首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cysteine string protein (CSPalpha) is a member of the cellular folding machinery that is located on regulated secretory vesicles. We have previously shown that CSPalpha in association with Hsc70 (70kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein) is a guanine nucleotide exchange factor (GEF) for G(alphas). Association of this CSPalpha complex with N-type calcium channels, a channel key in coupling calcium influx with synaptic vesicle exocytosis, triggers tonic G protein inhibition of the channels. Syntaxin 1A, a plasma membrane SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) critical for neurotransmission, coimmunoprecipitates with the CSPalpha/G protein/N-type calcium channel complex, however the significance of syntaxin 1A as a component of this complex remains unknown. In this report, we establish that syntaxin 1A interacts with CSPalpha, Hsc70 as well as the synaptic protein interaction (synprint) region of N-type channels. We demonstrate that huntingtin(exon1), a putative biologically active fragment of huntingtin, displaces both syntaxin 1A and CSPalpha from N-type channels. Identification of the protein components of the CSPalpha/GEF system is essential in establishing its precise role in synaptic transmission.  相似文献   

2.
Cysteine synthase [O-acetyl-L-serine(thiol)lyase] catalyzes the final step for L-cysteine biosynthesis in plants. The tolerance of transgenic tobacco plants over-expressing cysteine synthase cDNA in cytosol (3F), chloroplasts (4F) and in both organelles (F1) was investigated towards heavy metals such as Cd, Se, Ni, Pb and Cu. The transgenic plants were significantly more tolerant than wild-type plants in agar medium containing Cd, Se and Ni. The F1 transgenic plants had a higher resistance than other transgenic lines towards these metals and could enhance accumulation of Cd in shoot. These results suggest that the transgenic plants over-expressing cysteine synthase both in cytosol and chloroplasts can be applicable to phyto-remediation of Cd from contaminated soils.  相似文献   

3.
Cysteine synthesis in plants represents the final step of assimilatory sulfate reduction and the almost exclusive entry reaction of reduced sulfur into metabolism not only of plants, but also the human food chain in general. It is accomplished by the sequential reaction of two enzymes, serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL). Together they form the hetero-oligomeric cysteine synthase complex (CSC). Recent evidence is reviewed that identifies the dual function of the CSC as a sensor and as part of a regulatory circuit that controls cellular sulfur homeostasis. Computational modeling of three-dimensional structures of plant SAT and OAS-TL based on the crystal structure of the corresponding bacterial enzymes supports quaternary conformations of SAT as a dimer of trimers and OAS-TL as a homodimer. These findings suggest an overall alpha6beta4 structure of the subunits of the plant CSC. Kinetic measurements of CSC dissociation triggered by the reaction intermediate O-acetylserine as well as CSC stabilization by sulfide indicate quantitative reactions that are suited to fine-tune the equilibrium between free and associated CSC subunits. In addition, in vitro data show that SAT requires binding to OAS-TL for full activity, while at the same time bound OAS-TL becomes inactivated. Since OAS concentrations inside cells increase upon sulfate deficiency, whereas sulfide concentrations most likely decrease, these data suggest the dissociation of the CSC in vivo, accompanied by inactivation of SAT and activation of OAS-TL function in their free homo-oligomer states. Biochemical evidence describes this protein-interaction based mechanism as reversible, thus closing the regulatory circuit. The properties of the CSC and its subunits are therefore consistent with models of positive regulation of sulfate uptake and reduction in plants by OAS as well as a demand-driven repression/de-repression by a sulfur intermediate, such as sulfide.  相似文献   

