首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estrogen and progesterone concentrations in milk during the estrous cycle were estimated in 18 normally cycling Holstein dairy cows. The estrogen and progesterone concentrations in milk during the estrous cycle followed the pattern described for them in blood in the corresponding period. During most of the estrous cycle, estrogen concentration remained at approximately 200 pg/ml and reached a proestrous peak of 360 +/- 127 pg/ml on day 19. The progesterone concentration in milk during the estrous cycle increased to a peak on day 13 (45.5 +/- 6.6 ng/ml) and thereafter declined towards estrus. Estrus detection/prediction based on milk progesterone concentrations appears feasible in view of the significant differences in milk progesterone concentrations between the early luteal (post-ovulatory), luteal and rapid follicular growth periods of the estrous cycle.  相似文献   

2.
The objective of this study was to investigate the relationship of different behavioral estrous signs and time of ovulation to identify if behavioral estrous sign(s) can be used as predictor of time of ovulation in mithuns. Data were collected for 54 ovulations from 16 mithuns. The animals were monitored for onset of estrus by observing different behavioral estrous signs at 2 h interval and bull parading thrice a day for 30 min and were further confirmed by plasma progesterone profile. All animals were also observed for any of the estrous signs at every 2 h interval for 30 min and mounting behavior was studied by bull parading at every 2 h for 30 min after onset of estrus. Time of ovulation was detected by rectal palpation at 2 h interval from onset of estrus till ovulation. Behavioral signs of estrus was more intense in primiparous than multiparous mithuns. Ovulation occurred at 26.1+/-1.1 h (ranging between 20 and 31 h) after the onset of estrus. As the method used to determine the onset of estrus is time consuming, labor intensive and no device is yet available to detect onset of estrus automatically, so this cannot be used practically as a predictor of time of ovulation. The mithun cow at estrus to be mounted by bull was recorded in all cases (100%). Ovulation occurred 23.5+/-1.5 h (ranging between 19 and 27 h) after first mounting. Although promising, mounting cannot be assessed automatically, which limits its practical use as a predictor of ovulation. Standing heat was recorded in 98.1% of total estrus studied in mithun cows and ovulation occurred 21.8+/-1.3 h (ranging between 19 and 25 h) after first observed standing heat. Standing heat can be detected automatically using mounting detectors. Hence, standing heat can be used practically as ovulation predictor in mithuns. In conclusion, cow to be mounted by mithun bull is the best predictor of ovulation, but non-availability of devices to detect it automatically restricts its practical application. Standing heat that recorded 98.1% estrus cases in mithun cows, can also be detected automatically using mounting detector, therefore be used widely as an ovulation predictor in field condition for mithun cows.  相似文献   

3.
During fall season, 18 multiparous Corriedale ewes were divided into two equal groups for the continuous (CON) and intermittent (INT) presence of a ram. Estrus was synchronized with fluorgestone acetate intravaginal sponges that were left 14 days, plus an injection of 200&mgr;g of a prostaglandin F-2alpha analog at sponge removal. Estrus was detected three times a day (at 6 a.m., 2 p.m. and 10 p.m.) by using rams with harnessess and markers. Ovulation time was determined by laparoscopy, starting 24h after estrus detection. Estrus onset was (mean+/-S.E.M.) 32.9+/-1.6 and 45.3+/-4.4h for the CON and INT groups, respectively (P<0.01). Estrus duration was 31.1+/-0.9 and 30.2+/-1.2h, for the same groups, respectively (P>0.05). Ovulation time and the interval from sponge removal to ovulation (ISRO) for the CON and INT groups was 29.0+/-1.5, 62.0+/-2.0, 26.7+/-1.3 and 72.0+/-4.2h, respectively. Ovulation time was not different (P>0.05), but ISRO was shown to be different between treatments (P<0.05). It is concluded that the continuous presence of a ram after sponge removal hastens estrus onset and reduces the interval between sponge removal and ovulation, without modifying estrus duration and time between estrus onset and ovulation.  相似文献   

