首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of a single intravenous bolus of 0.5 microgram/kg of growth hormone-releasing factor (GRF) on plasma GH, prolactin (PRL) and somatomedin C (SMC) in 12 short normal children and 24 patients with severe GH deficiency (GHD), i.e. GH less than 5 ng/ml after insulin and glucagon tolerance tests. GRF elicited an increase in plasma GH in both short normal and GHD children. The mean GH peak was lower in the GHD than in the short normal children (8.2 +/- 2.5 vs. 39.2 +/- 5.1 ng/ml, p less than 0.001). In the GHD patients (but not in the short normals) there was a negative correlation between bone age and peak GH after GRF (r = -0.58, p less than 0.005); GH peaks within the normal range were seen in 5 out of 8 GHD children with a bone age less than 5 years. In the short normal children, GRF had no effect on plasma PRL, which decreased continuously between 8.30 and 11 a.m. (from 206 +/- 22 to 86 +/- 10 microU/ml, p less than 0.005), a reflection of its circadian rhythm. In the majority of the GHD patients, PRL levels were higher than in the short normal children but had the same circadian rhythm, except that a slight increase in PRL was observed 15 min after GRF; this increase in PRL was seen both in children with isolated GHD and in those with multiple hormone deficiencies; it did occur in some GHD patients who had no GH response to GRF. Serum SMC did not change 24 h after GRF in the short normal children. We conclude that: (1) in short normal children: (a) the mean GH response to a single intravenous bolus of 0.5 microgram/kg of GRF is similar to that reported in young adults and (b) GRF has no effect on PRL secretion; (2) in GHD patients: (a) normal GH responses to GRF are seen in patients with a bone age less than 5 years and establish the integrity of the somatotrophs in those cases; (b) the GH responsiveness to GRF decreases with age, which probably reflects the duration of endogenous GRF deficiency, and (c) although the PRL response to GRF is heterogeneous, it does in some patients provide additional evidence of responsive pituitary tissue.  相似文献   

2.
OBJECTIVE: To establish the spontaneous nocturnal prolactin (PRL) release in relation to growth hormone (GH)-deficient children and idiopathic short-stature children (ISS). METHODS: A total of 32 prepubertal children (11 girls, 21 boys) aged between 3 and 12 years were studied retrospectively and sorted according to diagnosis: idiopathic GH deficiency (GHD, n = 9), neurosecretory deficiency of GH secretion (NSD, n = 10) and ISS (n = 13). Nocturnal spontaneous hormone secretion was studied by intermittent venous sampling. Secretion profiles and copulsatility were analyzed using Pulsar and AnCoPuls software. RESULTS: (median, range in mug/l): Children with GHD and NSD had significantly lower GH and area-under-the-curve (AUC) levels than normal children (p < 0.001), whereas ISS children showed normal values. In contrast, prolactin levels were significantly higher (p < 0. 05) in children with GHD and NSD (11.1, 4.9 - 13.0 and 10.3, 8. 8 - 19. 6, respectively) compared to the ISS children (8.0, 4.9 - 13.0). In addition, prolactin AUC and peak height were higher (p < 0.05) in GH-deficient patients, whereas all other secretion parameters were the same. Correlation and copulsatility analysis revealed no evidence for a direct relation between PRL and GH secretion. CONCLUSIONS: PRL secretion is significantly higher in children with GHD and NSD compared to ISS children but PRL and GH show no copulsatile secretion pattern.  相似文献   

3.
The changes in serum leptin levels during growth hormone (GH) treatment were studied in 27 children, 17 with GH deficiency (GHD), 10 with idiopathic short stature (ISS), and 9 with Prader-Willi syndrome (PWS). Within 1 month of GH treatment, serum leptin levels decreased by 40% in the GHD children (p < 0.01). There was no significant change in serum leptin level in the children with ISS. In children with PWS, the mean serum leptin level decreased by almost 60% after 3 months of treatment (p < 0.001). Thereafter, no further decline was observed in any of the 3 groups. Changes in body composition became evident first after the 3 months of treatment. In the GHD children, the BMI was unchanged while the mean body fat percentage was 2.7% lower after 1 year of GH treatment (p < 0.05). In the ISS children, neither BMI nor body fat percentage were significantly changed during treatment. The PWS children exhibited a significant decrease in BMI after 6 months of GH treatment without any further change during the remaining period of treatment. In this group, the mean body fat percentage decreased from 42 +/- 2.4 to 28 +/- 2.2% after treatment (p < 0.001). The finding that the fall in leptin occurs before changes in body composition become detectable suggests a direct effect of GH on leptin production, metabolism, or clearance.  相似文献   

