首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 694 毫秒
1.
Fecapentaene-12 and -14, direct-acting mutagens in human feces, were found to hydroxylate the C-8 position of guanine residues in DNA in vitro. Fecapentaene-12 or -14 was incubated with 0.5 mg of calf thymus DNA in 1 ml of reaction mixture at pH 7.4 for 2 h at 37°C in the dark, and then 8-hydroxydeoxyguanosine (8-OH-dG) was analyzed. In these conditions 8-OH-dG was formed dose-dependently at levels of 1.1–4.6 residues/104 dG with concentrations of 0.5–3.0 mM of fecapentaene-12. Similar results were obtained with fecapentaene-14. The amount of 8-OH-dG in untreated DNA was 0.2–0.3 residue/104 dG.  相似文献   

2.
Experimental data suggest a possible role of DNA damage in aging, mainly related to oxidative lesions. With the objective of evaluating DNA lesions as molecular biomarkers of aging, we measured 8-hydroxy-2'-deoxyguanosine (8-OH-dG) and DNA-protein crosslinks (DPXL) levels in different organs of mice aged 12 and 24 months. 8-OH-dG was detected by 32P postlabelling after removing unmodified dG by trifluoracetic acid, which prevented the artificial formation of 8-OH-dG during 32P labelling procedures. Appreciable 8-OH-dG amounts were detected in 12-month-old mice in liver (1.8 +/- 0.7 8-OH-dG/10(5) normal nucleotides), brain (1.6 +/- 0.5) and heart (2.3 +/- 0.5). In 24-month-old mice these values were higher in all examined organs (liver, 2.7 +/- 0.4; brain, 3.6 +/- 1.1; heart, 6.8 +/- 2.2 8-OH-dG/10(5) normal nucleotides). This accounted for a 1.5-fold increase in liver (not significant), 2.3-fold increase in brain (P < 0.01), and 3.0-fold increase in heart (P < 0.001). A similar trend was observed for DPXL levels, which were the 1.8 +/- 0.3%, 1.2 +/- 0.2%, and 2.2 +/- 0.3% of total DNA in liver, brain, and heart of 12-month-old mice and 1.9 +/- 0.4%, 2.0 +/- 0.4%, and 3.4 +/- 0.5% in 24-month-old mice, with ratios of 1.0, 1.7 (P < 0.01), and 1.5 (P < 0.001), respectively. Highly significant correlations between 8-OH-dG and DPXL levels were recorded in brain (r = 0.619, P < 0.001) and heart (r = 0.800, P < 0.0001), but not in liver (r = 0.201, not significant). These data suggest that brain and heart are more severely affected by the monitored age-related DNA lesions than liver, which can be ascribed to certain characteristics of these postmitotic organs, including the low detoxifying capacities, the high oxygen consumption, and the impossibility to replace damaged cells by mitosis. The strong correlation between 8-OH-dG and DPXL supports a possible contribution of oxidative mechanisms to formation of DPXL in those organs, such as brain and heart, which play a primary role in the aging of the whole organism.  相似文献   

3.
As typical mitochondrial myopathy has been reported to be expressed among many patients with AIDS treated with long-term azidothymidine (AZT) therapy, we examined changes in mouse liver mitochondrial DNA (mtDNA) after 4-week administration of AZT. Even below 1/10th the dose given to the patients (AZT, 1 mg/kg/day), 25% of the total deoxyguanosine (dG) was converted to be 8-hydroxy-deoxyguanosine (8-OH-dG). 38% of the total dG was converted to 8-OH-dG with AZT 5 mg/kg/day. In vitro, the conversion of dG to 8-OH-dG was demonstrated by incubating mtDNA in the oxygen radical producing system containing NADH and KCN treated mitochondrial inner membrane. Thus it is concluded that, by lack of repairing system, damaged mtDNA with AZT results in impaired mitochondrial respiratory chain causing oxygen radicals which are responsible for 8-OH-dG formation. These results suggest that the oxygen damage of mtDNA is the primary cause of mitochondrial myopathy with AZT therapy.  相似文献   