4.
Cysteine synthase [O-acetyl-L-serine(thiol)-lyase, EC 4.2.99.8] (CSase), which is responsible for the terminal step of cysteine biosynthesis, catalyzes the formation of L-cysteine from O-acetyl-L-serine (OAS) and hydrogen sulfide. Three T-DNA vectors carrying a spinach (Spinacia oleracea) cytoplasmic CSase A cDNA (K. Saito, N. Miura, M. Yamazaki, H. Horano, I. Murakoshi [1992] Proc Natl Acad Sci USA 89: 8078-8082) were constructed as follows: pCSK3F, cDNA driven by the cauliflower mosaic virus (CaMV) 35S RNA promoter with a sense orientation; pCSK3R, cDNA driven by the CaMV 355 promoter with an antisense orientation; pCSK4F, cDNA fused with the sequence for chloroplast-targeting transit peptide of pea ribulose-1,5-biphosphate carboxylase small subunit driven by the CaMV 35S promoter with a sense orientation. These chimeric genes were transferred into tobacco (Nicotiana tabacum) with Agrobacterium-mediated transformation, and self-fertilized progeny were obtained. CSase activities in cell-free extracts of pCSK3F and pCSK4F transformants were 2- to 3-fold higher than those of control and pCSK3R plants. CSase activities in chloroplasts of pCSK4F transformants were severalfold higher than those of control and pCSK3F plants, indicating that the foreign CSase protein is transported and accumulated in a functionally active form in chloroplasts of pCSK4F plants. Isolated chloroplasts of a pCSK4F transformant had a more pronounced ability to form cysteine in response to addition of OAS and sulfur compounds than those of a control plant. In particular, feeding of OAS and sulfite resulted in enhanced cysteine formation, which required photoreduction of sulfite in chloroplasts. The enhanced cysteine formation in a pCSK4F plant responding to sulfite was also observed in leaf discs. In addition, these leaf discs were partially resistant to sulfite toxicity, possibly due to metabolic detoxification of sulfite by fixing into cysteine. These results suggested that overaccumulated foreign CSase in chloroplasts could modulate biosynthetic flow of cysteine in response to sulfur stress.  相似文献   

5.
Iron regulatory protein 2 coordinates cellular regulation of iron metabolism by binding to iron responsive elements in mRNA. The protein is synthesized constitutively but is rapidly degraded when iron stores are replete. This iron-dependent degradation requires the presence of a 73-residue degradation domain, but its functions have not yet been established. We now show that the domain can act as an iron sensor, mediating its own covalent modification. The domain forms an iron-binding site with three cysteine residues located in the middle of the domain. It then reacts with molecular oxygen to generate a reactive oxidizing species at the iron-binding site. One cysteine residue is oxidized to dehydrocysteine and other products. This covalent modification may thus mark the protein molecule for degradation by the proteasome system.  相似文献   

6.
Plants and bacteria assimilate and incorporate inorganic sulfur into organic compounds such as the amino acid cysteine. Cysteine biosynthesis involves a bienzyme complex, the cysteine synthase (CS) complex. The CS complex is composed of the enzymes serine acetyl transferase (SAT) and O-acetyl-serine-(thiol)-lyase (OAS-TL). Although it is experimentally known that formation of the CS complex influences cysteine production, the exact biological function of the CS complex, the mechanism of reciprocal regulation of the constituent enzymes and the structure of the complex are still poorly understood. Here, we used docking techniques to construct a model of the CS complex from mitochondrial Arabidopsis thaliana. The three-dimensional structures of the enzymes were modeled by comparative techniques. The C-termini of SAT, missing in the template structures but crucial for CS formation, were modeled de novo. Diffusional encounter complexes of SAT and OAS-TL were generated by rigid-body Brownian dynamics simulation. By incorporating experimental constraints during Brownian dynamics simulation, we identified complexes consistent with experiments. Selected encounter complexes were refined by molecular dynamics simulation to generate structures of bound complexes. We found that although a stoichiometric ratio of six OAS-TL dimers to one SAT hexamer in the CS complex is geometrically possible, binding energy calculations suggest that, consistent with experiments, a ratio of only two OAS-TL dimers to one SAT hexamer is more likely. Computational mutagenesis of residues in OAS-TL that are experimentally significant for CS formation hindered the association of the enzymes due to a less-favorable electrostatic binding free energy. Since the enzymes from A. thaliana were expressed in Escherichia coli, the cross-species binding of SAT and OAS-TL from E. coli and A. thaliana was explored. The results showed that reduced cysteine production might be due to a cross-binding of A. thaliana OAS-TL with E. coli SAT. The proposed models of the enzymes and their complexes provide mechanistic insights into CS complexation.  相似文献   

7.
The secretion of a functional, full-length monoclonal antibody complex from transgenic Nicotiana tabacum roots has been demonstrated. Initially, seeds were germinated on nitrocellulose membranes and antibody secretion detected from the developing roots. Plants were then established in hydroponic culture and secretion into the growth medium measured over 25 days. Western blotting indicated that full-length antibody was present in the medium along with other fragments. Secreted antibody was shown to be functional by binding to antigen in ELISA studies. In contrast, no antibody could be detected from transgenic Nicotiana in which the same antibody was expressed as a membrane protein in the plasmalemma. These results indicate that antibody accumulation in the growth medium is genuinely caused by rhizosecretion and not cell damage. Addition of gelatin to plant growth medium markedly increased levels of antibody accumulation. The mean antibody yield per plant was calculated to be 11.7 g per gram root dry weight per day. Rhizosecretion may be a viable alternative to agricultural production or cell culture for the generation of monoclonal antibodies in transgenic plants. It may also give rise to novel applications for antibodies expressed in plants such as removal or neutralisation of environmental pollutants and attenuation of pathogens which infect the plant via the rhizosphere.  相似文献   

