首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substitution of Y223F disrupts the ability of simian immunodeficiency virus (SIV) Nef to down-modulate major histocompatibility complex (MHC) class I from the cell surface but has no effect on other Nef functions, such as down-regulation of CD4, CD28, and CD3 cell surface expression or stimulation of viral replication and enhancement of virion infectivity. Inoculation of three rhesus macaques with the SIVmac239 Y223F-Nef variant revealed that this point mutation consistently reverts and that Nef activity in MHC class I down-modulation is fully restored within 4 weeks after infection. Our results demonstrate a strong selective pressure for a tyrosine at amino acid position 223 in SIV Nef, and they constitute evidence that Nef-mediated MHC class I down-regulation provides a selective advantage for viral replication in vivo.  相似文献   

2.
Point mutations in SIVmac239 Nef disrupting CD4 downmodulation and enhancement of virion infectivity attenuate viral replication in acutely infected rhesus macaques, but changes selected later in infection fully restore Nef function (A. J. Iafrate et al., J. Virol. 74:9836-9844, 2000). To further evaluate the relevance of these Nef functions for viral persistence and disease progression, we analyzed an SIVmac239 Nef mutant containing a deletion of amino acids Q64 to N67 (delta64-67Nef). This mutation inactivates the N-distal AP-2 clathrin adaptor binding element and disrupts the abilities of Nef to downregulate CD4, CD28 and CXCR4 and to stimulate viral replication in vitro. However, it does not impair the downmodulation of CD3 and class I major histocompatibility complex (MHC-I) or MHC-II and the upregulation of the MHC-II-associated invariant chain, and it has only a moderate effect on the enhancement of virion infectivity. Replication of the delta64-67Nef variant in acutely infected macaques was intermediate between grossly nef-deleted and wild-type SIVmac239. Subsequently, three of six macaques developed moderate to high viral loads and developed disease, whereas the remaining animals efficiently controlled SIV replication and showed a more attenuated clinical course of infection. Sequence analysis revealed that the deletion in nef was not repaired in any of these animals. However, some changes that slightly enhanced the ability of Nef to downmodulate CD4 and moderately increased Nef-mediated enhancement of viral replication and infectivity in vitro were observed in macaques developing high viral loads. Our results imply that both the Nef functions that were disrupted by the delta64-67 mutation and the activities that remained intact contribute to viral pathogenicity.  相似文献   

3.
The HIV-1 Nef protein is a critical virulence factor that exerts multiple effects during viral replication. Nef modulates surface expression of various cellular proteins including CD4 and MHC-I, enhances viral infectivity, and affects signal transduction pathways. Nef has been shown to partially associate with rafts, where it can prime T cells for activation. The contribution of rafts during Nef-induced CD4 down-regulation and enhancement of viral replication remains poorly understood. We show here that Nef does not modify the palmitoylation state of CD4 or its partition within rafts. Moreover, CD4 mutants lacking palmitoylation or unable to associate with rafts are efficiently down-regulated by Nef. In HIV-infected cells, viral assembly and budding occurs from rafts, and Nef has been suggested to increase this process. However, using T cells acutely infected with wild-type or nef-deleted HIV, we did not observe any impact of Nef on raft segregation of viral structural proteins. We have also designed a palmitoylated mutant of Nef (NefG3C), which significantly accumulates in rafts. Interestingly, the efficiency of NefG3C to down-regulate CD4 and MHC-I, and to promote viral replication was not increased when compared with the wild-type protein. Altogether, these results strongly suggest that rafts are not a key element involved in the effects of Nef on trafficking of cellular proteins and on viral replication.  相似文献   

