首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrical excitability is a fundamental property of the neuromuscular systems of metazoans. The varied response of neurons to electrical excitation is largely accounted for by a diverse set of voltage-gated potassium (KV) channels in the excitable membrane. The complete structure of a KV channel is not yet available. However, recent structural biological experiments have begun to provide new insight into how specific KV channels are formed and regulated, and how they function and interact with other proteins. In particular, the selectivity of KV channels for K+ and suggestions as to how these structural elements might assemble into a functional KV channel are discussed.  相似文献   

2.
Transient receptor potential (TRP) channels are members of the voltage gated ion channel superfamily and display the unique characteristic of activation by diverse stimuli. We performed an expression analysis of fungal TRP channels, which possess relatively simple structures yet share the common functional characteristics with the other members, using a green fluorescent protein‐based screening methodology. The analysis revealed that all the tested fungal TRP channels were severely digested in their cytosolic regions during expression, implying the common flexibility of this region, as observed in the recent structural analyses of the fungal member, TRPGz. These characteristics are likely to be important for their diverse functions.  相似文献   

3.
Glutamate-activated N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels which mediate synaptic transmission, long-term potentiation, synaptic plasticity and neurodegeneration via conditional Ca2+ signalling. Recent crystallographic studies have focussed on solving the structural determinant of the ligand binding within the core region of NR1 and NR2 subunits. Future structural analysis will help to understand the mechanism of native channel activation and regulation during synaptic transmission. A number of NMDA receptor ligands have been identified which act as positive or negative modulators of receptor function. There is evidence that the lipid bilayer can further regulate the activity of the NMDA receptor channels. Modulators of NMDA receptor function offer the potential for the development of novel therapeutics to target neurological disorders associated with this family of glutamate ion channel receptors. Here, we review the recent literature concerning structural and functional properties, as well as the physiological and pathological roles of NMDA receptor channels.  相似文献   

4.
Glutamate-activated N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels, which mediate synaptic transmission, long-term potentiation, synaptic plasticity and neurodegeneration via conditional Ca(2+) signalling. Recent crystallographic studies have focussed on solving the structural determinant of the ligand binding within the core region of NR1 and NR2 subunits. Future structural analysis will help to understand the mechanism of native channel activation and regulation during synaptic transmission. A number of NMDA receptor ligands have been identified which act as positive or negative modulators of receptor function. There is evidence that the lipid bilayer can further regulate the activity of the NMDA receptor channels. Modulators of NMDA receptor function offer the potential for the development of novel therapeutics to target neurological disorders associated with this family of glutamate ion channel receptors. Here, we review the recent literature concerning structural and functional properties, as well as the physiological and pathological roles of NMDA receptor channels.  相似文献   

5.
The ubiquity of mechanosensitive (MS) channels triggered a search for their functional homologues in Archaea, the third domain of the phylogenetic tree. Two types of MS channels have been identified in the cell membranes of Haloferax volcanii using the patch clamp technique. Recently MS channels were identified and cloned from two archaeal species occupying different environmental habitats. These studies demonstrate that archaeal MS channels share structural and functional homology with bacterial MS channels. The mechanical force transmitted via the lipid bilayer alone activates all to date known prokaryotic MS channels. This implies the existence of a common gating mechanism for bacterial as well as archaeal MS channels according to the bilayer model. Based on recent evidence that the bilayer model also applies to eukaryotic MS channels, mechanosensory transduction probably originated along with the appearance of the first life forms according to simple biophysical principles. In support of this hypothesis the phylogenetic analysis revealed that prokaryotic MS channels of large and small conductance originated from a common ancestral molecule resembling the bacterial MscL channel protein. Furthemore, bacterial and archaeal MS channels share common structural motifs with eukaryotic channels of diverse function indicating the importance of identified structures to the gating mechanism of this family of channels. The comparative approach used throughout this review should contribute towards understanding of the evolution and molecular basis of mechanosensory transduction in general.  相似文献   

6.
Gating prokaryotic mechanosensitive channels   总被引:8,自引:0,他引:8  
Prokaryotic mechanosensitive channels function as molecular switches that transduce bilayer deformations into protein motion. These protein structural rearrangements generate large non-selective pores that function as a prokaryotic 'last line of defence' to sudden osmotic challenges. Once considered an electrophysiological artefact, recent structural, spectroscopic and functional data have placed this class of protein at the centre of efforts to understand the molecular basis of lipid-protein interactions and their influence on protein function.  相似文献   

