首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
C3H/HeJ mice are hyporesponsive to the biologic effects of bacterial lipopolysaccharide (LPS), and their splenic B cells do not proliferate after exposure to LPS. The molecular basis of this hyporesponsiveness is unknown but it may result from defective membrane signal transduction after LPS binding. To examine this possibility, we added bioactive compounds in combination with LPS to C3H/HeJ B cell cultures in order to bypass the putative defect. The addition of PMA, monensin, or ionomycin, either alone or in combination, had no effect on C3H/HeJ B cell responses to LPS. In contrast, the addition of trypsin together with LPS resulted in a partial restoration of the proliferative response in C3H/HeJ splenic B lymphocytes. The maximal C3H/HeJ B cell response varied from 25 to 60% of the C3Heb/FeJ (LPS responder) B cell response. The trypsin-mediated enhancement of the LPS response was abrogated by pretreatment of the trypsin with the trypsin inhibitors DFP or TLCK. Pretreatment of the LPS with polymyxin B, which blocks lipid A-dependent reactions, also abrogated the trypsin effect. Because the C3H/HeJ B cell responds to all other B cell mitogens, we suggest that the defect is in an LPS-specific step and that the action of trypsin results in the restoration of the missing signal. At the present time the identity of this signal is not known, but the experiments described in this report provide a unique model to elucidate the basis of LPS hyporesponsiveness in splenic B cells from C3H/HeJ mice.  相似文献   

2.
Role of protein kinase C in cellular regulation   总被引:5,自引:0,他引:5  
Protein kinase C (PKC) consists of a family of closely related enzymes ubiquitously present in animal tissues. These enzymes respond to second messengers, Ca2+, diacylglycerol and arachidonic acid, to express their activities at membrane locations. Numerous hormones, neurotransmitters, growth factors and antigens are believed to transmit their signals by activation of a variety of phospholipases to generate these messengers. The various PKC isozymes, which exhibit distinct biochemical characteristics and unique cellular and subcellular localizations, may be differentially stimulated depending on the duration and strength of these messengers. Activation of PKC has been linked to the regulation of cell surface receptors, ion channels, secretion, gene expression, and neuronal plasticity and toxicity. The mechanisms of action of PKC in the regulation of these cellular functions are not entirely clear. Further study to identify the target substrates relevant to the various cellular functions is essential to define the functional diversity of this enzyme family.  相似文献   

3.
4.
The enzyme dextranase could degrade antigenic dextran in vivo even when given 6-15 d after the antigen. Dextranase injected after the antigen suppressed the immune response when given 24 but not 48 h after the antigen, indicating that the antigen must interact with the immune system for 48 h to initiate a response. Thereafter, the B cells are independent of further antigen stimulation. To show whether antibody-mediated suppression of the immune response was determinant specific FITC-conjugated SRC were applied as immunogen and antibodies were raised both against the carrier (SRC) and the FITC hapten. When these antibodies were injected 1-3 h after the immunogen they only suppressed the immune response to the corresponding determinant. Anti-carrier antibodies usually enhanced the response to the hapten. Therefore, antibody-mediated suppression of the immune response is determinant-specific and cannot be mediated in vivo to a detectable extent by the Fc part of the antibodies.  相似文献   

5.
These experiments were conducted to see whether the hypercholesterolemia produced by a diet enriched in lysine (Lys) and methionine (Met) can be reproduced by feeding these amino acids separately, and whether dietary arginine (Arg) counteracts their hypercholesterolemic effects. Another aim was to investigate the mechanisms involved in modulations of serum cholesterol levels by these amino acids. The results of this study, which were in agreement with the results of earlier experiments in our laboratory, showed that feeding a low-fat, cholesterol-free, semipurified amino acid diet enriched with Lys + Met to rabbits caused a marked increase in serum total and low density lipoprotein cholesterol and apolipoprotein B levels, whereas a similar diet enriched in essential ketogenic amino acids (EketoAA) resulted in a more moderate increase in these parameters. Supplementing the diet with either Lys or Met alone was also less effective in inducing hypercholesterolemia than increasing levels of both amino acids. Dietary Arg partially counteracted the hypercholesterolemic effect of Lys + Met but not that of the EketoAA or of Lys and Met fed separately. The growth performance of rabbits fed the Lys + Met diet was inferior to that of those fed the other diets. Liver total phospholipid levels and the ratio of phosphatidylcholine to phosphatidylethanolamine were higher in rabbits fed the Lys + Met-enriched diet than in those animals fed a diet in which Arg was supplemented. In conclusion, our results indicate that high levels of both Lys and Met are needed to cause a maximum elevation of serum cholesterol and that the moderately antihypercholesterolemic effect of Arg is seen only when both amino acids are supplemented. They also suggest that these essential amino acids may affect cholesterol metabolism partly through alteration of liver phospholipids.  相似文献   