4.
BACKGROUND: A stepwise increment of the GH dose is an approach aimed at avoiding adverse events. We investigated GH sensitivity by studying IGF-I and IGFBP-3 concentrations during the initial phase of GH treatment. METHODS: Our investigation was part of the regular follow-up of prepubertal children with GH deficiency (GHD) (n = 31) and small for gestational age (SGA) (n = 23). Dosage was increased in three steps: one-third at the start, two-thirds after 14 days, and the full dose after 28 days (full dose: GHD = 28 microg/kg body weight (BW)/day; SGA = 60 microg/kg BW/day). Blood samples were taken on days 0, 14 and 28, as well as in conjunction with anthropometrical examinations after 3, 6 and 12 months. IGF-I and IGFBP-3 were measured by means of published in-house RIAs and age-related references were used to calculate standard deviation scores (SDS). Height velocity (cm/year) and Delta HT SDS were taken as growth response parameters. RESULTS: Before GH treatment (GHD vs. SGA; median and p values): age (years) (6.6 vs. 6.0; n.s.), HT SDS (-2.6 vs. -3.2; p < 0.05); GH amount after stepping up (mug/kg BW/day) (28 vs. 60; p < 0.01); BW SDS (-0.5 vs. -2.9; p < 0.01); max. GH stimulated (microg/l) (5.6 vs. 10.8; p < 0.01); IGF-I SDS (-3.5 vs. -1.8; p < 0.01); IGFBP-3 SDS (-2.0 vs. 0.8; p < 0.01). After 1 year of GH therapy: HT velocity (cm/year) (9.8 vs. 9.6; n.s.), Delta HT SDS (0.9 vs. 0.9; n.s.); WT velocity (kg/year) (3.3 vs. 3.5; n.s.). Our results show that changes in growth similar to GHD could be induced in SGA by a dosage that was twice as high as the replacement dose given in GHD. GH dose and HT velocity did not correlate in both groups. IGF-I and IGFBP-3 increased as follows in GHD and SGA during stepping up of the dosage (ng/ml, GHD vs. SGA): at start, 54 vs. 89; at day 14, 78 vs. 132; at day 28, 90 vs. 167; at 3 months, 118 vs. 218. There was the same relationship between dose levels and absolute IGF-I concentrations in both groups. In terms of IGF-I SDS, the dose-response curve in SGA showed a shift to the right in comparison to GHD, thus indicating lower sensitivity to GH. The dynamics of IGF-I and IGFBP-3 differed, as IGFBP-3 peaked earlier (on day 28). In GHD, IGF-I SDS at 3 months was -0.7 vs. +0.9 in SGA. Near-identical levels were found for Delta IGF-I SDS and IGFBP-3 SDS above basal levels for each time-point investigated. First year HT velocity in GHD correlated negatively with basal IGF-I SDS (R(2) = 0.33; p <0.001) and basal IGFBP-3 (R(2) = 0.17; p <0.05) but did not correlate with the IGF-I increment during the 0- to 3-month period. Conversely, first year HT velocity correlated (+) in SGA with the IGF SDS increment during the 0- to 3-month period (R(2) = 0.26; p = <0.05). Height velocity in SGA, however, correlated neither with basal IGF-I and IGFBP-3 nor with the 0- to 3-month increments of IGFBP-3 SDS. CONCLUSIONS: IGFs increase during initial GH therapy, thus raising questions about short-term IGF generation tests. (I) In terms of IGF generation, substantially lower sensitivity to GH was observable in SGA. (II) Higher GH sensitivity during first year catch-up growth is associated with GHD, but in SGA it is attributable to increases in IGF. A wider range of GH dosages needs to be explored in order to gain further insight into the relationship between GH dose, IGF levels, and growth. Monitoring IGFs is a practical means for exploring GH sensitivity during dosage stepping up.  相似文献   