4.
High-performance liquid chromatography (HPLC) with UV absorption detection was employed to measure the amounts of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) produced from the nucleoside 2'-deoxyguanosine (dG) under varying reaction conditions using iron and H(2)O(2). The results indicate that 8-OH-dG produced from the reaction of iron and H(2)O(2) with dG can undergo reaction with free (i.e., unchelated) Fe(III) and that adding the chelating agent ethylenediaminetetraacetic acid (EDTA) after the reaction prevents this from occurring. It also appears that the free radical species generated by iron-EDTA chelates in pH 7.4 N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (Hepes) buffer is either not formed or unstable in unbuffered aqueous solution. Finally, 8-OH-dG levels are significantly larger when Fe(II) is allowed to bind to the nucleoside dG prior to addition of H(2)O(2). However, production of 8-OH-dG from unbound Fe(II) is also relevant. The results of this work show that differing reaction conditions in vivo, especially at the cellular level, will affect significantly the measured yields of 8-OH-dG. These results also have implications for studies involving DNA and the ability to distinguish between 8-OH-dG produced from free iron and iron bound to both phosphate groups and the DNA base guanine.  相似文献   

5.
In our work, we have used 8-hydroxy-deoxyguanosine (8-OH-dG), one of the major oxidative products of sperm DNA, in a population of patients consulting for infertility. We found an inverse relationship between sperm concentration and the log of the ratio of 8-OH-dG to dG (P < 0.01). On the same patients' sperm samples, the sperm chromatin structure assay (SCSA) was performed. An inverse relationship was observed between the DNA fragmentation index and sperm concentration (P < 0.001). There was also a positive relationship between SCSA and log 8-OH-dG/dG. This indicates that DNA fragmentation measured by the SCSA originates in part from oxidative products. In a few patients, antioxidant treatment decreased the DNA fragmentation index below the threshold of 30% that is crucial for subfertility.  相似文献   

6.
Fecapentaenes are a group of fecal mutagens of microbial origin isolated from human stools. Fecapentaene-12 (F-12) and fecapentaene-14 (F-14), differing only in two carbon atoms in the side chain, are glyceryl ethers with a highly reactive chromophoric aliphatic side chain incorporating a conjugated pentaene moiety. Although these compounds are known for their genotoxicity, no test systems have been developed to precisely assess their relative genotoxicity. In this study F-12 and F-14 were assayed for their genotoxicity using the SOS Chromotest in which the induction of beta-galactosidase in E. coli PQ37 was used as a quantitative measure of biological activity. The activity obtained with F-12 and F-14 was compared with that of 4-nitroquinoline oxide (4-NQO) as the reference standard of a direct acting mutagen. While F-14 was almost as active as 4-NQO, F-12 was only about 25% as active as F-14, the higher analog.  相似文献   

7.
This is the first report that age-associated accumulation of 8-hydroxydeoxyguanosine (8-OH-dG) does occur in human mitochondrial DNA (mtDNA) in muscle of diaphragm. We extracted mtDNA from human diaphragm muscles from differing age groups, and determined the amount of 8-OH-dG by ultramicro-high performance liquid chromatography/mass-spectrometry system. With the same specimen, multiple deletions of mtDNA were detected by electrophoresis after amplification by the polymerase chain reaction method. In subjects below age 55, the level of 8-OH-dG in mtDNA was below 0.02% of the total deoxyguanosine (dG), whereas, in subjects over age 65, the level of 8-OH-dG increased with age at a rate of ca. 0.25% per 10 years, reaching 0.51% at age 85. Moreover, a concomitant increase in multiple deletions was detected with the increase in age. These results suggest that, in younger diaphragms, replication of mtDNA dilutes out 8-OH-dG being not detectable. In the elderly subjects aged over 65, the replication rate might be slowed down leading to the accumulation of 8-OH-dG in mtDNA, which would accelerate the age-associated multiple deletions of mtDNA observed among the subjects.  相似文献   

