and Cuticchia in 2001 in a study of complete genomes. It follows from Chargaff's GC-rule (%GC tends to be uniform and species specific) that, within a species, oligonucleotides of the same GC% will be at approximately equal quantities in single stranded DNA. Thus, for example, while quantities of CAT and ATG (reverse complements) will be closely correlated because of both of the above Chargaff rules, CAT and GTA (forward complements) will show some correlation only because of the latter rule. The need for complete genomic sequences in bioinformatic analyses may have been somewhat overplayed.  相似文献   

8.
The positions of the 64 DNA tri-nucleotides (triplets) along the Borrelia burgdorferi chromosome were determined and cumulative position plots (CPP) were obtained. Analysis of CPP for complementary triplets revealed close correlations in complementary triplet frequencies (CTF) between opposing leading and lagging strands. Such bilateral inverse symmetry (BIS) applied also to complementary mono- and di-nucleotides and to some >3 n-tuples. At the level of individual bases BIS explains Chargaff's second parity rule for whole bacterial chromosomes. Using shuffled control sequences we show that single-base BIS was not the source of higher-order BIS. Analysis of CTF in 45 other chromosomes suggests that BIS is a general property of eubacteria. BIS at the various levels may be due to the very similar numbers of codons used in chromosomal halves. Evolutionarily, BIS could have resulted from asymmetric substitution of bases combined with genetic rearrangements. However, the provocative theoretical alternative of whole-genome inverse duplication is here considered.  相似文献   

9.
J Rogers  P Clarke    W Salser 《Nucleic acids research》1979,6(10):3305-3321
The recombinant plasmid pH21-1 consists of mouse-derived complementary DNA (cDNA) in the E. coli plasmid pMB9. The mouse insertion has been completely sequenced, and encodes the CH3 domain and half the CH2 domain of the immunoglobulin gamma1 heavy chain. The predicted amino acid sequence differs at several positions from that previously published for this protein. The pattern of codon usage resembles that in some other eukaryotic messenger RNAs. A computer program has been used to predict the optimum secondary structure for the mRNA encoding the CH3 domain and the inter-domain junction.  相似文献   

10.
To clarify the biochemical behavior of 2'-deoxyribonucleoside 5'-triphosphates and oligodeoxyribonucleotides (ODNs) containing cytosine N-oxide (C(o)) and adenine N-oxide (A(o)), we examined their base recognition ability in DNA duplex formation using melting temperature (T(m)) experiments and their substrate specificity in DNA polymerase-mediated replication. As the result, it was found that the T(m) values of modified DNA-DNA duplexes incorporating 2'-deoxyribonucleoside N-oxide derivatives significantly decreased compared with those of the unmodified duplexes. However, single insertion reactions by DNA polymerases of Klenow fragment (KF) (exo(-)) and Vent (exo(-)) suggested that C(o) and A(o) selectively recognized G and T, respectively. Meanwhile, the kinetic study showed that the incorporation efficiencies of the modified bases were lower than those of natural bases. Ab initio calculations suggest that these modified bases can form the stable base pairs with the original complementary bases. These results indicate that the modified bases usually recognize the original bases as partners for base pairing, except for misrecognition of dATP by the action of KF (exo(-)) toward A(o) on the template, and the primers could be extended on the template DNA. When they misrecognized wrong bases, the chain could not be elongated so that the modified base served as the chain terminator.  相似文献   

11.
Oreste U  Coscia M 《Gene》2002,295(2):199-204
The somatic recombination of different germline-encoded gene segments constitutes a principal source of antibody diversity. In order to investigate the diversity in recombined gene segments encoding the immunoglobulin heavy chain of the Antarctic teleost Trematomus bernacchii, a VH library was constructed by 5'-RACE (rapid amplification of cDNA ends) using RNA isolated from the spleen of an individual specimen. Analysis of cDNA sequences of 45 rearranged VH/D/JH segments revealed specific features, such as: high number of repeats, up to 8 bp long, and palindromic sequences, especially in CDRs (complementary determining regions); occurrence of the RGYW consensus, known as mutational hot spot, higher than in other species. Sixty-four percent of single base substitutions was found within this motif. In addition, the usage of serine codons showed a clear bias for AGY in CDRs, particularly in CDR2, and for TCN in FRs (framework regions). In CDRs, the frequency of non-synonymous changes was higher than that of synonymous changes. Diversity generated by insertions/deletions occurred more often than in other species; inserted bases were often repeats of adjacent bases. In particular the CDR2 showed the highest length variability as compared to other species. Alignment of VH sequences indicated that also the gene conversion mechanism may contribute to generating diversity. These data indicate a CDR mutability higher than in other species and provide some insights into the hypermutational events that may also occur in teleosts.  相似文献   