5.
Two methods of determining puberty onset (Preece- Baines model 1 (PB1) and Tanner staging) were used to calculate total pubertal growth (TPG) in adolescents with growth hormone deficiency (GHD). PATIENTS AND METHODS: 34 patients (11 girls) met the following inclusion criteria: isolated GHD, >2 years growth hormone therapy prior to puberty onset, regular weight-adjusted GH dosage, known final height (age >21 years or height velocity <0.5 cm/year), no induction of puberty. PB1 was used to define age and height at onset of the pubertal growth spurt ("take-off"). RESULTS: The results (mean +/- SD) were as follows: in girls, mean age at take-off was 9.8 years; 2.0 +/- 1.1 years before breast stage B2. In boys, mean age at take-off was 11.3 years; 1.4 +/- 0.8 years before testes volume >3 ml. Height at take-off was lower than at Tanner stage 2 by 12.4 +/- 7.6 cm in girls and 7.7 +/- 5.3 cm in boys. TPG was thus markedly greater (p < 0.001) using the PB1 method, as compared with Tanner stage2. Peak height velocity was normal. Final height was -0.5 +/- 0.7 SDS in females and -0.4 +/- 0.9 SDS in males. CONCLUSIONS: The method of measuring TPG from take-off is more objective, and has potentially greater implications for GH therapeutics than the Tanner stage method. In our study, 40% of TPG occurred before "breast stage B2" was attained in GHD girls; whereas 23% of TPG occurred before "testes >3 ml" in GHD boys.  相似文献   

6.
To evaluate the dynamics of growth hormone (GH) secretion in healthy prepubertal children of normal stature, we determined spontaneous GH secretion by measuring GH every 30 min in 21 Japanese subjects, age: 5.4 +/- 2.3 (1.6-10.6) years; height: -1.4 +/- 1.1 (-1.98-1.77) SD. The 24-h mean GH concentration was 4.8 +/- 1.5 ng/ml. The 24-h mean GH was similar in boys and girls (mean +/- SD: 4.8 +/- 1.7 vs 4.7 +/- 1.1 ng/ml). No correlation was found between chronological age and the 24-h mean GH. The 24-h mean GH was closely correlated with GH pulse amplitude (r = 0.94; P less than 0.001), but not with the number of GH pulses. The 24-h mean GH was also highly correlated with 3-h mean GH after sleep and 3-h peak GH after sleep (r = 0.86; P less than 0.001 and r = 0.72; P less than 0.001, respectively). Our data suggest that in healthy prepubertal children of normal stature, (1) spontaneous GH secretion is independent of sex and age, (2) the amount of spontaneous GH secretion is controlled by pulse amplitude, not by number of pulses. (3) 3-h mean GH and 3-h peak GH after sleep might represent 24-h total spontaneous GH secretion.  相似文献   

7.
Testosterone administration increases growth hormone (GH) secretion and decreases the plasma leptin concentration in men. We evaluated the effect of increased GH secretion due to short-term testosterone treatment on leptin concentrations. Ten boys aged 14.8 +/- 0.2 (mean +/- SE) years with transient GH deficiency caused by pubertal delay were evaluated before and after (3 months) 4 intramuscular injections of 100 mg testosterone heptylate, given at 15-day intervals. The leptin concentration decreased from 5.4 +/- 1.3 to 3. 6 +/- 1.1 microgram/l (p < 0.001), despite a weight gain of 3.4 +/- 0.5 kg. There were significant increases in body mass index (BMI), from -0.2 +/- 0.5 to 0.2 +/- 0.5 SD, p < 0.005, in GH peak after stimulation test, from 6.3 +/- 0.5 to 21.7 +/- 2.9 microgram/l, p < 0. 0003, in plasma testosterone, from 0.6 +/- 0.1 to 6.5 +/- 1.3 microgram/l, p < 0.001, in insulin-like growth factor-I (IGF-I), from 152 +/- 21 to 330 +/- 30 microgram/l, p < 0.0001, and in IGF-binding protein-3 (IGFBP-3), from 4.2 +/- 0.5 to 5.4 +/- 0.4 mg/l, p < 0.01. But there were no changes in blood glucose (4.7 +/- 0.1 and 4.8 +/- 0.1 mmol/l), or plasma fasting insulin (9.0 +/- 1.2 and 8.1 +/- 1.3 mIU/l). The leptin concentrations were positively correlated with the BMI before (p < 0.03) and after (p < 0.04) testosterone, but not with the GH peak after stimulation, or with plasma testosterone, IGF-I or IGFBP-3. The leptin and insulin concentrations after testosterone treatment were positively correlated (p < 0.04). Thus, short-term testosterone treatment of boys with pubertal delay decreases their leptin concentrations. The lack of correlation with GH secretion or with its changes, despite the dramatic increase in GH secretion, and the lack of change in insulin are additional features suggesting that testosterone increases the leptin concentration mainly by an effect on adipose tissue.  相似文献   