4.
In gilts ovulation occurs over a 4 to 8-hour period, with 70% of the ova being shed over a relatively short span of time. These oocytes supposedly give rise to more developed embryos at Days 10 to 12 which advance the uterine environment and reduce survival rates of less developed embryos because of an asynchronous environment. The aim of this experiment was to reduce embryo mortality by influencing the duration and pattern of ovulation. Crossbred gilts (n = 98) were bred at their first observed estrus after being exposed to boars at 200 days of age. Estrus detection was carried out daily at 0000, 0800 and 1600 hours. All gilts were artifically inseminated with fresh semen, with a minimum of 2.7 billion spermatozoa, at both 16 and 32 hours after detection of estrus. Gilts were randomly assigned to one of the following treatments at detection of estrus: 1) 500 IU (2ml) chorionic gonadotrophin (hCG) injected intravenously at the onset of estrus (n = 22); 2) 16 mug (4 ml) gonadotrophin releasing hormone (GnRH) injected intravenously at the onset of estrus (n = 25); 3) 11.5 mug estrogen added to the semen at the time of AI (n = 25); 4) control, untreated gilts (n = 26). All gilts were slaughtered at Day 30 of gestation (Day 0 = day of detected estrus). The mean (+/-SEM) number of ovulations in pregnant gilts per treatment was 13.0 +/- 0.52, 12.6+/-0.51, 13.6+/-0.54 and 13.3+/-0.52, while the mean (+/-SEM) number of normal embryos per treatment was 10.3+/-0.67, 10.5+/-0.66, 10.3 +/- 0.69 and 10.5 +/- 0.67 for hCG, GnRH, estrogen and control groups, respectively, for an embryonic survival rate of 80 +/- 4.2%, 83 +/- 4.1%, 74 +/- 4.3% and 79+/-4.2% in pregnant gilts. If nonpregnant gilts are included, the embryonic survival rate for treatments 1 to 4 was 76+/-7.0%, 73+/-6.5%, 60+/-6.5%, and 64+/-6.4%, respectively. There was no significant difference between treatments for any of these variables. There was no evidence that administration of hCG, or GnRH at the onset of estrus, or the addition of estrogen to semen improved embryonic survival in gilts by Day 30 in this experiment.  相似文献   

5.
Endocrine control of estrous cycle in mithun (Bos frontalis)   总被引:1,自引:0,他引:1  
The objective of the present study was to establish the profiles of luteinising hormone (LH), follicle stimulating hormone (FSH), estradiol 17beta (E2) and progesterone (P4) secretion and their interrelationships during the natural estrous cycle of mithun (Bos frontalis). Daily blood samples were collected from second or third postpartum estrous cycles for determination of plasma concentrations of LH, FSH, E2 and P4. Concentration of P4 was found to be lowest on the day of estrus. It increased following estrus, attained the highest concentration on day 11 and decreased thereafter. Concentrations of LH and FSH varied significantly (p<0.01) during the first and last 6 days of the cycle and their variations were found to be synchronised. Both LH and FSH attained a biphasic peak during the estrous cycle. This biphasic peak lasted on from day -5 to day 3 of the cycle. The variations in maximum LH and FSH concentrations of both the phases did not differ significantly. During the entire estrous cycle, the E2 concentrations attained either one peak or two peaks. The first peak, approximately on day 4 before estrus was common in all animals. One additional peak was found on the day of estrus in 45% animals. A significant (p<0.01) negative relationship was found between P4 and, LH and FSH during the first and last 6 days of cycle. But a significant (p相似文献   

6.
Ovarian follicular dynamics and fertility are unaffected by the presence or absence of a corpus luteum during synchronization of estrus with progestins in goats. On day 5 of the estrous cycle (estrus= day 0), a gestagen-containing sponge was inserted in the vagina for 11 days. To remove corpora lutea, one group of goats (CL-, n=41) received 7.5 mg of luprostiol on days 7 and 8 of the estrous cycle. The second group of goats retained the CL (CL+, n=38). Growth and development of follicles > or =4 mm in diameter were measured daily from onset of estrus to 2 days after subsequent ovulation in seven goats from each group, using rectal ultrasonography. Estrus was detected by the use of a reproductively sterilized buck and estrous does were subsequently mated. The number of waves of follicular development (CL- =3.57+/-0.2 versus CL+ =3.14+/-0.14; P>0.05) did not differ between groups. The second wave of follicular development was present at the time of progesterone decline in the CL- group and neither its duration (CL- =4.8+/-0.4 versus CL+=5.6+/-0.7 days; P>0.05) nor the day of commencement of the third wave of follicular development (CL -=11.6+/-0.7 versus CL+=11.8+/-0.6; P>0.05) were altered by the concentration of endogenous progesterone. The pregnancy rate was similar between the two groups. (CL-=68.29% versus CL+=65.79%; P>0.05). Thus, in goats, ovarian follicular dynamics and fertility were not altered by the presence or absence of a corpus luteum during estrous synchronization.  相似文献   