6.
Role of protein kinase C in the regulation of rat liver glycogen synthase   总被引:1,自引:0,他引:1  
Rat liver glycogen synthase was phosphorylated by purified protein kinase C in a Ca2+- and phospholipid-dependent fashion to 1-1.4 mol PO4/subunit. Analysis of the 32P-labeled tryptic peptides derived from the phosphorylated synthase by isoelectric focusing and two-dimensional peptide mapping revealed the presence of a major radioactive peptide. The sites in liver synthase phosphorylated by protein kinase C appears to be different from those phosphorylated by other kinases. Prior phosphorylation of the synthase by protein kinase C has no significant effect on the subsequent phosphorylation by glycogen synthase (casein) kinase-1 or kinase Fa, but prevents the synthase from further phosphorylation by cAMP-dependent protein kinase, Ca2+/calmodulin-dependent protein kinase, phosphorylase kinase, or casein kinase-2. Additive phosphorylation of liver glycogen synthase can be observed by the combination of protein kinase C with the former set of kinases but not with the latter. Phosphorylation of liver synthase by protein kinase C alone did not cause an inactivation nor did the combination of this kinase with glycogen synthase (casein) kinase-1 or kinase Fa produce a synergistic effect on the inactivation of the synthase. Based on these findings we conclude that the phorbol ester-induced inactivation of glycogen synthase previously observed in hepatocytes cannot be accounted for entirely by the activation of protein kinase C.  相似文献   

7.
Increased tissue activity of cathepsin A and cathepsin C can be observed in many pathological conditions. It is associated with an enhanced degradation of glycosaminoglycans, proteoglycans, and glycoproteins, and results in their decreased tissue content. Cathepsin C releases the glycosidases from complexes formed with cathepsin A, and reinstates their activity. In this review a current state of knowledge is presented concerning the regulation of selected glycosidases activity by cathepsin A (EC 3.4.16.1) and C (EC 3.4.14.1).  相似文献   

8.
9.
The hypertriglyceridemia of diabetes is accompanied by decreased lipoprotein lipase (LPL) activity in adipocytes. Although the mechanism for decreased LPL is not known, elevated glucose is known to increase diacylglycerol, which activates protein kinase C (PKC). To determine whether PKC is involved in the regulation of LPL, we studied the effect of 12-O-tetradecanoyl phorbol 13-acetate (TPA) on adipocytes. LPL activity was inhibited when TPA was added to cultures of 3T3-F442A and rat primary adipocytes. The inhibitory effect of TPA on LPL activity was observed after 6 h of treatment, and was observed at a concentration of 6 nM. 100 nM TPA yielded maximal (80%) inhibition of LPL. No stimulation of LPL occurred after short term addition of TPA to cultures. To determine whether TPA treatment of adipocytes decreased LPL synthesis, cells were labeled with [35S]methionine and LPL protein was immunoprecipitated. LPL synthetic rate decreased after 6 h of TPA treatment. Western blot analysis of cell lysates indicated a decrease in LPL mass after TPA treatment. Despite this decrease in LPL synthesis, there was no change in LPL mRNA in the TPA-treated cells. Long term treatment of cells with TPA is known to down-regulate PKC. To assess the involvement of the different PKC isoforms, Western blotting was performed. TPA treatment of 3T3-F442A adipocytes decreased PKC alpha, beta, delta, and epsilon isoforms, whereas PKC lambda, theta, zeta, micro, iota, and gamma remained unchanged or decreased minimally. To directly assess the effect of PKC inhibition, PKC inhibitors (calphostin C and staurosporine) were added to cultures. The PKC inhibitors inhibited LPL activity rapidly (within 60 min). Thus, activation of PKC did not increase LPL, but inhibition of PKC resulted in decreased LPL synthesis by inhibition of translation, indicating a constitutive role of PKC in LPL gene expression.  相似文献   