8.
The relative effects of growth hormone (GH) on GH-deficient (GHD) children with and without severely delayed skeletal maturation prior to treatment are unclear. METHODS: Pre-pubertal GHD children enrolled in the National Cooperative Growth Study were divided into two groups: severe pretreatment BA delay (BA Z-score 相似文献   

9.
BACKGROUND/AIMS: The aim of the present study was to investigate whether short children with normal growth hormone (GH) immunoreactivity, but reduced bioactivity (bioinactive GH) could benefit from rhGH treatment as GH deficient (GHD) patients. Methods: We evaluated 12 pre-pubertal children (8 M, 4 F), with GH deficiency-like phenotype showing normal serum GH peak levels (>10 ng/ml), measured by immunofluorimetric assay (IFMA-GH), in contrast with a reduced GH bioactivity (bio-GH), evaluated using the Nb(2) cells. We also evaluated 15 age-matched GHD pre-pubertal children (11 M, 4 F) with serum GH peak <5 ng/ml. Both groups were treated with rhGH therapy at the dose of 0.23 mg/kg/week s.c. RESULTS: Serum bio-GH/IFMA-GH ratio at peak time for each patient during the provocative test was significantly lower in bioinactive GH than in GHD children (0.29 vs. 2.05, p = 0.00001). Recombinant human GH therapy induced a significant (p < 0.001) increase in growth rate in both groups during the first 2 years. In the third year of treatment, while growth rate in GHD children is maintained, in bioinactive GH patients it decreases remaining, however higher compared to the pre-treatment one. CONCLUSIONS: Short rhGH therapy given to selected bioinactive GH children improve growth rate and might result in greater final adult height.  相似文献   

10.
BACKGROUND: Little information is available on the relevance of parameters representing the insulin-like growth factor (IGF) system with regard to growth hormone (GH) treatment during childhood. In adults, high IGF-I levels were found to be associated with side effects and long-term risks. AIM/METHOD: Our aim was to monitor the serum levels of IGF-I, IGF-binding protein (IGFBP) 3, and IGFBP-2 during long-term GH treatment of 156 patients with GH deficiency (GHD) and of 153 non-GHD patients. We determined the extent to which the IGF parameters exceed the normal ranges and identified those parameters which are predictive of 1st-year growth. RESULTS: In prepubertal GHD children, the levels of IGF-I, IGFBP-3, and IGF-I/IGFBP-3 exceeded the 95th centile of the reference values for this age group in 2.3, 0.3, and 7.9% of the cases, respectively, whereas in prepubertal non-GHD children, the same parameters exceeded the 95th reference centile in 20.1, 3.5, and 32.2%, respectively. In pubertal GHD children IGF-I, IGFBP-3, and IGF-I/IGFBP-3 levels exceeded the 95th reference centile in 11.1, 1.5, and 15.4%, respectively. In pubertal non-GHD children, these levels also exceeded the 95th centile in 26.7, 7.0, and 41.4%, respectively. In both GHD and non-GHD groups, however, some patients had IGF parameters which were below the reference values. Our analysis showed that, in both groups, in addition to maximum GH, all IGF parameters (IGF-I, IGFBP-3, IGF-I/IGFBP-3 ratio, IGFBP-2 or derivatives) significantly extend the scope of a calculated model for predicting 1st-year height velocity. CONCLUSION: For reasons of safety and optimization of GH therapy, it is essential to follow up IGF-I, IGFBP-3, and IGFBP-2 levels regularly during childhood.  相似文献   