7.
The objective of the present study was to evaluate the endocrine and behavioral features of estrous-induced Alpine goats. A total of 36 nulliparous, 40 non-lactating and 42 lactating does were treated with intravaginal 60 mg medroxyprogesterone acetate sponges for 9 d plus 200 IU eCG and 22.5 microg d-cloprostenol 24 h before sponge removal. Plasma progesterone concentration was analyzed from blood sampled on days 0 (sponge insertion), 5, 8 (cloprostenol administration) and 9 (sponge removal) in 11 nulliparous, 13 non-lactating and 11 lactating does. Estrous response did not differ (P>0.05) among nulliparous (97.2%), non-lactating (90.00%) and lactating does (85.7%). Interval to estrus and duration of estrus did not differ (P>0.05) among nulliparous (22.8+/-9.9 and 25.6+/-6.8h), non-lactating (23.7+/-15.8 and 25.0+/-6.0 h) and lactating does (22.2+/-10.4 and 24.9+/-4.2h). The accumulative percentage of does in estrus during the first 36 h after sponge removal was 88.1%. The correlation between interval to estrus and duration of estrus was r=-0.32 (P<0.001). Endogenous progesterone production is decreased until day 8 or suppressed by MAP on day 9. Conception rate was greater (P<0.01) in lactating (77.8%) than non-lactating (44.4%) but similar (P>0.05) to nulliparous (60.0%) goats. Estrus can be efficiently induced by means of hormonal treatment in goats and acceptable fertility can be obtained regardless of animal category.  相似文献   

8.
Twenty prepubertal Holstein heifers were utilized to assess plasma 13, 14-dihydro-15-keto-prostaglandin F(2)alpha (PGFM), serum progesterone (P(4)) and estradiol-17beta (E(2)) concentrations as well as the E(2):P(4) ratio during the onset of puberty in cattle. All animals were maintained as a group along with a sterile marker bull to assist in the detection of estrus. Upon detection of the first estrus (Day=O), daily blood samples were collected from a jugular vein until the heifers had completed 3 estrous cycles. The average body weight and age at first estrus were 247.6+/-4.8 kg and 304.0+/-7.5 days, respectively. Frequency of abnormal length estrous cycles was greater (P<0.02) during the first (40%) and second (35%) cycles than during the third estrous cycle (0%). All heifers had normal cycle lengths (18 to 24 days) by the third estrous cycle. Serum P(4) was greater during the third cycle (P<0.05) from Day 10 to Day 4 before the next estrus compared with the same period of the first estrous cycle. Serum E(2) did not peak until the day of estrus in the first cycle, whereas E(2) reached a maximal level 2 days before estrus in the third estrous cycle. Serum E(2) was higher (P<0.0001) 2 days before estrus in the third cycle than in the first estrous cycle. Plasma PGFM reached maximum concentrations 3 days before estrus in the third cycle compared with 1 day before estrus at the end of first estrous cycle. As estrus approached during the third cycle, PGFM rose 1 day before E(2) rose and P(4) declined, while the rise in PGFM and E(2) occurred simultaneously, with P(4) declining at the end of the first estrous cycle. During diestrus, the E(2):P(4) ratio was lower (P<0.07) in the third cycle than in the first, but it was higher (P<0.04) at estrus and 1 day before in the third estrous cycle. These data reveal a high incidence of abnormal length estrous cycles during the first two estrous cycles of the peripubertal period, and demonstrate anomalies in uterine and ovarian endocrine activity during the peripubertal period in cattle.  相似文献   

9.
Single injection of estrogen and progesterone before prostaglandin (steroid priming) was used to shorten the prostaglandin-based estrus synchronization program. Sixty-five cyclic Sistani cattle, with parity ranging from 1 to 4 and postpartum period of >80 days were selected at unknown stages of the estrous cycle and assigned to 2 groups according to their age, weight and parity. Females in the control group (n=33; 58.4 +/- 4.3 months; 277 +/- 8 kg LW) received two consecutive injections of prostaglandin F2alpha analogue (500 microg; Cloprostenol, PG) 14 days apart (Day 0 = First PG injection). On Day 7, treated females (n=32; 60 +/- 4.8 months; 292 +/- 9 kg LW) were given an intramuscular injection of 100 mg progesterone and 2 mg estradiol benzoate followed by prostaglandin 7 days later, concurrent with the second PG injection of the control group. Estrus detection was carried out every 6 hours for 7 days, commencing from 24 hours after the last PG injection. Females that allowed to be mounted were identified (standing estrus) and inseminated with frozen semen 12 hours later. Pregnancy was diagnosed on Day 50 after AI through palpation per rectum. Data were analyzed using Chi-squared and t-test. The tightness of estrus synchrony (%), the interval from the end of treatment to estrus (h) and conception rates (%) were similar (P > 0.05) between control (69.6%, 77.7 +/- 5.96 h and 56.5%) and treatment (68.2%, 82.6 +/- 7.64 h and 54.5%) groups. In conclusion, steroid priming is an efficient way to shorten the prostaglandin-based estrus synchronization program from 14 to 7 days without compromising estrous response and fertility.  相似文献   