8.
As part of a systematic study of the effects of phytochemicals beyond antioxidation on cancer prevention, we investigated whether naringenin (NR), a citrus flavonoid, stimulates DNA repair following oxidative damage in LNCaP human prostate cancer cells. The 8-hydroxydeoxyguanosine (8-OH-dG) to deoxyguanosine (dG) ratio was measured after cells were treated with 200 micromol/L of ferrous sulfate in serum-free medium followed by NR exposure for 24 h in growth medium. The results demonstrated that exposure to 10-80 micromol/L of NR led to a significant decrease in the ratio of 8-OH-dG to 10(6) dG. Because cells were treated with NR after ferrous sulfate was removed, we conclude that we demonstrated an effect on DNA repair beyond antioxidation. In support of this conclusion, we determined the induction of mRNA expression over time after oxidative stress followed by NR administration of three major enzymes in the DNA base excision repair (BER) pathway: 8-oxoguanine-DNA glycosylase 1 (hOGG1), apurinic/apyrimidinic endonuclease and DNA polymerase beta (DNA poly beta). hOGG1 and DNA poly beta mRNA expression in cells after 24-h exposure to NR was increased significantly compared with control cells without NR. The intracellular concentration of NR after exposure to 80 micromol/L was 3 pmol/mg protein, which is physiologically achievable in tissues. In conclusion, the cancer-preventive effects of citrus fruits demonstrated in epidemiological studies may be due in part to stimulation of DNA repair by NR, which by stimulating BER processes may prevent mutagenic changes in prostate cancer cells.  相似文献   

9.
《Free radical research》2013,47(1-3):23-27
Active oxygen species (AOS) such as O and H2O2 have been shown to be generated from both gas and tar phases of cigarette smoke and it has been suggested that they are involved in carcinogenesis due to cigarette smoking. Therefore, we investigated the effect of cigarette smoking on oxidative DNA damages in human peripheral blood cells using 8-hydroxydeoxy-guanosine (8-OH-dG) as a marker.

From ten healthy male volunteers aged 20-22 years, 5 ml of blood was taken before and 10 minutes after smoking 2 cigarettes in 10 minutes. After lysis of blood cell membranes leukocyte DNA was isolated using a DNA extractor and 8-OH-dG levels were determined using high performance liquid chromatography (HPLC) with electrochemical detection.

The mean levels of 8-OH-dG increased significantly (P <0.05) from 3.3 ± 0.8/106dG (mean ± SD) to 5.1 ± 2.5 after smoking.

These results indicate that cigarette smoking induces oxidative DNA damage in peripheral blood cells in a relatively short time.  相似文献   

10.
Kankofe M  Schmerold I 《Theriogenology》2002,57(7):1929-1938
Retention of fetal membranes (RFM) is believed to be associated with conditions of oxidative stress. In this study, 8-hydroxy-2'-deoxyguanosine (8-OH-dG) was used for the determination of spontaneous oxidative DNA lesions in maternal and fetal parts of bovine retained and nonretained placentas. Placental specimens were collected directly after spontaneous delivery or during cesarean section from cows divided into 6 groups: (A) cesarean section before term without RFM, (B) with RFM, (C) cesarean section at term without RFM, (D) with RFM, (E) spontaneous delivery at term without RFM and (F) with RFM. Isolated DNA was hydrolyzed and analyzed by HPLC; native nucleosides were monitored at 254 nm and 8-OH-dG by electrochemical detection. No significant differences in 8-OH-dG levels between retained and nonretained placental tissues were found in all samples from preterm groups (mean concentrations between 13 and 42 micromol/mol deoxyguanosine (dG)). In the term cesarean section group with RFM a significant increase in 8-OH-dG concentration in DNA from maternal (8-fold) and fetal (18-fold) membranes were detected when compared to the respective nonretained tissues. Also, in the term spontaneous delivery groups maternal nonretained placental tissues showed increased levels of 8-OH-dG in comparison to the respective tissues of the retained placenta group. In placental tissues oxidative DNA lesions appear to be controlled by responsive mechanisms which, possibly following exhaustion, give rise to increased 8-OH-dG levels.  相似文献   