11.
The serum levels of insulin-like growth factor I (IGF I), dehydroepiandrosterone sulfate (DHAS), testosterone (T) and estradiol (E2) have been measured in 78 prepubertal and 57 early pubertal patients referred for short stature, at the same time when their secretion of GH was evaluated both during nocturnal sleep and by two conventional stimulation tests. According to the results of GH measurements they were considered as having a normal secretion of GH (group I), a complete GH deficiency (group II), a partial GH deficiency (group III), low responses to stimuli with normal secretion during sleep (group IV) or a nocturnal neurosecretory dysfunction (group V). Though widely scattered, the IGF I levels showed the following characteristics: a significant increase at puberty from 0.77 to 1.29 U/ml (p less than 0.001) in the so-called endocrinologically normal patients of group I, not in the other groups; in the prepubertal patients of group I, a correlation of IGF I with chronological age (r = 0.47, p less than 0.005) and bone age (r = 0.52, p less than 0.002); significantly reduced IGF I levels in patients of group II having complete GH deficiency (p less than 0.001); no significant differences between prepubertal patients with partial or atypical GH deficiency from groups III, IV, V and prepubertal patients from group I; lower pubertal levels in groups III, IV, V than in pubertal patients from group I (p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Chronic renal failure (CRF) in the young is complicated by, among other conditions, growth retardation, hyperparathyroidism and uremic osteodystrophy. Many children with CRF are now being treated with growth hormone (GH). Since GH has a direct mitogenic effect on osteoblasts in culture, we studied the effects of GH therapy on osteoblastic activity, such as serum alkaline phosphatase (AP), bone GLA-protein (BGP) and bone mass density (BMD) in poorly growing children with and without CRF. Fifteen (4 girls, 11 boys) healthy children with short stature (SS) and 10 (3 girls, 7 boys) children with end-stage renal failure (CRF) 4.5-12.4 years of age were treated with daily subcutaneous injections of GH in a dose of 0.1-0.125 IU/kg/day for 1 year. IGF-I, BGP and BMD of the spine were determined before and after the year of treatment. During GH therapy, a similar increase in height velocity and IGF-I were noted in SS and CRF groups: 3.8 +/- 0.77 to 8.38 +/- 1.25 (p < 0.001) vs. 4.0 +/- 0.6 to 7.14 +/- 1.3 cm/year (p < 0.001) and 7.8 +/- 2.6 to 21.8 +/- 7.5 (p < 0.01) vs. 7.9 +/- 1.3 to 21.5 +/- 5.6 nmol/l (p < 0.01), respectively. AP increased from 205 +/- 27 to 274 +/- 50 IU/l (p < 0.01) in the SS group but not in CRF patients (223 +/- 58 pre- 218 +/- 51 IU/l post-GH therapy).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.

Objective

We aimed to assess the effects of age, sex, body mass index (BMI), and anatomical site on skin thickness in children and adults with diabetes.

Methods

We studied 103 otherwise healthy children and adolescents with type 1 diabetes aged 5–19 years, and 140 adults with type 1 and type 2 diabetes aged 20–85 years. The thicknesses of both the dermis and subcutis were assessed using ultrasound with a linear array transducer, on abdominal and thigh skin.

Results

There was an age-related thickening of both dermis (p<0.0001) and subcutis (p = 0.013) in children and adolescents. Girls displayed a substantial pubertal increase in subcutis of the thigh (+54%; p = 0.048) and abdomen (+68%; p = 0.009). Adults showed an age-related decrease in dermal (p = 0.021) and subcutis (p = 0.009) thicknesses. Pubertal girls had a thicker subcutis than pubertal boys in both thigh (16.7 vs 7.5 mm; p<0.0001) and abdomen (16.7 vs 8.8 mm; p<0.0001). Men had greater thigh dermal thickness than women (1.89 vs 1.65 mm; p = 0.003), while the subcutis was thicker in women in thigh (21.3 vs 17.9 mm; p = 0.012) and abdomen (17.7 vs 9.8 mm; p<0.0001). In boys, men, and women, both dermis and subcutis were thicker on the abdomen compared to thigh; in girls this was only so for dermal thickness. In both children and adults, the skin (dermis and subcutis) became steadily thicker with increasing BMI (p<0.0001).