4.
The nef gene of primate immunodeficiency viruses is essential for high-titer virus replication and AIDS pathogenesis in vivo. In tissue culture, Nef is not required for human immunodeficiency virus (HIV) infection but enhances viral infectivity. We and others have shown that Nef is incorporated into HIV-1 particles and cleaved by the viral proteinase. To determine the signal for Nef incorporation and to analyze whether virion-associated Nef is responsible for enhancement of infectivity, we generated a panel of nef mutants and analyzed them for virion incorporation of Nef and for their relative infectivities. We report that N-terminal truncations of Nef abolished its incorporation into HIV particles. Incorporation was reconstituted by targeting the respective proteins to the plasma membrane by using a heterologous signal. Mutational analysis revealed that both myristoylation and an N-terminal cluster of basic amino acids were required for virion incorporation and for plasma membrane targeting of Nef. Grafting the N-terminal anchor domain of Nef onto the green fluorescent protein led to membrane targeting and virion incorporation of the resulting fusion protein. These results indicate that Nef incorporation into HIV-1 particles is mediated by plasma membrane targeting via an N-terminal bipartite signal which is reminiscent of a Src homology region 4. Virion incorporation of Nef correlated with enhanced infectivity of the respective viruses in a single-round replication assay. However, the phenotypes of HIV mutants with reduced Nef incorporation only partly correlated with their ability to replicate in primary lymphocytes, indicating that additional or different mechanisms may be involved in this system.  相似文献   

5.
The human immunodeficiency virus type 1 (HIV-1) Nef protein is an important virulence factor. Nef has several functions, including down-modulation of CD4 and class I major histocompatibility complex cell surface expression, enhancement of virion infectivity, and stimulation of viral replication in peripheral blood mononuclear cells. Nef also increases HIV-1 replication in human lymphoid tissue (HLT) ex vivo. We analyzed recombinant and primary nef alleles with highly divergent activity in different in vitro assays to clarify which of these Nef activities are functionally linked. Our results demonstrate that Nef activity in CD4 down-regulation correlates significantly with the efficiency of HIV-1 replication and with the severity of CD4(+) T-cell depletion in HLT. In conclusion, HIV-1 Nef variants with increased activity in CD4 down-modulation would cause severe depletion of CD4(+) T cells in lymphoid tissues and accelerate AIDS progression.  相似文献   

6.
The nef gene of the pathogenic simian immunodeficiency virus (SIV) mac239 clone has been well characterized. Little is known, however, about the function of nef alleles derived from naturally SIVsm-infected sooty mangabeys (Cercocebus atys) and from human immunodeficiency virus type 2 (HIV-2)-infected individuals. Addressing this, we demonstrate that, similarly to the SIVmac239 nef, primary SIVsm and HIV-2 nef alleles down-modulate cell surface expression of human CD4, CD28, CD3, and class I or II major histocompatibility complex (MHC-I or MHC-II, respectively) molecules, up-regulate surface expression of the invariant chain (Ii) associated with immature MHC-II, inhibit early T-cell activation events, and enhance virion infectivity. Both also stimulate viral replication, although HIV-2 nef alleles were less active in this assay than SIVsm nef alleles. Mutational analysis showed that a dileucine-based sorting motif in the C-proximal loop of SIV or HIV-2 Nef is critical for its effects on CD4, CD28, and Ii but dispensable for down-regulation of CD3, MHC-I, and MHC-II. The C terminus of SIV and HIV-2 Nef was exclusively required for down-modulation of MHC-I, further demonstrating that analogous functions are mediated by different domains in Nef proteins derived from different groups of primate lentiviruses. Our results demonstrate that none of the eight Nef functions investigated had been newly acquired after cross-species transmission of SIVsm from naturally infected mangabeys to humans or macaques. Notably, HIV-2 and SIVsm nef alleles efficiently down-modulate CD3 and C28 surface expression and inhibit T-cell activation more efficiently than HIV-1 nef alleles. These differences in Nef function might contribute to the relatively low levels of immune activation observed in HIV-2-infected human individuals.  相似文献   