8.
Real time biomolecular interaction analysis based on surface plasmon resonance has been proven useful for studying protein-protein interaction but has not been extended so far to investigate enzyme-enzyme interactions, especially as pertaining to regulation of metabolic activity. We have applied BIAcore technology to study the regulation of enzyme-enzyme interaction during mitochondrial cysteine biosynthesis in Arabidopsis thaliana. The association of the two enzyme subunits in the hetero-oligomeric cysteine synthase complex was investigated with respect to the reaction intermediate and putative effector O-acetylserine. We have determined an equilibrium dissociation constant of the cysteine synthase complex (K(D) = 25 +/- 4 x 10(-9) m), based on a reliable A + B <--> AB model of interaction. Analysis of dissociation kinetics in the presence of O-acetylserine revealed a half-maximal dissociation rate at 77 +/- 4 microm O-acetylserine and strong positive cooperativity for complex dissociation. The equilibrium of interaction was determined using an enzyme activity-based approach and yielded a K(m) value of 58 +/- 7 microm O-acetylserine. Both effector concentrations are in the range of intracellular O-acetylserine fluctuations and support a functional model that integrates effector-driven cysteine synthase complex dissociation as a regulatory switch for the biosynthetic pathway. The results show that BIAcore technology can be applied to obtain quantitative kinetic data of a hetero-oligomeric protein complex with enzymatic and regulatory function.  相似文献   

9.
Plants and bacteria assimilate sulfur into cysteine. Cysteine biosynthesis involves a bienzyme complex, the cysteine synthase complex (CSC), which consists of serine-acetyl-transferase (SAT) and O-acetyl-serine-(thiol)-lyase (OAS-TL) enzymes. The activity of OAS-TL is reduced by formation of the CSC. Although this reduction is an inherent part of the self-regulation cycle of cysteine biosynthesis, there has until now been no explanation as to how OAS-TL loses activity in plants. Complexation of SAT and OAS-TL involves binding of the C-terminal tail of SAT in one of the active sites of the homodimeric OAS-TL. We here explore the flexibility of the unoccupied active site in Arabidopsis thaliana cytosolic and mitochondrial OAS-TLs. Our results reveal two gates in the OAS-TL active site that define its accessibility. The observed dynamics of the gates show allosteric closure of the unoccupied active site of OAS-TL in the CSC, which can hinder substrate binding, abolishing its turnover to cysteine.  相似文献   

10.
Cysteine synthesis is catalyzed by serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL) in the cytosol, plastids, and mitochondria of plants. Biochemical analyses of recombinant plant SAT and OAS-TL indicate that the reversible association of the proteins in the cysteine synthase complex (CSC) controls cellular sulfur homeostasis. However, the relevance of CSC formation in each compartment for flux control of cysteine synthesis remains controversial. Here, we demonstrate the interaction between mitochondrial SAT3 and OAS-TL C in planta by FRET and establish the role of the mitochondrial CSC in the regulation of cysteine synthesis. NMR spectroscopy of isolated mitochondria from WT, serat2;2, and oastl-C plants showed the SAT-dependent export of OAS. The presence of cysteine resulted in reduced OAS export in mitochondria of oastl-C mutants but not in WT mitochondria. This is in agreement with the stronger in vitro feedback inhibition of free SAT by cysteine compared with CSC-bound SAT and explains the high OAS export rate of WT mitochondria in the presence of cysteine. The predominant role of mitochondrial OAS synthesis was validated in planta by feeding [(3)H]serine to the WT and loss-of-function mutants for OAS-TLs in the cytosol, plastids, and mitochondria. On the basis of these results, we propose a new model in which the mitochondrial CSC acts as a sensor that regulates the level of SAT activity in response to sulfur supply and cysteine demand.  相似文献   