Conclusions

Skin thickness is affected by age, pubertal status, gender, BMI, and anatomical site. Such differences may be important when considering appropriate sites for dermal/subcutaneous injections and other transdermal delivery systems.  相似文献   

14.
To determine whether exogenous GH induces feedback of GH release in children, growth hormone-releasing factor (GRP) tests were performed before and after 10-day GH administration. Sixteen non-obese short boys, aged 5-14 yr, with normal GH response to pharmacological tests were studied. Mean basal and peak serum GH levels in GRF tests before and after exogenous GH were not significantly different. The subjects were divided into two groups, A and B, according to the percent change in integrated areas under the GH curves in GRF tests (GH AUC) before and after 10-day GH administration. Group A consisted of 6 boys with decreased GH AUC and group B consisted of 10 boys with increased GH AUC. Mean peak GH in GRF tests and mean GH AUC were significantly higher before exogenous GH in group A than in group B. The boys in group A were all prepubertal, while 4 boys in group B had begun their early pubertal change. The mean age in group A (7.8 +/- 1.8 yr) was significantly lower than that of group B (11.9 +/- 2.4 yr). GH AUC before exogenous GH showed a significant correlation with the percent change in AUC (= -0.742, p less than 0.01). These data demonstrated that the exogenous GH suppressed the GH response to GRF in prepubertal children with good response to GRF before exogenous GH, while it exaggerated the GH response to GRF in older children with relatively poor response before GH.  相似文献   

15.
OBJECTIVE: To show the importance of priming prior to growth hormone (GH) stimulation tests in the diagnosis of GH deficiency, the effect of different doses and schedules of testosterone (T) on GH levels. PATIENTS AND METHODS: Eighty-four prepubertal and early pubertal boys whose heights were 2 SD below the mean and height velocities <4 cm per year and who failed in GH stimulation tests were included in the study. The boys were divided into two groups: the first group consisting of 41 boys was primed with 62.5 mg/m(2) (low dose testosterone - LDT) and the second group consisting of 43 boys with 125 mg/m(2) depot testosterone (conventional dose testosterone - CDT) intramuscularly 1 week before the stimulation test. Twenty-one boys out of 36 who failed in GH stimulation tests after one dose T injection were treated with three doses of 62.5 mg/m(2) T (multiple dose testosterone - MDT) injections monthly and retested. RESULTS: The GH levels increased from 4.80 +/- 2.78 to 11.50 +/- 8.84 ng/ml and from 4.76 +/- 2.46 to 12.98 +/- 8.30 ng/ml by priming with LDT and CDT respectively. The increment of mean GH levels by both LDT and CDT were found to be similar (p = 0.443). The peak GH levels were found to be elevated >10 ng/ml in 22/41 (54%) and 26/43 (60%) who received LDT and CDT respectively (p = 0.528). The mean GH level of 21 boys who received MDT was increased from 5.38 +/- 2.50 ng/ml (by priming with one dose T) to 10.19 +/- 6.13 ng/ml (p = 0.004). Twelve (57%) of 21 boys who received MDT responded to GH stimulation test >10 ng/ml. The T level increased from 0.71 +/- 0.97 to 4.54 +/- 2.80 ng/ml by LDT (p < 0.001) and from 0.65 +/- 0.71 to 7.18 +/- 3.18 ng/ml by CDT (p < 0.001). The increment of T level was higher by CDT than LDT (p = 0.001). There was no correlation between T and peak GH levels after priming. CONCLUSION: LDT is as effective as CDT in priming of GH stimulation tests. The ones who failed in GH stimulation tests after one dose T injection can be primed with MDT. The stimulated GH level after priming was related neither to the plasma level of T nor the dose of T.  相似文献   