7.
8.
The membrane-proximal tyrosine-based sorting motif in the cytoplasmic domain of the human immunodeficiency virus type 1 Env glycoprotein is important for endocytosis from the plasma membrane, basolateral targeting of viral budding in polarized epithelial cells, and polarized budding from a localized region of the lymphocyte plasma membrane. To study the role of the Env sorting motif (Y712XXL) in infectivity, the incorporation of Env into virions, and viral entry, we disrupted the motif with a tyrosine-to-alanine substitution. To investigate the relationship between the Env sorting motif and the enhancement of infectivity by Nef, the EnvY712A substitution was made in both Nef-positive and Nef-negative backgrounds. In spreading infections, including those using primary lymphocytes, the growth of the Y712A mutant was as impaired as Nef-negative virus, and the EnvY712A/Delta-Nef combination mutant was almost completely defective. In single-round infections using CD4-positive HeLa cells, the EnvY712A mutation impaired infectivity, and Nef retained the ability to enhance the infectivity in the context of EnvY712A. EnvY712 and Nef were required for the optimal infectivity of virions produced from either HEK293T or MT4 cells, but these sequences were required for the optimal incorporation of Env only when virions were produced from MT4 cells. Despite the wild-type levels of Env in viruses produced from 293T cells, the entry of the EnvY712A and Delta-Nef mutants into target cells was impaired. We conclude that the membrane-proximal tyrosine-based sorting motif of gp41 Env is, like Nef, important for optimal viral infectivity and, in the case of MT4 T cells, virion incorporation of Env. Nef does not require the Y712XXL motif to enhance viral infectivity. The finding that EnvY712 and Nef each affect the efficiency of viral entry independently of the Env content of virions suggests that both viral proteins are involved in trafficking events that influence morphogenesis to produce maximally fusogenic virus.  相似文献   

9.
The multifunctional simian and human immunodeficiency virus (SIV and HIV) Nef proteins are important for virulence. We studied the importance of selected Nef functions using an SIV Nef with mutations in two regions that are required for CD4 downregulation. This Nef mutant is defective for downregulating CD4 and, in addition, for enhancing SIV infectivity and induction of SIV replication from infected quiescent peripheral blood mononuclear cells, but not for other known functions, including downregulation of class I major histocompatibility complex (MHC) cell surface expression. Replication of SIV containing this Nef variant in rhesus monkeys was attenuated early during infection. Subsequent increases in viral load coincided with selection of reversions and second-site compensatory changes in Nef. Our results indicate that the surfaces of Nef that mediate CD4 downregulation and the enhancement of virion infectivity are critical for SIV replication in vivo. Furthermore, these findings indicate that class I MHC downregulation by Nef is not sufficient for SIV virulence early in infection.  相似文献   

10.
Viruses encounter changing selective pressures during transmission between hosts, including host-specific immune responses and potentially varying functional demands on specific proteins. The human immunodeficiency virus type 1 Nef protein performs several functions potentially important for successful infection, including immune escape via down-regulation of class I major histocompatibility complex (MHC-I) and direct enhancement of viral infectivity and replication. Nef is also a major target of the host cytotoxic T-lymphocyte (CTL) response. To examine the impact of changing selective pressures on Nef functions following sexual transmission, we analyzed genetic and functional changes in nef clones from six transmission events. Phylogenetic analyses indicated that the diversity of nef was similar in both sources and acutely infected recipients, the patterns of selection across transmission were variable, and regions of Nef associated with distinct functions evolved similarly in sources and recipients. These results weighed against the selection of specific Nef functions by transmission or during acute infection. Measurement of Nef function provided no evidence that the down-regulation of either CD4 or MHC-I was optimized by transmission or during acute infection, although rare nef clones from sources that were impaired in these activities were not detected in recipients. Nef-specific CTL activity was detected as early as 3 weeks after infection and appeared to be an evolutionary force driving the diversification of nef. Despite the change in selective pressure between the source and recipient immune systems and concomitant genetic diversity, the majority of Nef proteins maintained robust abilities to down-regulate MHC-I and CD4. These data suggest that both functions are important for the successful establishment of infection in a new host.  相似文献   

11.
Nef is an accessory protein of human and simian immunodeficiency viruses (HIV and SIV) that is required for efficient viral infectivity and pathogenicity. It decreases the expression of CD4 on the surface of infected cells. V1H is the regulatory subunit H of the vacuolar membrane ATPase (V-ATPase). Previously, the interaction between Nef and V1H has been found to facilitate the internalization of CD4, suggesting that V1H could connect Nef to the endocytic machinery. In this study, we demonstrate that V1H binds to the C-terminal flexible loop in Nef from HIV-1 and to the medium chain (mu2) of the adaptor protein complex 2 (AP-2) in vitro and in vivo. The interaction sites of V1H and mu2 were mapped to a central region in V1H from positions 133 to 363, which contains 4 armadillo repeats, and to the N-terminal adaptin-binding domain in mu2 from positions 1 to 145. Fusing Nef to V1H reproduced the appropriate trafficking of Nef. This chimera internalized CD4 even in the absence of the C-terminal flexible loop in Nef. Finally, blocking the expression of V1H decreased the enhancement of virion infectivity by Nef. Thus, V1H can function as an adaptor for interactions between Nef and AP-2.  相似文献   

