共查询到19条相似文献,搜索用时 7 毫秒
1.
2.
Kinetics of the double-stranded (ds) DNA unwinding by the Escherichia coli replicative helicase DnaB protein has been examined under single-turnover conditions using the chemical quench-flow technique. The unwinding reaction proceeds through an initial conformational transition followed by the unwinding catalytic steps and the release of the single-stranded (ss) DNA. Analyses of the reaction as a function of the number of base-pairs in the dsDNA reveal that the number of catalytic steps is not strictly proportional to the length of the dsDNA. As the helicase approaches the end of the substrate, the remaining approximately 11 bp of the DNA melts without catalytic participation of the enzyme. The kinetic step-size of the DnaB helicase, i.e. the number of the base-pairs unwound in a single catalytic step is only 1.4(+/- 0.2). The low value of the step-size indicates that the helicase unwinds a single base-pair in a single catalytic step. Thus, the DnaB helicase unzips the dsDNA in a reverse process to the zipping mechanism of the non-enzymatic double helix formation. The protein is a fast helicase that at 25 degrees C unwinds approximately 291 bp/s, much faster than previously thought, and the unwinding rate can be much higher at higher temperatures. However, the ATP-state of the enzyme has an increased dissociation rate, resulting in only a moderate unwinding processivity, P = 0.89(+/- 0.03), little dependent on the temperature. The conformational transition of the DnaB helicase-DNA complex, preceding the unwinding, is an intrinsic transition of the enzyme from the stationary conformation to the ATP-state of the helicase. 相似文献
3.
4.
The effect of two structural elements of a replication DNA fork substrate, the length of the 3' arm of the fork and the stability of the double-stranded DNA (dsDNA) part, on the kinetics of the dsDNA unwinding by the Escherichia coli hexameric helicase DnaB protein has been examined under single turnover conditions using the rapid quench-flow technique. The length of the 3' arm of the replication fork, i.e. the number of nucleotides in the arm, is a major structural factor that controls the unwinding rate and processivity of the helicase. The data show the existence of an optimal length of the 3' arm where there is the highest unwinding rate and processivity, indicating that during the unwinding process, the helicase transiently interacts with the 3' arm at a specific distance on the arm with respect to the duplex part of the DNA. Moreover, the area on the enzyme that engages in interactions has also a discrete size. For DNA substrates with the 3' arm containing 14, or less, nucleotide residues, the DnaB helicase becomes a completely distributive enzyme. However, the 3' arm is not a "specific activating cofactor" in the unwinding reaction. Rather, the 3' arm plays a role as a mechanical fulcrum for the enzyme, necessary to provide support for the advancing large helicase molecule on the opposite strand of the DNA. Binding of ATP is necessary to engage the 3' arm with the DnaB helicase, but it does not change the initial distribution of complexes of the enzyme with the DNA fork substrate. Stability of the dsDNA has a significant effect on the unwinding rate and processivity. The unwinding rate constant is a decreasing linear function of the fractional content of GC base-pairs in the dsDNA, indicating that the activation of the unwinding step is proportional to the stability of the nucleic acid. 相似文献
5.
6.
7.
8.
9.
10.
V. I. Dubovaya P. M. Kolosov E. Z. Alkalaeva L. Yu. Frolova L. L. Kisselev 《Molecular Biology》2006,40(2):270-275
Translation termination in eukaryotes is governed by two proteins belonging to class 1 (eRF1) and class 2 (eRF3) polypeptide release factors. eRF3 catalyzes hydrolysis of GTP to yield GDP and Pi in the ribosome in the absence of mRNA, tRNA, aminoacyl-tRNA, and peptidyl-tRNA and requires eRF1 for this activity. It is known that eRF1 and eRF3 interact with each other via their C-terminal regions both in vitro and in vivo. eRF1 consists of three domains—N, M, and C. In this study we examined the influence of the individual domains of the human eRF1 on induction of the human eRF3 GTPase activity in the ribosome in vitro. It was shown that none of the N, M, C, and NM domains induces the eRF3 GTPase activity in the presence of ribosomes. The MC domain does induce the eRF3 GTPase activity, but four times less efficiently than full-length eRF1. Therefore, we assumed that the MC domain (and very likely the M domain) binds to the ribosome in the presence of eRF3. Based on these data and taking into account the data available in the literature, a conclusion was drawn that the N domain of eRF1 is not essential for eRF1-dependent induction of the eRF3 GTPase activity. A working hypothesis is formulated that the eRF3 GTPase activity in the ribosome during translation termination is associated with the intermolecular interactions of GTP/GDP, the GTPase center of the large (60S) subunit, the MC domain of eRF1, and the C-terminal region and GTP-binding motifs of eRF3 but without participation of the N-terminal region of eRF1. 相似文献
11.