16.
Kim HJ  Kwon SH  Kim SW  Park DJ  Shin CS  Park KS  Kim SY  Cho BY  Lee HK 《Hormone research》2001,56(3-4):117-123
OBJECTIVE: To investigate the diagnostic value of serum insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-3 (IGFBP-3) measurements in adult patients with acromegaly and GH deficiency (GHD). METHODS: Serum IGF-I and IGFBP-3 levels were measured in 39 active acromegalic patients, 34 adult patients with GHD and 150 healthy adults. Disease activity in patients with acromegaly was confirmed by nadir GH levels during an oral glucose tolerance test (OGTT). Among patients with acromegaly, 15 had not been treated previously and 24 had been treated but not cured. GHD in adults was diagnosed by an insulin tolerance test (ITT). Among patients with GHD, 15 were aged 20-40 years (9 men and 6 women) and 19 were aged over 40 years (9 men and 10 women). One hundred and fifty healthy subjects were recruited as a control group. To compare the individual serum IGF-I and IGFBP-3 levels of patients with the results of the gold standard, we calculated age- and sex-corrected standard deviation scores (SDS) for individual IGF-I and IGFBP-3 levels. The sensitivities of serum IGF-I and IGFBP-3 measurements for the disease diagnosis were analyzed using the mean +/- 2 SD of the values of healthy control subjects as a diagnostic cutoff, defining 95% specificity. RESULTS: The mean IGF-I and IGFBP-3 SDS levels were significantly higher in active acromegalic patients, both untreated and treated but not cured, than in the control subjects (p < 0.05). The sensitivities of serum IGF-I and IGFBP-3 measurements for the diagnosis of acromegaly were 97.4 and 81.8%, respectively. In untreated patients with acromegaly, the sensitivities of serum IGF-I and IGFBP-3 measurements for the diagnosis of disease were 100 and 100%, while these were 95.8 and 72.7% in treated patients with acromegaly. In adult patients with GHD, the mean IGF-I and IGFBP-3 SDS were significantly lower than those of the control subjects (IGF-I, -2.2 +/- 0.8 vs. 0.0 +/- 1.0 SDS, p < 0.0001); IGFBP-3, -1.7 +/- 1.2 vs. 0.0 +/- 1.0 SDS, p < 0.0001), but there was a considerable overlap between GHD in adults and the controls. In all patients with GHD, the sensitivities of serum IGF-I and IGFBP-3 measurements were 64.7 and 52.9%, respectively. In the group of women aged 20-40 years, the sensitivity of IGF-I measurement for the diagnosis of GHD was 100%, although the number of patients was only 6. CONCLUSION: Both serum IGF-I and IGFBP-3 measurements are comparable to an oral glucose tolerance test in patients with untreated acromegaly, but in acromegalic patients that have undergone surgery and/or radiotherapy, serum IGF-I is more valuable for determining disease activity than serum IGFBP-3. Serum IGF-I and IGFBP-3 measurements are not valuable for the diagnosis of GHD in adults, but in women aged 20-40 years serum IGF-I measurement appears to be useful in the diagnosis of GHD.  相似文献   

17.
We report long-term evolution of endocrine functions and the results of GH treatment in 35 patients (26 male and 9 female) with pituitary stalk interruption. At diagnosis, mean chronological age was 4.8 +/- 2.7 years, mean SDS for height -3.1 +/- 0.8 with a bone age retardation of 2.3 +/- 1.3 years and a mean SDS for growth velocity of -0.5 +/- 1.1; 80% presented complete GH deficiency (GHD) and 20% partial GHD; thyroid deficiency was present in 47.1% of children with complete GHD but absent in all partial GHD. Diagnosis was made during the first months of life in only 2 patients while 23% presented with severe neonatal distress; neonatal signs were only observed in the group with pituitary height below 2 mm (45.7% of patients). GHD was isolated in 40.6% of patients below 10 years while multiple hormone deficiencies was consistent at completion of growth in all patients. Height gain was significantly higher in patients who started GH treatment before 4 years (p = 0.002). GH treatment is very effective: in 13 patients, final height was -0.4 +/- 1.0, total height gain 3.2 +/- 1.2 and distance to target height -0.3 +/- 1.6 SDS.  相似文献   