10.
Estrous cycles of 10 postpartum cyclic Holstein cows were synchronized using prostaglandin f(2alpha) (PGF(2alpha)) given twice 12 d apart to study the relationship of the onset of estrus, body temperature, milk yield, luteinizing hormone (LH) and progesterone concentration to ovulation. Blood samples and body temperatures (vaginal and rectal) were taken every 4 h until ovulation, starting 4 h prior to the second PGF(2alpha) treatment. All cows were observed for estrus following the second administration of PGF(2alpha). Ultrasound scanning of the ovaries commenced at standing estrus and thereafter every 2 h until the disappearance of the fluid filled preovulatory follicle (ovulation). Two cows failed to ovulate and became cystic following the second PGF(2alpha) treatment. The remaining eight cows exhibited a decline in progesterone to <1.0 ng/ml within 28 h, standing estrus and a measurable rise (> 1.0 degrees C) in vaginal but not rectal temperature, and ovulated 90 +/- 10 h after the second PGF(2alpha) treatment. Onset of standing estrus, LH peak and vaginal temperature were highly correlated (P<0.05) with time of ovulation (0.82, 0.81 and 0.74, respectively). Intervals to ovulation tended to depend upon parity. Pluriparous (n = 4) and biparous (n = 4) cows ovulated within 24 and 30 +/- 3 h from the onset of standing estrus; 22 and 31 +/- 2 h from the LH peak; and 22 and 27 +/- 3 h from peak vaginal temperature (mean +/- standard error of the mean), respectively. The results indicated that the onset of standing estrus and rise in vaginal temperature are good practical parameters for predicting ovulation time in dairy cattle.  相似文献   

11.
Serum levels of LH, total estrogen and progesterone were measured daily by radioimmunoassay during proestrus, estrus and early diestrus in five beagle bitches. Occurrence of the LH peak relative to the onset of estrus was quite variable ranging from 3 days before to 7 days after the onset of estrus. Serum LH levels were elevated for 3 days with a peak value of 25 ± 2 ng/ml reached 2.4 days after the start of estrus. LH levels were ≤ 2 ng/ml when measured at other times during the estrous cycle. Estrogen titers ranged from 84 ± 39 pg/ml at 9 days before the LH peak to 175 ± 15 pg/ml coincident with the LH peak. A broad estrogen peak was evident beginning 5 days before and continuing for 5 days after the LH peak. An estrogen surge was seen in 4 of 5 dogs immediately preceding or coincident with the LH peak suggesting that LH release in the bitch is triggered by a sharp elevation in estrogen levels. Serum progesterone levels rose from ≤ 5 ng/ml before the LH peak to 46 ± 6 ng/ml 6 days afterwards.  相似文献   