12.
BACKGROUND: Human immunodeficiency virus-1 (HIV-1) infection decreases the cell-surface expression of its cellular receptor, CD4, through the combined actions of Nef, Env and Vpu. Such functional convergence strongly suggests that CD4 downregulation is critical for optimal viral replication, yet the significance of this phenomenon has so far remained a puzzle. RESULTS: We show that high levels of CD4 on the surface of HIV-infected cells induce a dramatic reduction in the infectivity of released virions by the sequestering of the viral envelope by CD4. CD4 is able to accumulate in viral particles while at the same time blocking incorporation of Env into the virion. Nef and Vpu, through their ability to downregulate CD4, counteract this effect. CONCLUSIONS: The CD4-mediated 'envelope interference' described here probably explains the plurality of mechanisms developed by HIV to downregulate the cell-surface expression of its receptor.  相似文献   

13.
Type 1 human immunodeficiency viruses encoding mutated nef reading frames are 10- to 30-fold less infectious than are isogenic viruses in which the nef gene is intact. This defect in infectivity causes nef-negative viruses to grow at an attenuated rate in vitro. To investigate the mechanism of Nef-mediated enhancement of viral growth rate and infectivity, a complementation analysis of nef mutant viruses was performed. To provide Nef in trans upon viral infection, a CEM derivative cell line (designated CLN) that expresses Nef under the control of the viral long terminal repeat was constructed. When nef-negative virus was grown in CLN cells, its growth rate was restored to wild-type levels. However, the output of nef-negative virus during the first 72 h after infection of CLN cells was not restored, suggesting that provision of Nef within the newly infected cell does not enhance the productivity of a nef-negative provirus. The genetically nef-negative virions produced by the CLN cells, however, were restored to wild-type levels of infectivity as measured in a syncytium formation assay in which CD4-expressing HeLa cells were targets. These trans-complemented, genetically nef-negative virions yielded wild-type levels of viral output following a single cycle of replication in primary CD4 T cells as well as in parental CEM cells. To define the determinants for producer cell modification of virions by Nef, the role of myristoylation was investigated. Virus that encodes a myristoylation-negative nef was as impaired in infectivity as was virus encoding a deleted nef gene. Because myristoylation is required for both membrane association of Nef and optimal viral infectivity, the possibility that Nef protein is included in the virion was investigated. Wild-type virions were purified by filtration and exclusion chromatography. A Western blot (immunoblot) of the eluate fractions revealed a correlation between peak Nef signal and peak levels of p24 antigen. Although virion-associated Nef was detected in part as the 27-kDa full-length protein, the majority of immunoreactive protein was detected as a 20-kDa isoform. nef-negative virus lacked both 27- and 20-kDa immunoreactive species. Production of wild-type virions in the presence of a specific inhibitor of the human immunodeficiency virus type 1 protease resulted in virions which contained only 27-kDa full-length Nef protein. These data indicate that Nef is a virion protein which is processed by the viral protease into a 20-kDa isoform within the virion particle.  相似文献   

