首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously demonstrated that the ODNs with 2-amino-6-(2-phenylsulfoxyethyl)purine nucleoside derivative were capable of efficient interstrand cross-linking with cytidine selectively. In this new strategy, less reactive precursor was auto-activated within a duplex to generate 2-amino-6-vinylpurine derivative. However, it turned out that 2-amino-6-(2-phenylsulfinyl)-ethylpurine nucleoside was not applicable as the precursor for the synthesis of DNA oligomers with G-rich sequences. In this report, 2-amino-6-(2-methylsulfinylethyl)purine nucleoside has been proven to be more suitable as a precursor for DNA synthesis. In addition, the ODNs incorporating either 2-amino-6-(2-phenylsulfoxy ethyl)purine or 2-amino-6-vinylpurine showed high reactivity toward the cytidine at the target site but quite less reactivity was observed for it at non-target site, demonstrating high site-selectivity.  相似文献   

2.
In our attempt to new nucleobase analogs capable of interstrand cross-linking, we developed 2-amino-6-vinyl purine analog (1). The oligonucleotides incorporating 1 showed efficient interstrand cross-linking with selectivity toward cytidine at a target site. In this paper, we describe the design of the new cross-linking reagents (2) bearing 2-amino-6-vinyl purine motif, and triplex-directed alkylation with 2 to double-stranded DNA.  相似文献   

3.
We have previously described that oligonucleotides containing phenylsulfoxide derivative of 2-amino-6-vinyulpurine nucleoside analog (1) are activated within duplex to form cross-link toward cytidine selectively at the target site. The new cross-linking motif with phenylsulfoxide structure (2) is characteristic in that the stable precursor may be transformed automatically within duplex to a reactive species. To search for more stable precursor susceptible for activation, we designed a series of substituted phenylsulfide analogs of 1. It has been demonstrated that introduction of an electron-donating group on the phenyl ring improved the cross-linking reaction. Particularly, 2-carboxyphenyl sulfide derivative exhibited cross-linking as effectively as phenylsulfoxide derivative without chemical oxidation prior to cross-linking.  相似文献   

4.
We previously reported that oligodeoxynucleotides containing 2-amino-6-vinylpurine (2-AVP: 1) exhibit efficient selective cross-linking to cytosine. In this study, the 2′-OMe nucleoside analogue (2) of 2-AVP was designed in order to increase its affinity to RNA and enhance metabolic stability. It has been demonstrated that 2′-OMe oligonucleotides bearing 2 achieve highly selective cross-linking to the thymine base in DNA and show higher antisense effect on luciferase production in cell lysate.  相似文献   

5.
A new nucleoside derivative (2) with a butyl spacer between the sugar part and the 2-amino-6-vinylpurine motif has been synthesized. The triplex-forming oligodeoxynucleotide incorporating 2 has achieved strand- and cytidine-selective cross-linking reaction to the G-C target site mediated by triple helix formation. It has been suggested that 2 reacts with a flipping cytidine at the target site.  相似文献   

6.
The triplex-forming oligonucleotide incorporating the new nucleoside derivative (2) that connects the 2-amino-6-vinylpurine moiety to the 2-deoxyribose unit with an ethyl spacer has exhibited highly selective cross-linking reaction to the adenine of the TA interrupting site within the triple helix.  相似文献   

7.
In aqueous solution, in the presence of ammonium chloride, N1-substituted 2-nitroimidazoles are readily reduced to the corresponding hydroxylamines. In air, under neutral conditions, analogous to the reactions of aromatic hydroxylamines, 2-hydroxylaminoimidazoles are converted to the azoxy derivatives via a base-catalyzed condensation reaction between the hydroxylamine and its oxidation product, the nitroso derivative. In nitrogen, rearrangement to form the 2-amino-4(5)hydroxyimidazole derivative followed by addition of water across the C4-C5 double bond to yield isomers of a 4,5-dihydro-4,5-dihydroxy derivative appears to be a major reaction. 2-hydroxylaminoimidazoles undergo a complex series of reactions with glutathione. The initial reaction is the formation of a labile conjugate involving an N-S-linkage. Subsequently in the presence of excess GSH, under neutral conditions, two stable conjugates identified as 2-amino-4-S-glutathionyl- and 2-amino-5-S-glutathionyl imidazoles are formed. Nucleophilic attack by GSH on the imidazole ring of a nitrenium ion is postulated as the initial step in the formation of the stable GSH conjugates as well as the 2-amino-4,5-dihydro dihydroxy derivative. The results provide a molecular mechanism for many of the biological effects of N1-substituted 2-nitroimidazoles in hypoxic mammalian cells.  相似文献   