12.
Treatments with progestin to synchronize the bovine estrous cycle in the absence of the corpus luteum, induces persistence of a dominant follicle and a reduction of fertility at doses commonly utilized. The objective of the present research was to induce a new wave of ovarian follicular development in heifers in which stage of the estrous cycle was synchronized with norgestomet. Holstein heifers (n=30) were used, in which estrus was synchronized using two doses of PGF2alpha i.m. (25 mg each) 11 days apart. Six days after estrus (day 0=day of estrus) heifers received a norgestomet implant (6 mg of norgestomet). On day 12, heifers were injected with 25 mg of PGF2alpha i.m. and assigned to treatments (T1 to T4) as follows: treatment 1, heifers received a second norgestomet implant (T1: N+N, n=6), treatment 2, received 100 microg of GnRH i.m. (T2: N+GnRH, n=6), treatment 3, 200 mg of progesterone i.m. (T3: N+P4, n=6), treatment 4, control treatment with saline solution i.m. (T4: N+SS); in the four treatments (T1 to T4) implants were removed on day 14. For treatment 5, heifers received 100 microg of GnRH i.m. on day 9 and 25 mg of PGF2alpha i.m. (T5: N+GnRH+PGF2alpha) at the time of implant removal (day 16). Ovarian evaluations using ultrasonographic techniques were performed every 48 h from days 3 to 11 and every 24 h from days 11 to 21. Blood samples were collected every 48 h to analyze for progesterone concentration. A new wave of ovarian follicular development was induced in 3/6, 6/6, 3/6, 1/6 and 6/6, and onset of estrus in 6/6, 0/6, 6/6, 6/6 and 6/6 for T1, T2, T3, T4 and T5, respectively. Heifers from T1, T3 and T4 that ovulated from a persistent follicle, showed estrus 37.5 +/- 12.10 h after implant removal and heifers that developed a new wave of ovarian follicular development showed it at 120.28 +/- 22.81 h (P<0.01). Ovulation occurred at 5.92 +/- 1.72 and 2.22 +/- 1.00 days (P<0.01), respectively. Progesterone concentration was <1 ng/ml from days 7 to 15 in T1, T2 and T4; for T3 progesterone concentration was 2.25 +/- 0.50 ng/ml on day 13 and decreased on day 15 to 0.34 +/- 0.12 ng/ml (P<0.01). For T5, progesterone concentration was 1.66 +/- 0.58 ng/ml on day 15. The more desirable results were obtained with T5, in which 100% of heifers had a new wave of ovarian follicular development induced, with onset of estrus and ovulation synchronized in a short time period.  相似文献   

13.
The cervix functions as a barrier to spermatozoa. Vaginal artificial insemination in cats is, therefore, likely to be successful only at the period of estrus when the cervix is open. This study aimed to define the period of cervical patency in cats in both non-ovulatory and ovulatory estrus cycles. A total of 15 reproductive cycles were studied in six cats during the estrous stage. Cervical patency was monitored with the cats under sedation, by infusing 2 mL of Iohexol contrast medium via a 3.5 French tomcat catheter into the cranial vagina during estrus. Day one of estrus was defined as the first day the cats showed estrous behavior. Non-ovulatory cycles were characterized by a serum progesterone concentration on days 11-15 that was below 5 nmol/L and a normal interestrus interval of 7-14 days. Ovulatory cycles were characterized by a serum progesterone concentration on days 11-15 that was above 5 nmol/L and an interestrus interval that exceeded 30 days. The cervix was considered to be open when the contrast medium was seen to enter the uterus, and to be closed when the contrast medium remained in the vagina. Blood samples were collected at each examination and were assayed for estradiol-17beta and progesterone concentrations. The cervix was open on the first day of standing estrus at a mean estradiol-17beta serum concentration of 87.4+/-21.8 pmol/L (range 14 to >or=180 pmol/L) and closed at an estradiol concentration of 47.1+/-12.4 pmol/L (range 4 to >or=180 pmol/L). In the ovulatory cycles the cervix was closed at a progesterone concentration of 9.8+/-4.4 nmol/L (range 0.6-28.4 nmol/L). There was no difference in the duration of cervical patency in non-ovulatory and ovulatory cycles (5.5+/-1.2 days and 5.2+/-0.5 days, respectively) (p>0.05). The higher overall mean concentrations of estradiol-17beta seen in the ovulatory cycles than in the non-ovulatory cycles, indicate that a high level of estradiol is necessary for induction of ovulation. Ovulation in 60% of unmated females in this study indicates that the techniques used for evaluation of cyclus stage and cervical opening have the potential to induce ovulation in the cat. This study demonstrates that cervical patency is not influenced by the occurrence of ovulation, but is due to individual variations between cats.  相似文献   