14.
The expression of human immunodeficiency virus Nef increases the viral infectivity through mechanisms still not fully elucidated. Here we report that wild-type (wt) human immunodeficiency virus, type 1 (HIV-1), particles were neutralized by higher concentrations of either anti-Env glycoprotein (gp) 41 antibodies or recombinant soluble human CD4 compared with Deltanef HIV-1. This appeared to be the result of a Nef-induced increase of virion incorporation of both gp41 (transmembrane (TM)) and surface gp120 Env products likely originating from enhanced steady-state levels of cell membrane-associated Env products. This, in turn, seemed to be the consequence of a reduced retention of the Env precursor. Most interesting, we found that both the Nef-directed increase of Env membrane expression and the Nef-induced enhancement of HIV-1 infectivity relied on the presence of the intracytoplasmic domain of TM, supporting the hypothesis of a functional correlation between these effects. Mutagenesis studies allowed us to establish that the two leucine residues at the TM C terminus, which are part of a sorting motif involved in the control of Env membrane expression, and the 181-210-residue Nef C-terminal region were critically involved in the Nef/Env functional interaction. In conclusion, we propose that Nef increases the infectivity of HIV-1 at least in part by enhancing the amounts of Env products incorporated into virus particles.  相似文献   

15.
Recent evidence indicates that the nef gene of human immunodeficiency virus type 1 augments rather than inhibits viral replication in both cell culture and in vivo models. In addition, nef alters various normal cellular processes, including the display of CD4 on the cell surface. However, it remains unknown whether the enhancement of infectivity and the downregulation of CD4 represent linked or independent biologic properties of this single protein. In the present studies, mutational analyses were performed to define structure-function relationships within the Nef protein that mediate these effects. To assess the functional consequences of these mutations, sensitive and reliable assays were developed to quantitate the viral infectivity enhancement and CD4 downregulation functions of Nef. The results indicate that membrane-targeting sequences at the N terminus of Nef are important for both functions of Nef, while certain other conserved regions are dispensable for both functions. A conserved proline-X-X repeat segment in the central core of the protein, which is reminiscent of an SH3-binding domain, is critical for the enhancement of infectivity function but is dispensable for CD4 downregulation. However, the downregulation of CD4 by Nef appears to involve a two-step process requiring the initial dissociation of p56lck from CD4 to permit engagement of the endocytic apparatus by CD4. Together, these findings demonstrate that the infectivity enhancement and CD4 downregulation activities of human immunodeficiency virus type 1 Nef can be dissociated. Thus, these processes may be independent of one another in the viral replication cycle.  相似文献   

16.
The accessory protein Nef plays a crucial role in primate lentivirus pathogenesis. Nef enhances human immunodeficiency virus type 1 (HIV-1) infectivity in culture and stimulates viral replication in primary T cells. In this study, we investigated the relationship between HIV-1 replication efficiency in CD4(+) T cells purified from human blood and two various known activities of Nef, CD4 downregulation and single-cycle infectivity enhancement. Using a battery of reporter viruses containing point mutations in nef, we observed a strong genetic correlation between CD4 downregulation by Nef during acute HIV-1 infection of activated T cells and HIV-1 replication efficiency in T cells. In contrast, HIV-1 replication ability was not significantly correlated with the ability of Nef to enhance single-cycle virion infectivity, as determined by using viruses produced in cells lacking CD4. These results demonstrate that CD4 downregulation by Nef plays a crucial role in HIV-1 replication in activated T cells and underscore the potential for the development of therapies targeting this conserved activity of Nef.  相似文献   

17.
The human immunodeficiency virus type 1 Nef protein alters the post-Golgi stages of major histocompatibility complex class I (MHC-I) biogenesis. Presumed mechanisms involve the disclosure of a cryptic tyrosine-based sorting signal (YSQA) located in the cytoplasmic tail of HLA-A and -B heavy chains. We changed this signal for a prototypic sorting motif (YSQI or YSQL). Modified HLA-A2 molecules, termed A2-endo, displayed constitutively low surface levels and accumulated in a region close to or within the Golgi apparatus, a behavior reminiscent of wild-type HLA-A2 in Nef-expressing cells. However, several lines of evidence indicate that the action of prototypic signals on MHC-I trafficking differs from that of Nef. Internalization of surface A2-endo was more rapid and was associated with efficient recycling to the surface. A transdominant-negative mutant of dynamin-1 inhibited A2-endo constitutive internalization and Nef-induced CD4 down-regulation, whereas it did not affect the activity of Nef on MHC-I. Moreover, trafficking of A2-endo was still affected by the viral protein, indicating additive effects of prototypic signals and Nef. Therefore, distinct trafficking pathways regulate clathrin-dependent and Nef-induced MHC-I modulation.  相似文献   

18.