11.
Oxidative stress is related to a number of diseases due to the formation of reactive oxygen species (ROS). There are also several substances found in the occupational environment or as life style related situations that generates ROS. A stable biomarker for oxidative stress on DNA is 8-hydroxy-2'-deoxyguanosine (8-OH-dG).

A potential problem in the work-up and analysis of 8-OH-dG is oxidation of dG with false high levels as a result of analysis. This paper summarizes and discusses some of the critical moments in terms of auto-oxidation. The removal of transition metals, low temperatures, absence of isotopes (or 2'-deoxyguanosine) and incubation times are all important factors. Removal of oxygen is complicated while the problem is reduced if a nitroxide (TEMPO) is added during work-up. Certain reducing agents and enzymes could be critical if added during work-up.

The application of the 32P-HPLC method to analyze 8-OH-dG is discussed. The 32P-HPLC method is suitable for 8-OH-dG analysis and avoids several factors that oxidizes dG by removal of dG before addition of isotopes. Factors of crucial importance (columns, eluents, gradients and detection of 32P) for the analysis of 8-OH-dG are commented upon and certain recommendations are made to make it possible to apply the 32P-HPLC methodology for this type of analysis.  相似文献   

12.
Experimental data suggest a possible role of DNA damage in aging, mainly related to oxidative lesions. With the objective of evaluating DNA lesions as molecular biomarkers of aging, we measured 8-hydroxy-2′-deoxyguanosine (8-OH-dG) and DNA–protein crosslinks (DPXL) levels in different organs of mice aged 12 and 24 months. 8-OH-dG was detected by 32P postlabelling after removing unmodified dG by trifluoracetic acid, which prevented the artificial formation of 8-OH-dG during 32P labelling procedures. Appreciable 8-OH-dG amounts were detected in 12-month-old mice in liver (1.8±0.7 8-OH-dG/105 normal nucleotides), brain (1.6±0.5) and heart (2.3±0.5). In 24-month-old mice these values were higher in all examined organs (liver, 2.7±0.4; brain, 3.6±1.1; heart, 6.8±2.2 8-OH-dG/105 normal nucleotides). This accounted for a 1.5-fold increase in liver (not significant), 2.3-fold increase in brain (P<0.01), and 3.0-fold increase in heart (P<0.001). A similar trend was observed for DPXL levels, which were the 1.8±0.3%, 1.2±0.2%, and 2.2±0.3% of total DNA in liver, brain, and heart of 12-month-old mice and 1.9±0.4%, 2.0±0.4%, and 3.4±0.5% in 24-month-old mice, with ratios of 1.0, 1.7 (P<0.01), and 1.5 (P<0.001), respectively. Highly significant correlations between 8-OH-dG and DPXL levels were recorded in brain (r=0.619, P<0.001) and heart (r=0.800, P<0.0001), but not in liver (r=0.201, not significant). These data suggest that brain and heart are more severely affected by the monitored age-related DNA lesions than liver, which can be ascribed to certain characteristics of these postmitotic organs, including the low detoxifying capacities, the high oxygen consumption, and the impossibility to replace damaged cells by mitosis. The strong correlation between 8-OH-dG and DPXL supports a possible contribution of oxidative mechanisms to formation of DPXL in those organs, such as brain and heart, which play a primary role in the aging of the whole organism.  相似文献   