12.
Fang-Yuan Teng Ting-Ting Wang Hai-Lei Guo Ben-Ge Xin Bo Sun Shuo-Xing Dou Xu-Guang Xi Xi-Miao Hou 《The Journal of biological chemistry》2020,295(51):17646
RecQ family helicases are highly conserved from bacteria to humans and have essential roles in maintaining genome stability. Mutations in three human RecQ helicases cause severe diseases with the main features of premature aging and cancer predisposition. Most RecQ helicases shared a conserved domain arrangement which comprises a helicase core, an RecQ C-terminal domain, and an auxiliary element helicase and RNaseD C-terminal (HRDC) domain, the functions of which are poorly understood. In this study, we systematically characterized the roles of the HRDC domain in E. coli RecQ in various DNA transactions by single-molecule FRET. We found that RecQ repetitively unwinds the 3′-partial duplex and fork DNA with a moderate processivity and periodically patrols on the ssDNA in the 5′-partial duplex by translocation. The HRDC domain significantly suppresses RecQ activities in the above transactions. In sharp contrast, the HRDC domain is essential for the deep and long-time unfolding of the G4 DNA structure by RecQ. Based on the observations that the HRDC domain dynamically switches between RecA core- and ssDNA-binding modes after RecQ association with DNA, we proposed a model to explain the modulation mechanism of the HRDC domain. Our findings not only provide new insights into the activities of RecQ on different substrates but also highlight the novel functions of the HRDC domain in DNA metabolisms. 相似文献
13.
14.
15.
16.
过表达E2F6基因抑制BRD7基因启动子活性 总被引:1,自引:0,他引:1
BRD7基因是采用cDNA代表性差异分析法克隆的一个新Bromodomain基因(GenBank 登录号AF152604)。它在鼻咽癌细胞和组织中表达明显下调,过表达BRD7基因可抑制鼻咽癌细胞的生长和细胞周期的进程。前期工作已克隆了BRD7基因启动子区,并将其启动子定位于450bp(-404→+46bp)的区域。为了进一步揭示BRD7基因在鼻咽癌细胞和组织中表达下调的分子机制,生物信息学分析表明BRD7启动子区有E2F6转录因子结合位点,电泳迁移率实验结果表明转录因子E2F6特异性地结合于BRD7启动子区。荧光素酶检测和绿色荧光蛋白表达检测都证实过表达E2F6基因能抑制BRD7基因启动子活性 相似文献
17.
18.
Molecular dynamics (MD) simulations for Ets-1 ETS domain-DNA complexes were performed to investigate the mechanism of sequence-specific recognition of the GGAA DNA core by the ETS domain. Employing the crystal structure of the Ets-1 ETS domain-DNA complex as a starting structure we carried out MD simulations of: (i). the complex between Ets-1 ETS domain and a 14 base-pair DNA containing GGAA core sequence (ETS-GGAA); (ii). the complex between the ETS domain and a DNA having single base-pair mutation, GGAG sequence (ETS-GGAG); and (iii). the 14 base-pair DNA alone (GGAA). Comparative analyses of the MD structures of ETS-GGAA and ETS-GGAG reveal that the DNA bending angles and the ETS domain-DNA phosphate interactions are similar in these complexes. These results support that the GGAA core sequence is distinguished from the mutated GGAG sequence by a direct readout mechanism in the Ets-1 ETS domain-DNA complex. Further analyses of the direct contacts in the interface between the helix-3 region of Ets-1 and the major groove of the core DNA sequence clearly show that the highly conserved arginine residues, Arg391 and Arg394, play a critical role in binding to the GGAA core sequence. These arginine residues make bidentate contacts with the nucleobases of GG dinucleotides in GGAA core sequence. In ETS-GGAA, the hydroxyl group of Tyr395 is hydrogen bonded to N7 nitrogen of A(3) (the third adenosine in the GGAA core), while the hydroxyl group makes a contact with N4 nitrogen of C(4') (the complementary nucleotide of the fourth guanosine G(4) in the GGAG sequence) in the ETS-GGAG complex. We have found that this difference in behavior of Tyr395 results in the relatively large motion of helix-3 in the ETS-GGAG complex, causing the collapse of bidentate contacts between Arg391/Arg394 and the GG dinucleotides in the GGAG sequence. 相似文献