Background

The down-regulation of the major histocompatibility complex class I (MHC-I) from the surface of infected cells by the Nef proteins of primate immunodeficiency viruses likely contributes to pathogenesis by providing evasion of cell-mediated immunity. HIV-1 Nef-induced down-regulation involves endosomal trafficking and a cooperative interaction between the cytoplasmic domain (CD) of MHC-I, Nef, and the clathrin adaptor protein complex-1 (AP-1). The CD of MHC-I contains a key tyrosine within the sequence YSQA that is required for down-regulation by Nef, but this sequence does not conform to the canonical AP-binding tyrosine-based motif Yxxφ, which mediates binding to the medium (μ) subunits of AP complexes. We previously proposed that Nef allows the MHC-I CD to bind the μ subunit of AP-1 (μ1) as if it contained a Yxxφmotif.

Methods and Findings

Here, we show that a direct interaction between the MHC-I CD/Nef and μ1 plays a primary role in the down-regulation of MHC-I: GST pulldown assays using recombinant proteins indicated that most of the MHC-I CD and Nef residues that are required for the down-regulation in human cells contribute to direct interactions with a truncated version of μ1. Specifically, the tyrosine residue of the YSQA sequence in the MHC-I CD as well as Nef residues E62-65 and P78 each contributed to the interaction between MHC-I CD/Nef and μ1 in vitro, whereas Nef M20 had little to no role. Conversely, residues F172/D174 and V392/L395 of the binding pocket on μ1 for Yxxφ motifs were required for a robust interaction.

Conclusions

These data indicate that the MHC-I cytoplasmic domain, Nef, and the C-terminal two thirds of the μ subunit of AP-1 are sufficient to constitute a biologically relevant interaction. The data also reveal an unexpected role for a hydrophobic pocket in μ1 for interaction with MHC-I CD/Nef.  相似文献   

19.
Human immunodeficiency virus, type 1, negative factor (Nef) initiates down-regulation of cell-surface major histocompatibility complex-I (MHC-I) by assembling an Src family kinase (SFK)-ZAP70/Syk-phosphoinositide 3-kinase (PI3K) cascade through the sequential actions of two sites, Nef EEEE(65) and PXXP(75). The internalized MHC-I molecules are then sequestered in endosomal compartments by a process requiring Nef Met(20). How Nef assembles the multikinase cascade to trigger the MHC-I down-regulation pathway is unknown. Here we report that EEEE(65)-dependent binding to the sorting protein PACS-2 targets Nef to the paranuclear region, enabling PXXP(75) to bind and activate a trans-Golgi network (TGN)-localized SFK. This SFK then phosphorylates ZAP-70 to recruit class I PI3K by interaction with the p85 C-terminal Src homology 2 domain. Using splenocytes and embryonic fibroblasts from PACS-2(-/-) mice, we confirm genetically that Nef requires PACS-2 to localize to the paranuclear region and assemble the multikinase cascade. Moreover, genetic loss of PACS-2 or inhibition of class I PI3K prevents Nef-mediated MHC-I down-regulation, demonstrating that short interfering RNA knockdown of PACS-2 phenocopies the gene knock-out. This PACS-2-dependent targeting pathway is not restricted to Nef, because PACS-2 is also required for trafficking of an endocytosed cation-independent mannose 6-phosphate receptor reporter from early endosomes to the TGN. Together, these results demonstrate PACS-2 is required for Nef action and sorting of itinerant membrane cargo in the TGN/endosomal system.  相似文献   

20.
Several recent reports indicate that cholesterol might play an important role in human immunodeficiency virus type 1 (HIV-1) replication. We investigated the effects of HIV-1 infection on cholesterol biosynthesis and uptake using microarrays. HIV-1 increased gene expression of cholesterol genes in both transformed T-cell lines and primary CD4(+) T cells. Consistent with our microarray data, (14)C-labeled mevalonate and acetate incorporation was increased in HIV-1-infected cells. Our data also demonstrate that changes in cholesterol biosynthesis and uptake are only observed in the presence of functional Nef, suggesting that increased cholesterol synthesis may contribute to Nef-mediated enhancement of virion infectivity and viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号