13.
Nickel (Ni), a carcinogenic and genotoxic metal, has been shown to enhance deglycosylation and hydroxylation of 2'-deoxyguanosine (dG) that has been caused by ascorbic acid and H2O2. There is evidence that Mg is a competitive antagonist of the toxicological effects of Ni. A factorial design was used to examine the interactive influence of Mg and Ni on the deglycosylation and hydroxylation of dG under a range of pH conditions in which ascorbate (Ascb) and H2O2 were added. Formation of guanine (Gu) (deglycosylation) and 8-hydroxy-2'-deoxyguanosine (8-OH-dG) (hydroxylation) appeared in large amounts in samples in which both H2O2 and Ascb were present. The largest amounts of Gu appeared where both Ni or magnesium (Mg) were present. When Mg alone was present, the amounts of Gu was intermediate between these two. Slightly less 8-OH-dG was formed where only Mg was present. The reaction mixtures were more sensitive to the pH than to the respective presence or absence of metals. At slightly acid or neutral pH (6.2-7.0) large amounts of both Gu and 8-OH-dG were formed. Gu formation decreased dramatically between pH 7.0 and 7.2. There was no 8-OH-dG formed at pH 7.8 and only small amounts at pH 7.6. The formation of 8-OH-dG was generally less where Mg was present. When Ni was absent, 8-OH-dG formation was greater in the pH 6.8 mixtures. The formation of Gu and 8-OH-dG from 2'-deoxyguanosine are directly a function of pH. Slight changes in pH greatly effected the formation of these biomarkers of oxidatively damaged DNA. Additional research is needed to determine if this is a cause or effect, i.e. does pH enhance toxicity conditions, thus permitting formation of 8-OH-dG, or does pH permit the reaction to proceed.  相似文献   

14.
Pierisin-1, a cytotoxic protein from the cabbage butterfly (Pieris rapae), induces apoptosis in mammalian cell lines. Binding of its C-terminal region to glycosphingolipid Gb3 and Gb4 receptors on cell membrane is necessary for incorporation into cells, while the N-terminal polypeptide catalyzes transfer of the ADP-ribose moiety of NAD at N2 of dG in DNA. Resulting DNA adducts cause mutation if they are present at low levels. If the DNA damage is more severe, the cells undergo apoptosis. In the present study, we examined the repair system for ADP-ribosylated dG adducts using nucleotide excision repair (NER) mutants of Chinese hamster ovary (CHO) cell lines. Pierisin-1 showed cytotoxic effects in all cases: IC50 values of them were; 650 ng/ml for AA8 (wild), 230 ng/ml for UV5, 190 ng/ml for UV20, 260 ng/ml for UV41, and 240 ng/ml for UV135. Thus, wild-type AA8 proved most resistant to pierisin-1-induced cytotoxicity. When these CHO cell lines were treated with pierisin-1, the adduct levels of ADP-ribosylated dG increased to 2.5-4.8/10(5) nucleotides time-dependently in all cell lines at 12 h. After removal of pierisin-1, the adduct levels remained constant or increased to 4-14/10(5) nucleotides in all NER mutant cells (UV5, UV20, UV41, UV135), while those rapidly decreased to 0.27/10(5) nucleotides in the repair proficient AA8 cells for 24 h. From these results, it is suggested that the NER system is involved in the repair of ADP-ribosylated dG adducts in DNA.  相似文献   

15.
Previous studies have indicated that splenic macrophages migrate into the liver and play a role in endotoxin-induced hepatic damage. The present study was designed to elucidate the mechanisms of hepatocyte injury induced by activated splenic macrophages, focusing especially on endogenously released NO and oxidative DNA alterations in hepatocytes. Splenic macrophages isolated from Wistar rats were incubated with either lipopolysaccharide (LPS) or interferon-gamma (IFN-gamma) and cocultured with hepatocytes. Nitrite and nitrate levels in the culture medium were measured, and inducible-type NO synthase (iNOS) and nitrotyrosine were determined by immunofluorescence staining. The ratio of 8-hydroxy-deoxyguanosine (8-OH-dG) to deoxyguanosine (dG) was measured by high-performance liquid chromatography, and single-stranded DNA in hepatocytes was detected with acridine orange. NO release and nitrotyrosine expression in hepatocytes increased after 8 h of coculture with activated macrophages, and this coculture also induced increases in the 8-OH-dG/dG ratio and single-stranded DNA in the hepatocytes. These alterations were attenuated by superoxide dismutase (SOD) and NO synthesis inhibitors. A similar pattern of alterations was observed in hepatocytes incubated with SIN-1, and these changes were also prevented by SOD. These results suggest that activated macrophage-derived NO and its oxidative metabolite, peroxynitrite, play key roles in hepatocyte injury during inflammation, and cause subsequent DNA damage in surviving hepatocytes.  相似文献   