7.
Kir3 channels control heart rate and neuronal excitability through GTP-binding (G) protein and phosphoinositide signaling pathways. These channels were the first characterized effectors of the βγ subunits of G proteins. Because we currently lack structures of complexes between G proteins and Kir3 channels, their interactions leading to modulation of channel function are not well understood. The recent crystal structure of a chimera between the cytosolic domain of a mammalian Kir3.1 and the transmembrane region of a prokaryotic KirBac1.3 (Kir3.1 chimera) has provided invaluable structural insight. However, it was not known whether this chimera could form functional K(+) channels. Here, we achieved the functional reconstitution of purified Kir3.1 chimera in planar lipid bilayers. The chimera behaved like a bona fide Kir channel displaying an absolute requirement for PIP(2) and Mg(2+)-dependent inward rectification. The channel could also be blocked by external tertiapin Q. The three-dimensional reconstruction of the chimera by single particle electron microscopy revealed a structure consistent with the crystal structure. Channel activity could be stimulated by ethanol and activated G proteins. Remarkably, the presence of both activated Gα and Gβγ subunits was required for gating of the channel. These results confirm the Kir3.1 chimera as a valid structural and functional model of Kir3 channels.  相似文献   

8.
Much recent progress has been made in understanding the structural organization and functional properties of voltage-dependent Na+ channels, in particular in the areas of activation, ion conductance, and inactivation. At the same time, however, electrophysiological studies have revealed new, more complex functional properties in the form of at least two gating modes and the existence of as yet unidentified modulatory factors.  相似文献   

9.

Background

Gap junction channels (GJCs) are massive protein channels connecting the cytoplasm of adjacent cells. These channels allow intercellular transfer of molecules up to ~1 kDa, including water, ions and other metabolites. Unveiling structure-function relationships coded into the molecular architecture of these channels is necessary to gain insight on their vast biological function including electrical synapse, inflammation, development and tissular homeostasis. From early works, computational methods have been critical to analyze and interpret experimental observations. Upon the availability of crystallographic structures, molecular modeling and simulations have become a valuable tool to assess structure-function relationships in GJCs. Modeling different connexin isoforms, simulating the transport process, and exploring molecular variants, have provided new hypotheses and out-of-the-box approaches to the study of these important channels.

Methods

Here, we review foundational structural studies and recent developments on GJCs using molecular modeling and simulation techniques, highlighting the methods and the cross-talk with experimental evidence.

Results and discussion

By comparing results obtained by molecular modeling and simulations techniques with structural and functional information obtained from both recent literature and structural databases, we provide a critical assesment of structure-function relationships that can be obtained from the junction between theoretical and experimental evidence.
  相似文献   

10.
Membrane transport is a fundamental means to control basic cellular processes such as apoptosis, inflammation, and neurodegeneration and is mediated by a number of transporters, pumps, and channels. Accumulating evidence over the last half century has shown that a type of so-called “large-pore channel” exists in various tissues and organs in gap-junctional and non-gap-junctional forms in order to flow not only ions but also metabolites such as ATP. They are formed by a number of protein families with little or no evolutionary linkages including connexin, innexin, pannexin, leucine-rich repeat-containing 8 (LRRC8), and calcium homeostasis modulator (CALHM). This review summarizes the history and concept of large-pore channels starting from connexin gap junction channels to the more recent developments in innexin, pannexin, LRRC8, and CALHM. We describe structural and functional features of large-pore channels that are crucial for their diverse functions on the basis of available structures.  相似文献   

11.
The review summarizes recent data on the structural and functional organization and regulation mechanisms of Na+ transport in epithelial systems. The review is focused on the structure, function, regulation and pathology of epithelial Na+ channels, which are critical for Na+ homeostasis maintenance and blood pressure control.  相似文献   

12.
RGK proteins are small Ras-related GTP-binding proteins that function as potent inhibitors of voltage-dependent calcium channels, and two members of the family, Gem and Rad, modulate Rho-dependent remodeling of the cytoskeleton. Within the Ras superfamily, RGK proteins have distinct structural and regulatory characteristics. It is an open question as to whether RGK proteins catalyze GTP hydrolysis in vivo. Binding of calmodulin and the 14-3-3 protein to RGK proteins controls downstream pathways. Here, we discuss the structural and functional properties of RGK proteins and highlight recent work by Beguin and colleagues addressing the mechanism of Gem regulation by calmodulin and 14-3-3.  相似文献   