11.
Cysteine serves as a precursor for the synthesis of various sulfur-containing metabolites, and the cysteine synthase (CS) gene plays a central role in the sulfur cycle in nature. In the present study, rcs1, a cytosolic CS gene of rice, was introduced into the genome of tobacco (Nicotiana tabacum). The tolerance of wild-type tobacco plants as well as of the resulting transgenic tobacco plants overexpressing the rcs1 gene to toxic levels of ozone (O3, 0.15 μ mol−1) was measured after various lengths of exposure. Leaf lesions in plants exposed for 2 weeks to O3 were more prevalent in the leaves of the wild-type plants than in those of the transgenic tobacco plants. Transgenic tobacco plants showed a higher growth rate and a higher chlorophyll content than the wild-type plants. Cysteine synthase activity and cysteine and glutathione contents were higher in transgenic plants than in wild-type plants irrespective of the length of the O3 treatment. Our results indicate that the CS gene plays a role in the protection of the plant against toxic O3 gas, probably through the mechanism of an over-accumulation of such sulfur-rich antioxidants as cysteine and glutathione.  相似文献   

12.
Control of sulfur metabolism in plants and bacteria is linked, in significant measure, to the behavior of the cysteine synthase complex (CSC). The complex is comprised of the two enzymes that catalyze the final steps in cysteine biosynthesis: serine O-acetyltransferase (SAT, EC 2.3.1.30), which produces O-acetyl-L-serine, and O-acetyl-L-serine sulfhydrylase (OASS, EC 2.5.1.47), which converts it to cysteine. SAT (a dimer of homotrimers) binds a maximum of two molecules of OASS (a dimer) in an interaction believed to involve docking of the C terminus from a protomer in an SAT trimer into an OASS active site. This interaction inactivates OASS catalysis and prevents further binding to the trimer; thus, the system exhibits a contact-induced inactivation of half of each biomolecule. To better understand the dynamics and energetics that underlie formation of the CSC, the interactions of OASS and SAT from Escherichia coli were studied at equilibrium and in the pre-steady state. Using an experimental strategy that initiates dissociation of the CSC at different points in the CSC-forming reaction, three stable forms of the complex were identified. Comparison of the binding behaviors of SAT and its C-terminal peptide supports a mechanism in which SAT interacts with OASS in a non-allosteric interaction involving its C terminus. This early docking event appears to fasten the proteins in close proximity and thus prepares the system to engage in a series of subsequent, energetically favorable isomerizations that inactivate OASS and produce the fully isomerized CSC.  相似文献   

13.
The formation of insoluble protein deposits in human tissues is linked to the onset of more than 40 different disorders, ranging from dementia to diabetes. In these diseases, the proteins usually self-assemble into ordered β-sheet enriched aggregates known as amyloid fibrils. Here we study the structure of the inclusions formed by maize transglutaminase (TGZ) in the chloroplasts of tobacco transplastomic plants and demonstrate that they have an amyloid-like nature. Together with the evidence of amyloid structures in bacteria and fungi our data argue that amyloid formation is likely a ubiquitous process occurring across the different kingdoms of life. The discovery of amyloid conformations inside inclusions of genetically modified plants might have implications regarding their use for human applications.  相似文献   

14.
Anthocyanin is the major color pigment in plants. The apple anthocyanidin synthase gene(ANS) manifests fruit skin-preferential expression (Kim et al., 2003). To understand the regulatory mechanism for such expression, we isolated and analyzed an appleANS genomic clone. Sequence analysis of ca. 1.4-kb of theANS promoter region predicted several cis-elements for MYB, light responsive GT-1, and the ABA Responsive Element (ABRE). Transgenic tobacco plants carrying a chimeric fusion between theANS promoter and the β-glucuronidase gene(GUS) showed that GUS was expressed in the receptacles and immature seeds as well as in the floral buds, but not in the vegetative organs.  相似文献   

15.
16.
Expression of chalcone synthase (CHS), the first enzyme in the flavonoid branch of the phenylpropanoid biosynthetic pathway in plants, is induced by developmental cues and environmental stimuli. We used plant transformation technology to delineate the functional structure of the French bean CHS15 gene promoter during plant development. In the absence of an efficient transformation procedure for bean, Nicotiana tabacum was used as the model plant. CHS15 promoter activity, evaluated by measurements of -d-glucuronidase (GUS) activity, revealed a tissue-specific pattern of expression similar to that reported for CHS genes in bean. GUS activity was observed in flowers and root tips. Floral expression was confined to the pigmented part of petals and was induced in a transient fashion. Fine mapping of promoter cis-elements was accomplished using a set of promoter mutants generated by unidirectional deletions or by site-directed mutagenesis. Maximal floral and root-specific expression was found to require sequence elements located on both sides of the TATA-box. Two adjacent sequence motifs, the G-box (CACGTG) and H-box (CCTACC(N)7CT) located near the TATA-box, were both essential for floral expression, and were also found to be important for root-specific expression. The CHS15 promoter is regulated by a complex interplay between different cis-elements and their cognate factors. The conservation of both the G-box and H-box in different CHS promoters emphasizes their importance as regulatory motifs.  相似文献   