16.
Juvenile English sole were exposed intramuscularly to nitrofurantoin (NF) and the levels of 8-hydroxy-2′deoxyguanosine (8-OH-dG) in liver, kidney and blood were determined using reversed-phase HPLC with electrochemical detection. Identification and quantitation of the 8-OH-dG in the samples was accomplished by comparison with standard 8-OH-dG, which was characterized by UV spectroscopy and fast-atom bombardment mass spectrometry. The levels of hepatic 8-OH-dG increased (r2 = 0.59, P = 0.015) with the dose of NF (0.10 – 10 mg NF/kg fish). In kidney and blood, however, the levels of 8-OH-dG were significantly higher than controls only at the highest dose tested. The level of binding in liver ranged from 0.37 to 0.76 fmol 8-OH-dG/μg DNA. The levels of hepatic 8-OH-dG reached a maximum (approx. 1 fmol 8-OH-dG/μg DNA) between 1 and 3 days after exposure, followed by a decrease to control levels (approx. 0.25 fmol 8-OH-dG/μg DNA) at 5 days post-exposure. These data demonstrate the first direct evidence for the formation of oxidized DNA bases resulting from the metabolism of a nitroaromatic compound by fish.  相似文献   

17.
Effects of ethanol (EtOH), mannitol (Man), L-histidine (His) and glutathione (GSH) on the oxidation of 2'-deoxyguanosine (dG) to its 8-hydroxy derivative (8-OH-dG) with H2O2 plus L-ascorbic acid (Ascb) in the absence and presence of Ni(II) were investigated in order to unveil the nature of active oxygen species involved in that oxidation. In the absence of Ni(II), production of 8-OH-dG was inhibited by His much greater than GSH greater than or equal to GSSG (oxidized glutathione) much greater than EtOH, but not by Man. The latter tended to enhance the production of 8-OH-dG. In the presence of Ni(II), the inhibition by His, GSH and GSSG, but not EtOH, was prevented. The results indicate involvement of a 'crypto-hydroxyl' radical as the dG oxidizing species in both the absence and presence of Ni(II). Also, the results provide evidence that Ni(II) complexes with His, GSH and GSSG may lack antioxidant capacity. Moreover, the Ni(II) complex with His was found capable of enhancing 8-OH-dG production by the Ascb+H2O2 system to a greater extent than Ni(II) alone. Likewise, although to a lesser extent, the formation of 8-OH-dG was enhanced by the combination of Ni(II) and Man which do not form complexes at pH 7.4. Since His is a major Ni(II) carrier in animal tissues, the dG oxidation enhancing capacity of the Ni(II) complex with His may contribute to the toxic and carcinogenic effects of Ni(II).  相似文献   

18.
Oxidative stress is related to a number of diseases due to the formation of reactive oxygen species (ROS). There are also several substances found in the occupational environment or as life style related situations that generates ROS. A stable biomarker for oxidative stress on DNA is 8-hydroxy-2′-deoxyguanosine (8-OH-dG).

A potential problem in the work-up and analysis of 8-OH-dG is oxidation of dG with false high levels as a result of analysis. This paper summarizes and discusses some of the critical moments in terms of auto-oxidation. The removal of transition metals, low temperatures, absence of isotopes (or 2′-deoxyguanosine) and incubation times are all important factors. Removal of oxygen is complicated while the problem is reduced if a nitroxide (TEMPO) is added during work-up. Certain reducing agents and enzymes could be critical if added during work-up.