14.
The onset of sexual cycle postpartum was described in the collared peccary (Tayassu tajacu). Serum progesterone and 17beta-estradiol profiles, vaginal smears and external genitalia were analyzed in 20 animals housed with their piglets during the first postpartum month. The appearance of external genitalia showed no variation in any of the females: a shallow, reddish vulva, and vaginal mucus were constant features throughout the study. Based on hormonal profiles and vaginal smear cell patterns, 16 (80%) of the 20 peccaries showed signs of estrus and were considered cycling. The remaining four females (20%) did no show signs of estrus confirmed by low levels of progesterone (0.9+/-0.4 ng/mL) during the first postpartum month. In the cycling peccaries, a serum 17beta-estradiol peak (53.4+/-8.1 pg/mL) was observed on Day 7+/-1 postpartum, along with a linear increase in progesterone concentration from 3 (4.3+/-2.6 ng/mL) to 11 (30.8+/-4.9 ng/mL) days after this estradiol peak. Proportions of the different cells of the vaginal epithelium also changed in these females: superficial plus intermediate cells amounted to 76% of the cell total between Days 6 and 9 postpartum, corresponding to the estradiol peak. Nine (56%) of the 16 cycling females mated, indicated by the presence of sperm cells in their vaginal smears, and 6 (67%) became pregnant, reaching term. Non-pregnant cycling females (n=10) showed a steady decrease in serum progesterone concentration from 11 to 23 days after the estradiol peak, when basal levels were attained and a new estradiol peak registered, indicating the resumption of cyclicity in these females. The time interval between the two estradiol peaks was 23.5+/-2.1 days in these females. In pregnant females, progesterone concentrations continued to rise to levels of 60 ng/mL (n=6) 23 days after mating. These findings indicate that the lactating collared peccary female can become cycling and fertile during the early postpartum period, and that a predominance of superficial plus intermediate vaginal cells can be taken as the first sign of estrus.  相似文献   

15.
Ott RS  Nelson DR  Hixon JE 《Theriogenology》1980,13(2):183-190
Serum progesterone concentrations and behavioral estrus were determined in two groups of 17 mixed breed dairy does at the beginning of the breeding season. The treatment group was pastured adjacent to two mature bucks while two teaser bucks ran with the group. The control group was pastured without exposure to bucks. Goats were observed for estrus daily for 35 days and samples of jugular blood were collected every other day for radioimmunoassay of progesterone. Signs of estrus were observed in 16 of 17 does in the treatment group within a mean +/- S.E. of 5.5 +/- 1.3 days after introduction of the bucks. Thirteen does demonstrated a progesterone profile characteristic of a normal estrous cycle with peak progesterone concentrations of 5.9 +/- 0.5 ng/ml. Signs of behavioral estrus were not observed in the control group. One control doe demonstrated a progesterone profile characteristic of a normal estrous cycle attaining a peak progesterone concentration of 3.9 ng/ml. Progesterone concentrations in the remaining 16 control does were at or near the lower limits of sensitivity of the assay for the duration of the experiment. Fifteen of the control does exhibited estrus within 7 +/- 1.5 days after exposure to bucks at the end of the experiment. These results clearly demonstrated a profound influence of the male on estrous cycle activity during the beginning of the breeding season.  相似文献   

16.
The estrous cycle of 16 mature mongrel female dogs was monitored to evaluate the accuracy of teasing, vaginal cytology and quantitative ELISA progesterone assay to determine ovulation. The dogs were presented to male, and blood samples and vaginal swabs were taken daily during proestrus and estrus. Selected serum samples collected during estrus were assayed for endogenous LH by radioimmunoassay (RIA). Plasma samples collected during proestrus and estrus were assayed for progesterone with a commercially avialable ELISA kit. Ovulation was considered to take place 48 h after the preovulatory LH peak. Vaginal cytology smears were stained with Wright's stain and evaluated for the percentage of superficial squamous cells. Day 1 of diestrus (Day 1) was defined as a drop of 20% or more in the total number of superficial cells. Two standard curves (linear and best fitted curves) commonly used with ELISA were compared together and with the RIA progesterone assay. Ovulation was estimated to occur when progesterone concentration was 4.9 +/- 1.0ng/ml (mean +/- SD, n = 15), with a range of 3.4 to 6.6 ng/ml. Based on vaginal cytology, ovulation took place 6.9 +/- 1.6 d (n = 15) after 80% of the squamous cells were superficial and 6.8 +/- 1.4 d (n = 16) before Day 1. Ovulation took place 2.1 +/- 3.9 d (n=11) after the first day of standing estrus and 8.8 +/- 1.5 d (n = 10) before the last day of receptivity. The two standard curves were found parallel to each other and to the RIA progesterone assay. Based on the results of the present study, ELISA progesterone assay and determination of the first day of estrus by vaginal cytology are reliable methods for predicting ovulation, whereas the last day of receptivity as determined by teasing and Day 1 as determined by vaginal cytology are reliable methods to retrospectively estimate ovulation time.  相似文献   