13.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

14.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

15.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

16.
To better understand the structural and functional roles of tryptophan at the membrane/water interface in membrane proteins, we examined the structural and functional consequences of Trp --> 1-methyl-tryptophan substitutions in membrane-spanning gramicidin A channels. Gramicidin A channels are miniproteins that are anchored to the interface by four Trps near the C terminus of each subunit in a membrane-spanning dimer. We masked the hydrogen bonding ability of individual or multiple Trps by 1-methylation of the indole ring and examined the structural and functional changes using circular dichroism spectroscopy, size exclusion chromatography, solid state (2)H NMR spectroscopy, and single channel analysis. N-Methylation causes distinct changes in the subunit conformational preference, channel-forming propensity, single channel conductance and lifetime, and average indole ring orientations within the membrane-spanning channels. The extent of the local ring dynamic wobble does not increase, and may decrease slightly, when the indole NH is replaced by the non-hydrogen-bonding and more bulky and hydrophobic N-CH(3) group. The changes in conformational preference, which are associated with a shift in the distribution of the aromatic residues across the bilayer, are similar to those observed previously with Trp --> Phe substitutions. We conclude that indole N-H hydrogen bonding is of major importance for the folding of gramicidin channels. The changes in ion permeability, however, are quite different for Trp --> Phe and Trp --> 1-methyl-tryptophan substitutions, indicating that the indole dipole moment and perhaps also ring size and are important for ion permeation through these channels.  相似文献   

17.
18.
Heteromultimerization between different potassium channel subunits can generate channels with novel functional properties and thus contributes to the rich functional diversity of this gene family. The inwardly rectifying potassium channel subunit Kir5.1 exhibits highly selective heteromultimerization with Kir4.1 to generate heteromeric Kir4.1/Kir5.1 channels with unique rectification and kinetic properties. These novel channels are also inhibited by intracellular pH within the physiological range and are thought to play a key role in linking K+ and H+ homeostasis by the kidney. However, the mechanisms that control heteromeric K+ channel assembly and the structural elements that generate their unique functional properties are poorly understood. In this study we identify residues at an intersubunit interface between the cytoplasmic domains of Kir5.1 and Kir4.1 that influence the novel rectification and gating properties of heteromeric Kir4.1/Kir5.1 channels and that also contribute to their pH sensitivity. Furthermore, this interaction presents a structural mechanism for the functional coupling of these properties and explains how specific heteromeric interactions can contribute to the novel functional properties observed in heteromeric Kir channels. The highly conserved nature of this structural association between Kir subunits also has implications for understanding the general mechanisms of Kir channel gating and their regulation by intracellular pH.  相似文献   

19.
When Escherichia coli cells are subject to hypoosmotic shock they are subject to substantial flows of water that can be equivalent to a 4-5-fold increase in the pressure exerted from the cytoplasm on the membrane and peptidoglycan wall. The recently described aquaporin that facilitates rapid water movement across the cytoplasmic membrane is repressed during growth at high osmolarity. This may enable the cell to reduce the rate of pressure build up during transitions from high to low osmolarity. The presence of multiple mechanosensitive channels in the E. coli cell membrane is well documented. The recent identification of genes that inactivate the MscL and MscS channels has established their role in releasing the pressure built up by hypoosmotic shock. The isolation of specific mutations and the structural studies on MscL now pave the way to a molecular understanding of the mechanism of activation of mechanosensitive channels.  相似文献   

20.
In this review we compared the electrophysiological properties of plant K+ uptake channels from different plants and tissues. Taking into account the detailed knowledge of K+ channel properties, which has emerged since the application of the patch-clamp technique on plant cells, as well as results from our recent studies we were able to extract features common among plant K+ channels. In addition, we focused on the diversity that could create plant or tissue-specificity. Functional fingerprints for the voltage-dependent K+ uptake channels were generated on the basis of their voltage-dependence, kinetics, permeability, conductance and pharmacology as well as regulation of K+ channels studied in their natural environment and cloned channels in heterologous expression systems. Finally, sequence information on plant and animal K+ channels cloned so far was used to identify structural motifs that may be related to functional phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号