10.
Reactive forms of antigens or haptens have been shown to induce a state of hyporesponsiveness mediated in part by suppressor T cells. Injection of Balb/c x C57B16 F1 (CB6F1) mice with a reactive form of dextran B1355S (periodate oxidized dextran, dex-P) specifically reduced responses to dextran immunization within 1 day after dex-P treatment. This unresponsiveness lasted at least 23 days and required a reactive form of dextran for its induction since native dextran and oxidized/reduced dextran failed to induce tolerance. Furthermore, hyporesponsiveness could be induced by iv injection of dextran-coupled cells, especially peripheral blood lymphocytes, a result which suggests that in vivo coupling to cellular antigens is involved in dex-P-induced hyporesponsiveness. Suppression of the anti-dextran response could be transferred to normal mice with T-cell-enriched spleen cell populations from dex-P-injected mice. Interestingly, the presence of B cells in the transferred cell preparations interfered with detection of suppression. Both Lyt 1+2- and Lyt 1-2+ cells were involved in the dex-P-induced suppression; indeed, mixtures of these types of T cells led to the most profound degree of suppression. The suppressive activity of spleen cells from dex-P-injected mice could be removed by passage over dextran-coated plates. Moreover, cells eluted from the plates specifically suppressed anti-dextran responses of normal mice, indicating that dex-P injection induces a population of antigen-binding suppressor cells. This system will allow the study of the suppressor-T-cell receptors in a well-defined idiotypic system.  相似文献   

11.
胡雨荣  陈勇  刘勇 《生理学报》2021,73(1):115-125
在真核细胞中,内质网是蛋白合成、加工及质量监控的关键细胞器,也是Ca2+储存及脂质合成的重要场所.细胞通过未折叠蛋白响应(unfolded protein response,UPR)感应外界不同刺激引发的内质网应激,在维持细胞功能稳态中发挥至关重要的作用.在哺乳动物中,三个位于内质网的跨膜蛋白——肌醇依赖酶la(ino...  相似文献   

12.
C4b and C3b deposited on host cells undergo limited proteolytic cleavage by regulatory proteins. Membrane cofactor protein (MCP; CD46), factor H, and C4b binding protein mediate this reaction, known as cofactor activity, that also requires the plasma serine protease factor I. To explore the roles of the fluid phase regulators vs those expressed on host cells, a model system was used examining complement fragments deposited on cells transfected with human MCP as assessed by FACS and Western blotting. Following incubation with Ab and complement on MCP(+) cells, C4b was progressively cleaved over the first hour to C4d and C4c. There was no detectable cleavage of C4b on MCP(-) cells, indicating that MCP (and not C4BP in the serum) primarily mediates this cofactor activity. C3b deposition was not blocked on MCP(+) cells because classical pathway activation occurred before substantial C4b cleavage. Cleavage, though, of deposited C3b was rapid (<5 min) and iC3b was the dominant fragment on MCP(-) and MCP(+) cells. Studies using a function-blocking mAb further established factor H as the responsible cofactor. If the level of Ab sensitization was reduced 8-fold or if Mg(2+)-EGTA was used to block the classical pathway, MCP efficiently inhibited C3b deposition mediated by the alternative pathway. Thus, for the classical pathway, MCP is the cofactor for C4b cleavage and factor H for C3b cleavage. However, if the alternative pathway mediates C3b deposition, then MCP's cofactor activity is sufficient to restrict complement activation.  相似文献   

13.
The cellular mechanism of glucagon gene expression in intact rat islets and their synthesis and release of glucagon were investigated. Arginine significantly increased the amounts of preproglucagon mRNA and glucagon in the islets and glucagon release. H-7, a specific inhibitor of protein kinase C (PKC), significantly inhibited these effects of arginine. However, H-8, a potent inhibitor of cyclic nucleotide-dependent protein kinases, did not affect the arginine-induced biosynthesis of glucagon or glucagon release. These results suggest that the regulation of glucagon gene expression by arginine is mediated by PKC, not by cyclic nucleotide-dependent protein kinases.  相似文献   

14.
ATP-dependent regulation of phospholipase C in permeabilized 3T3 cells   总被引:1,自引:0,他引:1  
K Higashi  H Ogawara 《FEBS letters》1990,267(1):51-54
Regulation of phospholipase C (PLC) coupled with a G-protein was studied with Swiss 3T3 cells permeabilized by digitonin. In permeabilized cells, activation of phospholipase C required millimolar concentrations of ATP in addition to a G-protein activator, AlF4- or nonhydrolysable GTP analogues. To determine the mechanism of the action of ATP, we examined the effects of ATP analogues. ATP gamma S directly activated phospholipase C in the presence or absence of AlF4-. On the other hand, neither beta,gamma-methylene ATP nor adenyl-5'-yl imidodiphosphate nor ADP beta S could support the AlF4(-)-dependent activation of phospholipase C. The action of ATP gamma S was not through the substrate supply for phospholipase C, because ATP gamma S did not augment the levels of PIP2 or PIP in permeabilized cells. These results suggested the significance of the gamma-phosphate group of ATP and/or phosphorylation by ATP in the activation of phospholipase C by a putative G-protein.  相似文献   