18.
Assessing short-statured children for growth hormone deficiency   总被引:1,自引:0,他引:1  
AIM: To optimize the workup of short-statured children by defining the most appropriate tools for diagnosing growth hormone (GH) deficiency. METHODS: Patients were assigned to prepubertal (n = 113) or pubertal (n = 112, including 25 boys primed with testosterone) age groups. Mean plasma GH concentration during sleep, GH peak after provocative test, and insulin-like growth factor I (IGF-I) were measured in a single evaluation. RESULTS: The mean GH concentration during sleep was more often normal (n = 155) than the GH peak after provocative tests (n = 105) or the IGF-I concentration (n = 88). Prepubertal patients with a normal body mass index (BMI) had mean GH concentrations during sleep that correlated positively with height, growth rate, GH peak after provocative tests, and IGF-I (p < 0.0005 for all) and negatively with the difference between target and patient heights (p = 0.01) and BMI (p < 0.05). Pubertal patients with a normal BMI had a mean GH concentration during sleep that correlated positively with GH after provocative tests (p < 0.0001) and IGF-I (p < 0.005). Mean GH concentration during sleep and IGF-I concentration for boys primed with testosterone were more often normal (n = 23) than the GH peak after provocative tests (n = 14). All 9 patients with pituitary stalk interruption had low IGF-I concentrations; 1 patient had a normal GH peak after provocative test, and 2 patients had normal mean GH concentrations during sleep. CONCLUSIONS: Measuring the GH concentration during sleep and priming boys with pubertal delay can help to exclude idiopathic GH deficiency. Magnetic resonance imaging is needed to exclude anatomic abnormalities when GH and/or IGF-I concentrations are low.  相似文献   

19.
The aim of this study was to investigate the endocrine profiles of growth hormone (GH), testosterone and their interrelationship in prepubertal, pubertal and orchiectomised male Murrah buffaloes under starving conditions. The prepubertal and pubertal buffaloes were subjected to frequent blood sampling over 24 h at an interval of 1 h, whereas in orchiectomised buffaloes, the blood samples were collected over 18 h. Irrespective of group, the GH concentrations fluctuated in an episodic manner over 24 h and the fluctuations did not exhibit a consistent pattern between the animals of each group. The mean basal and peak concentrations of GH did not differ significantly (p > 0.05) among the groups. A significant (p > 0.0001) difference in testosterone concentrations was observed between prepubertal and pubertal groups. The differences in mean basal and peak testosterone concentrations between the prepubertal and pubertal groups were also significant (p < 0.01). The associations between testosterone and GH levels in both prepubertal (r = 0.15; p > 0.05) and pubertal (r = ?0.37; p > 0.05) buffaloes were non-significant. The possible reasons for erratic episodic pattern of GH secretion will be discussed.  相似文献   

20.
There is no consensus regarding the optimal dosing of recombinant human growth hormone (rhGH) for children with growth hormone deficiency (GHD). Our objective was to evaluate the final adult height (FAH) in children with idiopathic GHD treated with a fixed rhGH dose of 0.18 mg/kg/week. We reviewed all charts of patients with idiopathic GHD treated with rhGH since 1985 who reached FAH. Ninety-six patients were treated for an average of 5.4 years. The mean age was 11.9 years, the mean height -2.87 standard deviation score (SDS) and the mean FAH was -1.04 SDS. Females had a lower predicted adult height than males at the initiation of therapy (-2.0 vs. -1.01 SDS; p = 0.0087) but a higher FAH - predicted adult height (1.08 vs. 0.04 SDS; p = 0.0026). In multiple regression analysis, the FAH SDS was positively related to the midparental height SDS, the height SDS at GH initiation and growth velocity during the first year of therapy, and negatively correlated with peak GH and bone age at initiation (r(2) = 0.51; p < 0.005). Treatment of children with idiopathic GHD with a fixed dose of 0.18 mg/kg/week rhGH is sufficient to reach FAH within 2 SDS of the normal population range (84%) with an average FAH within -0.5 SDS of midparental height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号