8.
The first synthesis of 5-amino-3-(2'-deoxy-beta-D-ribofuranosyl)imidazo[4,5-b]pyridin-7-one (1-deaza-2'-deoxyguanosine) is described. The compound was converted from the known AICA-deoxyriboside. The tautomeric structure of the base moiety was determined by theoretical calculation to be a hydroxyl form. Although the analog was found to be labile to acidic conditions, 1-deaza-2'-deoxyguanosine was successfully converted into a phosphoramidite derivative, which was incorporated into oligodeoxynucleotides by the standard phosphoramidite method. Thermal stabilities of oligodeoxynucleotides containing 1-deaza-2'-deoxyguanosine were investigated by thermal denaturing experiments. Also, a triphosphate analog of 1-deaza-2'-deoxyguanosine was synthesized for polymerase extension reactions. Single nucleotide insertion reactions using a template containing 1-deaza-2'-deoxyguanosine, as well as 1-deaza-2'-deoxyguanosine triphosphate, were performed using the Klenow fragment (exonuclease minus) polymerase and other polymerases. No hydrogen bonded base pairs, even a 1-deaza-2'-deoxyguanosine:cytidine base pair, were indicated by thermal denaturing studies. However, though less selective and less effective than the natural guanosine counterpart, the polymerase extension reactions suggested the formation of a base pair of 1-deaza-2'-deoxyguanosine with cytidine during the insertion reactions.  相似文献   

9.
We have previously described that oligonucleotides (ODN) containing phenylsulfoxide derivative of 2-amino-6-vinylpurine nucleoside analog (1) are activated within duplex to form cross-link toward cytidine selectively at the target site. In this paper, we wish to report the search for more stable precursor susceptible for activation within duplex.  相似文献   

10.
The specific recognition of homopurine–homo pyrimidine regions in duplex DNA by triplex-forming oligonucleotides (TFOs) provides an attractive strategy for genetic manipulation. Alkylation of nucleobases with functionalized TFOs would have the potential for site-directed mutagenesis. Recently, we demonstrated that a TFO bearing 2-amino-6-vinylpurine derivative, 1, achieves triplex-mediated reaction with high selectivity toward the cytosine of the G-C target site. In this report, we have investigated the use of this reagent to target mutations to a specific site in a shuttle vector plasmid, which replicates in mammalian cells. TFOs bearing 1 produced adducts at the complementary position of 1 and thereby introduced mutations at that site during replication/repair of the plasmid in mammalian cells. Reagents that produce covalent cytosine modifications are relatively rare. These TFOs enable the preparation of templates carrying targeted cytosine adducts for in vitro and in vivo studies. The ability to target mutations may prove useful as a tool for studying DNA repair, and as a technique for gene therapy and genetic engineering.  相似文献   

11.
We have previously described that oligonucleotides (ODN) containing phenylsulfoxide derivative of 2-amino-6-vinylpurine nucleoside analog (1) are activated within duplex to form cross-link toward cytidine selectively at the target site. In this paper, we wish to report the search for more stable precursor susceptible for activation within duplex.  相似文献   

12.
Pyridylamino (PA) derivatives of sugar chains were converted to 1-amino-1-deoxy derivatives. PA-lactose as a model compound was reduced with hydrogen, then treated with hydrazine. The product obtained was identified as 1-amino-1-deoxylactitol by mass spectrometry and chromatography with 1-amino-1-deoxylactitol as standard. PA-N-acetylglucosamine was converted to 1-amino-1-deoxy-N-acetylglucosaminitol under the same conditions. As an application, Man alpha 1-6(Man alpha 1-3)Man alpha 1- 6(Man alpha 1-2Man alpha 1-3)-Man beta 1-4GlcNAc beta 1-4GlcNAc-PA was converted to the 1-amino-1-deoxy derivative, which was further derivatized with fluorescein isothiocyanate or biotin sulfo-N-hydroxy-succinimide ester. Binding of these derivatives to concanavalin A dot-blotted on a nitrocellulose membrane was confirmed by fluorescence and by streptavidin-peroxidase conjugate. This conversion allowed replacement of the PA-group in PA-sugar chains which can be easily purified from glycoconjugates.  相似文献   

13.
A novel and efficient method for the synthesis of quinoxaline derivatives has been developed. Isopropylidenation of 4-chloro-4-deoxy-alpha-D-galactose with 2,2-dimethoxypropane, followed by selective hydrolysis, afforded 2,3-O-isopropylidene-4-chloro-4-deoxy-D-galactose di-methyl acetal (3) as a sole product. Oxidation of compound 3 with (Bu3Sn)2O-Br2 gave corresponding hex-5-ulose derivative in high yields. The hex-5-ulose derivative reacted with o-phenylenediamines under neutral conditions to afford quinoxaline derivatives in reasonable yields. The in vitro cytotoxic activities of these quinoxaline derivatives were investigated.  相似文献   