15.
16.
We hypothesized that ADP-ribosylation factor 1 (Arf1) plays an important role in the biogenesis and maintenance of infectious hepatitis C virus (HCV). Huh7.5 cells, in which HCV replicates and produces infectious viral particles, were exposed to brefeldin A or golgicide A, pharmacological inhibitors of Arf1 activation. Treatment with these agents caused a reduction in viral RNA levels, the accumulation of infectious particles within the cells, and a reduction in the levels of these particles in the extracellular medium. Fluorescence analyses showed that the viral nonstructural (NS) proteins NS5A and NS3, but not the viral structural protein core, shifted their localization from speckle-like structures in untreated cells to the rims of lipid droplets (LDs) in treated cells. Using pulldown assays, we showed that ectopic overexpression of NS5A in Huh7 cells reduces the levels of GTP-Arf1. Downregulation of Arf1 expression by small interfering RNA (siRNA) decreased both the levels of HCV RNA and the production of infectious viral particles and altered the localization of NS5A to the peripheries of LDs. Together, our data provide novel insights into the role of Arf1 in the regulation of viral RNA replication and the production of infectious HCV.  相似文献   

17.
Complement component 3a (C3a) plays a crucial role in the immune response and host defense, but it is also involved in pro-inflammatory responses, causing many inflammatory disorders. Blockade of C3a has been regarded as a potent therapeutic strategy for inflammatory diseases. Here, we present the development of a human C3a (hC3a)-specific protein binder, which effectively inhibits pro-inflammatory responses. The protein binder, which is composed of leucine-rich repeat modules, was selected against hC3a through phage display, and its binding affinity was matured up to 600 pM by further expanding the binding interface in a module-by-module manner. The developed protein binder was shown to have more than 10-fold higher specificity to hC3a compared with human C5a, exhibiting a remarkable suppression effect on pro-inflammatory response in monocyte, by blocking the interaction between hC3a and its receptor. The hC3a-specific protein binder is likely to have a therapeutic potential for C3a-mediated inflammatory diseases.  相似文献   

18.
Liu J  Epand RF  Durrant D  Grossman D  Chi NW  Epand RM  Lee RM 《Biochemistry》2008,47(15):4518-4529
In tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis, tBid is targeted to mitochondria and causes cytochrome c release. We investigated the regulation of tBid-induced cytochrome c release and apoptosis by phospholipid scramblase 3 (PLS3). Overexpression of PLS3 enhanced, whereas downregulation of PLS3 delayed, TNF-alpha-induced apoptosis and targeting of tBid to mitochondria. On the basis of the theory that tBid targets mitochondrial cardiolipin, we hypothesize that PLS3 enhances translocation of cardiolipin to the mitochondrial surface to facilitate tBid targeting. NAO, a cardiolipin binding dye, was first used to quantify the distribution of cardiolipin. Overexpression of PLS3 increases, whereas downregulation of PLS3 decreases, the percentage of cardiolipin on the mitochondrial surface. Determination of the tBid binding capacity on the mitochondrial surface by FITC-labeled tBid(G94E) also confirmed that tBid binding capacity increased upon PLS3 overexpression and decreased with downregulation of PLS3. PLS3 activity, determined by a lipid flip-flop assay, was activated by calcium and tBid but inhibited by Bcl-2. Mutation of the calcium binding motif abolishes the lipid flip-flop activity of PLS3. PLS3 and tBid may form a bidirectional positive feedback loop that is antagonized by Bcl-2. Overexpression of PLS3 does not affect mitochondrial potential but does interfere with mitochondrial respiration and production of reactive oxygen species. These studies thus establish PLS3 as an important downstream effector of Bcl-2 and tBid in apoptosis.  相似文献   

19.
20.
Mixed-lineage protein kinase 3 (MLK3) is a member of the mitogen-activated protein (MAP) kinase kinase kinase group that has been implicated in multiple signaling cascades, including the NF-kappaB pathway and the extracellular signal-regulated kinase, c-Jun NH(2)-terminal kinase (JNK), and p38 MAP kinase pathways. Here, we examined the effect of targeted disruption of the murine Mlk3 gene. Mlk3(-/-) mice were found to be viable and healthy. Primary embryonic fibroblasts prepared from these mice exhibited no major signaling defects. However, we did find that MLK3 deficiency caused a selective reduction in tumor necrosis factor (TNF)-stimulated JNK activation. Together, these data demonstrate that MLK3 contributes to the TNF signaling pathway that activates JNK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号