17.
An G  Costa MA  Mitra A  Ha SB  Márton L 《Plant physiology》1988,88(3):547-552
Control regions of the nopaline synthase (nos) gene have been widely used to express foreign genes in plants since the promoter is active in a wide variety of plant tissues. We report here the characteristics of the nos promoter activity in transgenic tobacco (Nicotiana tabacum) plants at various developmental stages. The promoter was highly active in the lower parts of a plant and gradually decreased in the upper parts. This vertical gradient was maintained throughout plant growth until the flowering stage when the overall promoter strength decreased significantly in the vegetative organs. However, in various flower organs, the nos promoter activities increased dramatically. Higher activity was observed in calyx, corolla, and stamens although the maximum promoter activity in each organ was found at different stages of flower development. The promoter activity in pistils was low and gradually increased in the ovaries after anthesis. In developing fruits, the nos promoter activity was strongly induced during the mid-stage of embryogenesis. These results indicate that the expression of the nos promoter is developmentally regulated and organ specific in transgenic tobacco plants.  相似文献   

18.
Synthesis of the tetrapyrrole precursor 5-aminolevulinate (ALA) in plants starts with glutamate and is a tRNA-dependent pathway consisting of three enzymatic steps localized in plastids. In animals and yeast, ALA is formed in a single step from succinyl CoA and glycine by aminolevulinate synthase (ALA-S) in mitochondria. A gene encoding a fusion protein of yeast ALA-S with an amino-terminal transit sequence for the small subunit of ribulose bisphosphate carboxylase was introduced into the genome of wild-type tobacco and a chlorophyll-deficient transgenic line expressing glutamate 1-semi-aldehyde aminotransferase (GSA-AT) antisense RNA. Expression of ALA-S in the GSA-AT antisense transgenic line provided green-pigmented co-transformants similar to wild-type in chlorophyll content, while transformants derived from wild-type plants did not show phenotypical changes. The capacity to synthesize ALA and chlorophyll was increased in transformed plants, indicating a contribution of ALA-S to the ALA supply for chlorophyll synthesis. ALA-S activity was detected in plastids of the transformants. Preliminary evidence is presented that succinyl CoA, the substrate for ALA-S, can be synthesized and metabolized in plastids. The transgenic plants formed chlorophyll in the presence of gabaculine, an inhibitor of GSA-AT. Steady-state RNA and protein levels and, consequently, the enzyme activity of GSA-AT were reduced in plants expressing ALA-S. In analogy to the light-dependent ALA synthesis attributed to feedback regulation, a mechanism at the level of intermediates or tetrapyrrole end-products is proposed, which co-ordinates the need for heme and chlorophyll precursors and restricts synthesis of ALA by regulating GSA-AT gene expression. The genetically engineered tobacco plants containing the yeast ALA-S activity demonstrate functional complementation of the catalytic activity of the plant ALA-synthesizing pathway and open strategies for producing tolerance against inhibitors of the C5 pathway.  相似文献   

19.
Summary Cell-to-cell communication in plants occurs through plasmodesmata, cytoplasmic channels that traverse the cell wall between neighboring cells. Plasmodesmata are also exploited by many viruses as an avenue for spread of viral progeny. In the case of tobacco mosaic virus (TMV), a virally-encoded movement protein (MP) enables the virus to move through plasmodesmata during infection. We have used thin section electron microscopy and immunocytochemistry to examine the structure of plasmodesmata in transgenic tobacco plants expressing the TMV MP. We observed a change in structure of the plasmodesmata as the leaves age, both in control and MP expressing [MP(+)] plants. In addition, the plasmodesmata of older cells of MP(+) plants accumulate a fibrous material in the central cavity. The presence of the fibers is correlated with the ability to label plasmodesmata with anti-MP antibodies. The developmental stage of leaf tissue at which this material is observed is the stage at which an increase in the size exclusion limit of the plasmodesmata can be measured in MP(+) plants. Using cell fractionation and aqueous phase partitioning studies, we identified the plasma membrane and cell wall as the compartments with which the MP stably associates. The nature of the interaction between the MP and the plasma membrane was studied using sodium carbonate and Triton X-100 washes. The MP behaves as an integral membrane protein. Identifying the mechanism by which the MP associates with plasma membrane and plasmodesmata will lead to a better understanding of how the MP alters the function of the plasmodesmata.Abbreviations MP movement protein - TMV tobacco mosaic virus  相似文献   

20.
The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16–18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号