14.
Wu G  Mansy SS  Wu Sp SP  Surerus KK  Foster MW  Cowan JA 《Biochemistry》2002,41(15):5024-5032
Genetic studies of bacteria and eukaryotes have led to identification of several gene products that are involved in the biosynthesis of protein-bound iron-sulfur clusters. One of these proteins, ISU, is homologous to the N-terminus of bacterial NifU. The mature forms of His-tagged wild-type and D37A Schizosaccharomyces pombe ISU1 were cloned and overexpressed as inclusion bodies in Escherichia coli. The recombinant D37A protein was purified under denaturing conditions and subsequently reconstituted in vitro. By use of a 5-fold excess of iron and sulfide the reconstituted product was found to be red-brown in color, forming a homodimer of 17 kDa per subunit with approximately two iron atoms per monomer determined by protein and iron quantitation. UV-vis absorption and M?ssbauer spectroscopies (delta = 0.29 +/- 0.05 mm/s; DeltaE(Q) = 0.59 +/- 0.05 mm/s) were used to characterize D37A ISU1 and show the presence of [2Fe-2S](2+) clusters in each subunit. Formation of the holo form of wild-type ISU1 was significantly less efficient using the same reconstitution conditions and is consistent with prior observations that the D37A substitution can stabilize protein-bound clusters. Relative to the human homologue, the yeast ISU is significantly less soluble at ambient temperatures. In both cases the native ISU1 is more sensitive to proton-mediated degradation relative to the D37A derivative. The lability of this family of proteins relative to [2Fe-2S] bearing ferredoxins most likely is of functional relevance for cluster transfer chemistry. M?ssbauer parameters obtained for wild-type ISU1 (delta = 0.31 +/- 0.05 mm/s; DeltaE(Q) = 0.64 +/- 0.05 mm/s) were similar to those obtained for the D37A derivative. Cluster transfer from ISU1 to apo Fd is demonstrated: the first example of transfer from an ISU-type protein. A lower limit for k(2) of 80 M(-1) min(-1) was established for WT cluster transfer and a value of 18 M(-1) min(-1) for the D37A derivative. Finally, we have demonstrated through cross-linking studies that ferredoxin, an electron-transport protein, forms a complex with ISU1 in both apo and holo states. Cross-linking of holo ISU1 with holo Fd is consistent with a role for redox chemistry in cluster assembly and may mimic the intramolecular complex already defined in NifU.  相似文献   

15.
A potent mutagen, 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), isolated from a tryptophan pyrolysate, was activated metabolically by rat liver microsomes and bound to DNA. An active metabolite formed by rat liver microsomes was identified as 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (N-OH-Trp-P-2). Synthetic N-OH-Trp-P-2 reacted with DNA efficiently after O-acetylation or to a lesser extent under acidic conditions (pH 5.5), but did not react appreciably under neutral conditions. Acid hydrolysis of DNA modified by O-acetylated N-OH-Trp-P-2 (N-OAc-Trp-P-2) gave 3-(8-guanyl)amino-1-methyl-5H-pyrido[4,3-b]indole (Gua-Trp-P-2), which is the main modified base of DNA formed by Trp-P-2 in the presence of microsomes. The glycoside bond of the modified base was found to be cleaved by heating at 100° for 1 hr at pH 7.0. In this way, the modified base was liberated from DNA modified by N-OAc-Trp-P-2 in good yield. N-OAc-Trp-P-2 bound to guanyl cytidine more effectively than to guanylic acid, suggesting that covalent binding with guanyl moiety of DNA involves intercalation of the ultimate mutagen into a base pair.  相似文献   

16.
Conformational preferences of hypermodified nucleoside, 4-amino-2-(N(6)-lysino)-1-(beta-D-ribofuranosyl) pyrimidinium (Lysidine or 2-lysyl cytidine), usually designated as k(2)C, have been investigated theoretically by the quantum chemical perturbative configuration interaction with localized orbitals (PCILO) method. The zwitterionic, non-zwitterionic, neutral, and tautomeric forms have been studied. Automated geometry optimization using molecular mechanics force field (MMFF), semi-empirical quantum chemical PM3, and ab initio molecular orbital Hartree-Fock SCF quantum mechanical calculations have also been made to compare the salient features. The predicted most stable conformations of zwitterionic, non-zwitterionic, neutral, and tautomeric form are such that in each of these molecules the orientation of lysidine moiety (R) is trans to the N(1) of cytidine. The preferred base orientation is anti (chi = 3 degrees ) and the lysine substituent folds back toward the ribose ring. This results in hydrogen bonding between the carboxyl oxygen O(12a) of lysine moiety and the 2'-hydroxyl group of ribose sugar. In all these four forms of lysidine O(12a)...H-C(9) and O(12b)...H-N(11) interactions provide stability to respective stable conformers. Watson-Crick base pairing of lysidine with A is feasible only with the tautomeric form of usual anti oriented lysidine. This can help in recognition of AUA codon besides in avoiding misrecognition of AUG.  相似文献   