17.
The objective was to determine the efficacy of a previously used CIDR or melengestrol acetate (MGA; 0.5mg/head/day) for resynchronization of estrus in beef heifers not pregnant to timed-AI (TAI). In three experiments and a field trial, heifers were reinseminated 6-12 h after first detection of estrus. Pregnancy diagnosis was done from approximately 25-43 days after either TAI or reinsemination. In Experiment 1, 79 heifers received a once-used CIDR from 13 to 20 days after TAI and 80 heifers were untreated controls. For these two groups, there were 34 and 35 heifers, respectively, not pregnant to TAI; median +/- S.E. intervals from TAI to onset of estrus were 22 +/- 0.2 days versus 20 +/- 0.6 days (P < 0.001); estrus rates were 70.6% versus 85.7% (P = 0.1); conception rates were 62.5% versus 76.7% (P < 0.3); and pregnancy rates were 44.1% versus 65.7% (P = 0.07), for CIDR and untreated (control) groups, respectively. In Experiment 2, heifers (n = 651) were TAI (Day 0) and 13 days later randomly assigned to one of seven groups (n = 93 per group) to receive a once-used CIDR (three groups; Days 13-20), MGA (three groups; Days 13-19), or no treatment (control group). Groups given a CIDR or MGA also received: no further treatment (CIDR or MGA alone); 1.5mg estradiol-17beta (E-17beta) and 50 mg progesterone (P4) in 2 mL canola oil on Day 13; or E-17beta and P4 on Day 13 and 0.5 mg E-17beta on Day 21 (24 h after CIDR removal or 48 h after the last feeding of MGA). Pregnancy rate to TAI was lowest (P < 0.05) for the group given a CIDR plus E-17beta and P4 on Day 13 and E-17beta on Day 21. Variability in return to estrus was greater (P < 0.001) in the control and MGA groups than in CIDR groups. Conception and pregnancy rates in heifers given a CIDR (65.1 and 61.4%) were higher (P<0.01) than those fed MGA (49.6 and 40.4%), but not different from controls (62.2 and 54.9%, respectively). In Experiment 3, 616 heifers received a once- or twice-used CIDR for 7 days, beginning 13+/-1 days after TAI, with or without a concurrent injection of 150 mg of P4 (2 x 2 factorial design). Pregnancy rate to TAI was 47.2%. In heifers that returned to estrus, there was no significant difference between a once- or twice-used CIDR for rates of estrus (68.8%, P < 0.3), conception (65.9%, P < 0.6) and pregnancy (45.3%, P < 0.8). Injecting progesterone at CIDR insertion increased the median interval from CIDR removal to onset of estrus (P < 0.05) and reduced rates of estrus (63.8% versus 73.8%, P<0.05), conception (60.5% versus 70.6%, P = 0.1) and pregnancy (38.6% versus 52.2%, P < 0.02). In a field trial, 983 heifers received a once-used CIDR for 7 days, beginning 13 +/- 1 days after TAI. Pregnancy rate to TAI was 55.2%. The median (and mode) of the interval from CIDR removal to estrus was 2.5 days. Estrus, conception and pregnancy rates were 78.2, 70.3 and 55.0% (overall pregnancy rate to TAI and rebreeding, 78.7%). In summary, a once- or twice-used CIDR for 7 days, starting 13 +/- 1 days after TAI resulted in the majority of nonpregnant heifers detected in estrus over a 4-day interval, with acceptable conception rates; however, injecting progesterone at CIDR insertion significantly reduced both estrus and pregnancy rates, and estradiol treatment after CIDR removal was associated with a decreased pregnancy rate to TAI. Fertility was higher in heifers resynchronized with a once-used CIDR than with MGA.  相似文献   

18.
The objective of the study was to determine the timing of ovulation in relation to onset of estrus and the preovulatory LH peak in yaks. For this purpose, a sensitive LH enzymeimmunoassay previously established in buffaloes was successfully validated for measuring the hormone in yak plasma. Plasma LH and progesterone were estimated from blood samples collected from eight non-lactating cycling yaks at 2 h intervals after estrus onset until 6 h after ovulation (ovulation was confirmed by palpation of ovaries per rectum). The mean+/-S.E.M. preovulatory plasma LH peak was 10.11+/-0.35 ng/ml with the values ranging from 8.75 to 11.51 ng/ml in individual yaks. The mean+/-S.E.M. duration of the LH surge was 7.25+/-0.55 h with a range of 6-10 h. Onset of LH surge (mean+/-S.E.M.) occurred 3.0+/-0.65 h after the onset of estrus. Mean plasma progesterone stayed low (<0.25 ng/ml) during the entire duration of sampling. Ovulation occurred 30.5+/-0.82 h (range, 28-34 h) after the onset of estrus and 20.25+/-1.03 h after the end of LH surge. The occurrence of the LH peaks within a narrow time frame of 4-8h post estrus onset in yaks could have contributed to the animals ovulating within a narrow time interval.  相似文献   