The application of the 32P-HPLC method to analyze 8-OH-dG is discussed. The 32P-HPLC method is suitable for 8-OH-dG analysis and avoids several factors that oxidizes dG by removal of dG before addition of isotopes. Factors of crucial importance (columns, eluents, gradients and detection of 32P) for the analysis of 8-OH-dG are commented upon and certain recommendations are made to make it possible to apply the 32P-HPLC methodology for this type of analysis.  相似文献   

19.
Juvenile English sole were exposed intramuscularly to nitrofurantoin (NF) and the levels of 8-hydroxy-2′deoxyguanosine (8-OH-dG) in liver, kidney and blood were determined using reversed-phase HPLC with electrochemical detection. Identification and quantitation of the 8-OH-dG in the samples was accomplished by comparison with standard 8-OH-dG, which was characterized by UV spectroscopy and fast-atom bombardment mass spectrometry. The levels of hepatic 8-OH-dG increased (r2 = 0.59, P = 0.015) with the dose of NF (0.10 – 10 mg NF/kg fish). In kidney and blood, however, the levels of 8-OH-dG were significantly higher than controls only at the highest dose tested. The level of binding in liver ranged from 0.37 to 0.76 fmol 8-OH-dG/μg DNA. The levels of hepatic 8-OH-dG reached a maximum (approx. 1 fmol 8-OH-dG/μg DNA) between 1 and 3 days after exposure, followed by a decrease to control levels (approx. 0.25 fmol 8-OH-dG/μg DNA) at 5 days post-exposure. These data demonstrate the first direct evidence for the formation of oxidized DNA bases resulting from the metabolism of a nitroaromatic compound by fish.  相似文献   

20.
To test the hypothesis that carcinogen exposure and oxidative stress are involved in pancreatic carcinogenesis in susceptible individuals, aromatic DNA adducts and 8-hydroxyguanosine (8-OH-dG) were measured by (32)P-postlabeling and HPLC-EC, respectively, in 31 pancreatic tumors and 13 normal tissues adjacent to the tumor from patients with pancreatic cancer. Normal pancreatic tissues from 24 organ donors, from six patients with non-pancreatic cancers, and from five patients with chronic pancreatitis served as controls. It was found that tissue samples from patients with pancreatic cancer had significantly higher levels of both aromatic DNA adducts and 8-OH-dG compared with control samples. The mean (+/-S.D.) levels of aromatic DNA adducts were 101.8+/-74.6, 26.9+/-26.6, and 11.2+/-6.6 per 10(9) nucleotides in adjacent tissues, tumors, and controls, respectively. The mean (+/-S.D.) levels of 8-OH-dG were 11.9+/-9.6, 10.8+/-10.6, and 6.7+/-4.6 per 10(5) nucleotides in adjacent tissues, tumors, and controls, respectively. Polymorphisms of the CYP1A1, CYP2E1, NAT1, NAT2, GSTM1, MnSOD, and hOGG1 genes were determined in these patients. The level of aromatic DNA adducts was significantly associated with polymorphism of the CYP1A1 gene. No significant correlation was found between the level of 8-OH-dG and the MnSOD, GSTM1, and hOGG1 polymorphisms. However, one novel polymorphism/mutation of the hOGG1 gene was found in a pancreatic tumor. Mutation at codon 12 of the K-ras gene was found in 25 (81%) of 31 pancreatic tumors, including three G-to-A transitions and 22 G-to-T transversions. Patients with the G-to-T mutation had a significantly higher level of aromatic DNA adducts than those with G-to-A or wild-type codon (P=0.02). On the other hand, the K-ras mutation profile was not related to the level of 8-OH-dG. Given the limitation of sample size, these preliminary data lend further support the hypothesis that carcinogen exposure and oxidative stress are involved in pancreatic carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号