17.
We previously reported that reducing-environment-responsive prodrug-type small interfering RNA (siRNA) bearing 2′-O-methyldithiomethyl (2′-O-MDTM) uridine exhibits efficient knockdown activity and nuclease resistance. In this report, we describe the preparation of 2′-O-MDTM oligonucleotides modified not only at uridine but also at adenosine, guanosine and cytidine residues by post-synthetic modification. Precursor oligonucleotides bearing 2′-O-(2,4,6-trimethoxybenzylthiomethyl) (2′-O-TMBTM) adenosine, guanosine, and cytidine were reacted with dimethyl(methylthio)sulfonium tetrafluoroborate to form 2′-O-MDTM oligonucleotides in the same manner as the oligonucleotide bearing 2′-O-TMBTM uridine. Furthermore, the oligonucleotides bearing 2′-O-MDTM adenosine, guanosine, and cytidine were efficiently converted into corresponding natural 2′-hydroxy oligonucleotides under the cytosol-mimetic reducing condition.  相似文献   

18.
It is thought that selective 5-HT(4) receptor agonists-such as 4-amino-5-chloro-2-methoxy-N-[1-(6-oxo-6-phenylhexyl)piperidin-4ylmethyl]benzamide (2)-have the ability to enhance both upper and lower gastrointestinal motility without any significant adverse effects. Modification of 2 was performed. Variation of the piperidin-4ylmethyl moiety of 2 led to a decrease in the binding affinity for the 5-HT(4) receptor. Following conversion of the carbonyl group on the benzoyl part to a hydroxyl or sulfoxide group, the binding affinity for the 5-HT(4) receptor was retained although the effect on defecation was reduced. Many of the 4-amino-5-chloro-2-methoxy-N-(piperidin-4ylmethyl)benzamides that had a ether or sulfide moiety in the side-chain part at the 1-position of the piperidine exhibited high affinity for the 5-HT(4) receptor. Among these, phenylthio 41c and benzylthio derivative 44 were selective 5-HT(4) receptor agonists, and had a similar effect on defecation to compound 2.  相似文献   

19.
An approach to a new class of potential radiopharmaceuticals is demonstrated by the labeling of a glucosamine derivative with the tricarbonyls of 99mTc and 186Re. The proligand HL2 (N-(2'-hydroxybenzyl)-2-amino-2-deoxy-D-glucose) was produced by hydrogenation of the corresponding Schiff base and reacted with [NEt4]2[Re(CO)3Br3] to form the neutral complex [(L2)Re(CO)3] in 40% yield. 1H and 13C NMR spectra indicate that the [Re(CO)3] core is bound in a tridentate fashion via the amino N, phenolato O, and C-3 hydroxyl O atoms of the ligand. At the tracer-level, labeling of HL2 with [99mTc(CO)3(H2O)3]+ and [186Re(CO)3(H2O)3]+ was achieved in aqueous conditions in 95 +/- 2% and 94 +/- 3% average radiochemical yields, respectively.  相似文献   

20.
In vitro metabolism of furazolidone (N-(5-nitro-2-furfuryliden)-3-amino-2-oxazolidone) was investigated by using milk xanthine oxidase and rat liver 9000g supernatant. As a result, a new type of reduction product was isolated as one of the main metabolites from the incubation mixture and it was tentatively identified as 2,3-dihydro-3-cyanomethyl-2-hydroxyl-5-nitro-1a, 2-di(2-oxo-oxazolidin-3-yl)iminomethyl-furo[2,3- b]furan. In addition, the present study demonstrated the formation of N-(5-amino-2-furfurylidene)-3-amino-2-oxazolidone as a minor metabolite of nitrofuran in a milk xanthine oxidase system. The aminofuran derivative was easily degraded by milk xanthine oxidase under aerobic, but not anaerobic, conditions. The degradation appears to be due to superoxide anion radicals, hydroxyl radicals, and/or singlet oxygen, which are produced in this enzyme system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号