19.
Female green iguanas, Iguana iguana, were caught in Belize, Central America (17 degrees N), in December, at the onset of seasonal gonadal activity. The animals were immediately transferred to San Diego (32 degrees N). Ovarian follicular development continued, with peak plasma hormone levels measured in January and February; 200 pg/ml for progesterone (P) and 800 pg/ml for total estrogens (Et = estradiol [E2] + estrone [E1]). E2 was the predominant estrogen throughout the cycle. Follicular atrophy was indicated in April with circulating progesterone and estrogen levels decreasing to baseline (refractory phase) levels (P = 20 pg/ml; Et = 50 pg/ml). Approximately midway through the refractory phase of their annual reproductive cycle (late May), either the D-Arg6 analog of Chicken II or mammalian GnRH was administered via intraperitoneal osmotic pumps for 14 days to nine females. The analog of chicken II induced a fivefold increase in total circulating estrogens within 3-4 days after implantation. Both continuous and pulsatile delivery of the chicken II analog produced a similar pattern of steroidogenic response. A radical sham control animal showed no increase in steroidogenesis. Mammalian GnRH produced a pattern of similar duration, although the magnitude of the steroidogenic response was only half that produced by the chicken II analog. Estrogen titers approached baseline levels in all treatment groups two days after treatment ceased. Progesterone levels increased in all treatment groups during the delivery of exogenous GnRH, although the increases were not consistent. Untreated male cagemates housed with treated females exhibited increased territoriality, courtship behavior, and mating, which began on day 4 or 5 of the treatment period. The control female was not courted by its male cagemate.  相似文献   

20.
Fertility of Holstein cows has been decreasing for years and, to a lesser extent, the fertility of heifers too but more recently. A hypothesis to explain this phenomenon may be that the chronology of events leading to ovulation is different for those animals bred nowadays when compared to what was reported previously; this would result in an inappropriate time of insemination. Therefore, two experiments were designed to investigate the relationships among estrus behavior, follicular growth, hormonal events and time of ovulation in Holstein cows and heifers. In the first experiment, the onset of estrus, follicular growth, patterns of estradiol-17beta, progesterone and LH, and the time of ovulation were studied in 12 cyclic Holstein heifers that had their estrus synchronized using the Crestar method; this was done twice, 3 weeks apart. The intervals between estrus and ovulation, estrus and the LH peak, and between the LH peak and ovulation were, respectively, 38.5 h +/-3.0, 9.1 +/- 2.0 and 29.4 h +/-1.5 (mean+/- S.E.M). The variation in the interval between estrus and the LH peak explained 80.6% of the variation in the interval between estrus and ovulation. The intervals between estrus and the LH peak, and estrus and ovulation were correlated with estradiol-17beta peak value (r=-0.423, P <0.04 and r=-0.467, P<0.02, respectively). Positive correlation coefficients for the number of follicle larger than 5 mm, and negative correlation coefficients for the size of the preovulatory follicle with the intervals between estrus and LH peak, LH peak and ovulation, and estrus and ovulation suggest an ovarian control of these intervals. In respect to its role to explain the variation in the interval between estrus and ovulation, the variation in the interval between estrus and the LH peak was evaluated further in a second set of experiments utilizing 12 pubertal Holstein heifers and 35 Holstein cows. The duration of the interval between the beginning of estrus and the LH peak was longer in heifers than in cows (4.15 h versus -1.0 h; P <0.002); the variation for this interval was higher in cows than in heifers (S.E.M.= 1.2 h versus 0.8 h; P=0.01). According to the results of these studies it can be proposed that estradiol and other product(s) of ovarian origin regulate not only the duration of intervals between the onset of estrus and the LH surge but also between the LH surge and ovulation. From the results obtained in the first experiment, it may be postulated that differences observed between cows and heifers for the duration of the interval between onset of estrus and the LH surge as well as for the variation of this interval would be observed also for the interval between the onset of estrus and ovulation. Therefore, on a practical point of view, the long interval between the onset of estrus and ovulation and the high variation of this interval, especially in cows, may be a source of low fertility and should be considered when analysing reproductive disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号