12.
13.
14.
Approximately 1% of heterogeneous nuclear RNA and approximately 0.035% of cytoplasmic RNA from a cultured line of human lymphoblastoid cells is complementary to a long dispersed repetitious sequence that comprises at least 6% of human DNA. The complementary nuclear RNA is both heterogeneously and discretely sized and is present in both poly(A)-terminated and non-poly(A)-terminated molecules. The complementary cytoplasmic RNA is mainly in discretely sized molecules ranging in size from approximately 600 to 8200 bases, some of which are most abundantly represented in poly(A)-terminated molecules, whereas others are most abundantly represented in non-poly(A)-terminated molecules. Few, if any, of the complementary cytoplasmic RNAs can be found associated with polyribosomes. The dispersed repeat sequence exhibits substantial restriction enzyme fragment length polymorphisms in human DNA and is also present in mouse DNA, although some regions of the human repeat appear to be more abundantly represented in mouse DNA than are other regions.  相似文献   

15.
Effects of dangling ends on duplex yield have been assessed by hybridisation of oligonucleotides to an array of oligonucleotides synthesised on the surface of a solid support. The array consists of decanucleotides and shorter sequences. One of the decanucleotides in the array was fully complementary to the decanucleotide used as solution target. Others were complementary over seven to nine bases, with overhangs of one to three bases. Duplexes involving different decanucleotides had different overhangs at the 3' and 5' ends. Some duplexes involving shorter oligonucleotides had the same regions of complementarity as these decanucleotides, but with fewer overhanging bases. This analysis allows simultaneous assessment of the effects of differing bases at both 5' and 3' ends of the oligonucleotide in duplexes formed under identical reaction conditions. The results indicate that a 5' overhang is more stabilising than a 3' overhang, which is consistent with previous results obtained with DNA overhangs. However, it is not clear whether this is due to the orientation of the overhang or to the effect of specific bases.  相似文献   

16.
We have previously shown that DNA demethylation by chick embryo 5-methylcytosine (5-MeC)-DNA glycosylase needs both protein and RNA. RNA from enzyme purified by SDS-PAGE was isolated and cloned. The clones have an insert ranging from 240 to 670 bp and contained on average one CpG per 14 bases. All six clones tested had different sequences and did not have any sequence homology with any other known RNA. RNase-inactivated 5-MeC-DNA glycosylase regained enzyme activity when incubated with recombinant RNA. However, when recombinant RNA was incubated with the DNA substrate alone there was no demethylation activity. Short sequences complementary to the labeled DNA substrate are present in the recombinant RNA. Small synthetic oligoribonucleotides (11 bases long) complementary to the region of methylated CpGs of the hemimethylated double-stranded DNA substrate restore the activity of the RNase-inactivated 5-MeC-DNA glycosylase. The corresponding oligodeoxyribonucleotide or the oligoribonucleotide complementary to the non-methylated strand of the same DNA substrate are inactive when incubated in the complementation test. A minimum of 4 bases complementary to the CpG target sequence are necessary for reactivation of RNase-treated 5-MeC-DNA glycosylase. Complementation with double-stranded oligoribonucleotides does not restore 5-MeC-DNA glycosylase activity. An excess of targeting oligoribonucleotides cannot change the preferential substrate specificity of the enzyme for hemimethylated double-stranded DNA.  相似文献   

17.
18.
In this study, we use single-stranded DNA (oligo-dT) lattices that have been position-specifically labeled with monomer or dimer 2-aminopurine (2-AP) probes to map the local interactions of the DNA bases with the nucleic acid binding cleft of gp32, the single-stranded binding (ssb) protein of bacteriophage T4. Three complementary spectroscopic approaches are used to characterize these local interactions of the probes with nearby nucleotide bases and amino acid residues at varying levels of effective protein binding cooperativity, as manipulated by changing lattice length. These include: (i) examining local quenching and enhancing effects on the fluorescence spectra of monomer 2-AP probes at each position within the cleft; (ii) using acrylamide as a dynamic-quenching additive to measure solvent access to monomer 2-AP probes at each ssDNA position; and (iii) employing circular dichroism spectra to characterize changes in exciton coupling within 2-AP dimer probes at specific ssDNA positions within the protein cleft. The results are interpreted in part by what we know about the topology of the binding cleft from crystallographic studies of the DNA binding domain of gp32 and provide additional insights into how gp32 can manipulate the ssDNA chain at various steps of DNA replication and other processes of genome expression.  相似文献   

19.
Spectrophotometric analysis and dot-hybridization have shown that amylose forms complexes with polypyrimidines (poly dC), while polyuronides form complexes with polypurines (poly dA). In addition, the formation of complexes genomic thymus DNA-hyaluronic acid has been observed. A certain role in the mechanism of NA-polysaccharide interactions can be played by the links between purines and the carboxylic group of hexuronic acid residue, as well as between pyrimidines and the hydroxymethyl group of hexose residue. The quantum-chemical calculations showed that, between nitric bases of DNA and the carboxyl groups of hexuronic acids or the hydroxymethyl group of hexose, hydrogen bonds can be formed the energy of which is comparable with that in the complementary AT and CG pairs. The strength of these bonds is unequal: carboxyl groups form stronger hydrogen bonds with purines and weaker bonds with pyrimidines. The hydroxymethyl group, on the contrary, forms stronger hydrogen bonds with pyrimidines and weaker bonds with purines. The quantum-chemical modeling shows that, in the complementary pairs purin-uronic acid and pyrimidine-hexose, hydrogen bonds are produced that form a binary chain nucleic acid-polysaccharide. The data obtained suggest the existence of template synthesis of GAG polysaccharide fragments with the participation of NA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号