首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Endogenous levels of IAA, ABA and four types of CKs were analyzed in zygotic and indirect (ISE) and direct somatic embryogenesis of Acca sellowiana. Zygotic and somatic embryos at different developmental stages were sampled for morphological and hormonal analysis. Both embryo types showed substantial asymmetry in hormone levels. Zygotic embryos displayed a conspicuous peak of IAA in early developmental stages. The results outlined the hormonal variations occurring during zygotic and somatic embryogenesis regarding the timing, nature and hormonal status involved in both processes. The short transient pulse of IAA observed on the 3rd day in culture was suggested to be involved with the signaling for the induction of somatic embryogenesis. Fertilized ovule development was associated with increased IAA levels 21?C24?days after pollination, followed by a sharp decrease in the cotyledonary stage, both in zygotic and somatic embryos. There was a prominent increase in ABA levels in cultures which generated ISE 24?C30?days after pollination, a period that corresponds to the heart and torpedo stages. The levels of total CKs (Z, [9R]Z, iP and [9R]iP) were also always higher in zygotic than in somatic embryogenesis. While zygotic embryogenesis was dominated by the presence of zeatin, the somatic process, contrarily, was characterized by a large variation of the other cytokinin forms and amounts studied. The above results, when taken together, could be related to the previously observed high frequency formation of anomalous somatic embryos formed in A. sellowiana, as well as to their low germination ability.  相似文献   

2.
Although somatic embryogenesis has been observed in tissuesfrom a limited number of Eucalyptus species cultured in vitro,no comparisons have been made of the morphology and structureof eucalypt somatic embryos and zygotic embryos found in matureseeds. We used scanning and transmission electron microscopy,in conjunction with histological analysis, to compare maturezygotic embryos with somatic embryos of the commercially-importanttemperate eucalypt Eucalyptus nitens. Apart from differencesin the nature of the outer coating enclosing both embryo types,somatic embryos of E. nitens were observed to have strong similaritieswith zygotic embryos in seeds in terms of their overall size,morphology and internal cellular organization. Many cells inboth sexually-produced and somatic embryos contained numerouslipid-rich globular bodies. The wider significance of theseobservations is discussed with regard to their potential applicationsin eucalypt plantation biotechnology programmes. Copyright 2000Annals of Botany Company Eucalyptus nitens, shining gum, somatic embryo, tissue culture, ultrastructure, zygotic embryo  相似文献   

3.
Developmental pathways of somatic embryogenesis   总被引:20,自引:0,他引:20  
Somatic embryogenesis is defined as a process in which a bipolar structure, resembling a zygotic embryo, develops from a non-zygotic cell without vascular connection with the original tissue. Somatic embryos are used for studying regulation of embryo development, but also as a tool for large scale vegetative propagation. Somatic embryogenesis is a multi-step regeneration process starting with formation of proembryogenic masses, followed by somatic embryo formation, maturation, desiccation and plant regeneration. Although great progress has been made in improving the protocols used, it has been revealed that some treatments, coinciding with increased yield of somatic embryos, can cause adverse effects on the embryo quality, thereby impairing germination and ex vitro growth of somatic embryo plants. Accordingly, ex vitro growth of somatic embryo plants is under a cumulative influence of the treatments provided during the in vitro phase. In order to efficiently regulate the formation of plants via somatic embryogenesis it is important to understand how somatic embryos develop and how the development is influenced by different physical and chemical treatments. Such knowledge can be gained through the construction of fate maps representing an adequate number of morphological and molecular markers, specifying critical developmental stages. Based on this fate map, it is possible to make a model of the process. The mechanisms that control cell differentiation during somatic embryogenesis are far from clear. However, secreted, soluble signal molecules play an important role. It has long been observed that conditioned medium from embryogenic cultures can promote embryogenesis. Active components in the conditioned medium include endochitinases, arabinogalactan proteins and lipochitooligosaccharides.  相似文献   

4.
Somatic embryogenesis is the process by which somatic cells, under induction conditions, generate embryogenic cells, which go through a series of morphological and biochemical changes that result in the formation of a somatic embryo. Somatic embryogenesis differs from zygotic embryogenesis in that it is observable, its various culture conditions can be controlled, and a lack of material is not a limiting factor for experimentation. These characteristics have converted somatic embryogenesis into a model system for the study of morphological, physiological, molecular and biochemical events occurring during the onset and development of embryogenesis in higher plants; it also has potential biotechnological applications. The focus of this review is on embryo development through somatic embryogenesis and especially the factors affecting cell and embryo differentiation.  相似文献   

5.
A total of 55 regenerants from direct somatic embryogenesison three zygotic embryos of Trifolium repens have been examinedfor uniformity with respect to morphological markers, chromosomenumber, breeding behaviour and banding patterns produced bySDS-polyacrylamide gel electrophoresis of total leaf proteinsand isoelectric focussing of leaf peroxidase, esterase and leucineaminopeptidase isozymes. Differences were observed between clones,but no differences were detected among primary and secondaryregenerants from the same zygotic embryo. The data support theconcept that direct somatic embryogenesis on immature zygoticembryos is a conservative, clonal regeneration process. Trifolium repens, clover, somatic embryogenesis, somaclonal variation, embryo culture, isozymes  相似文献   

6.
Somatic embryogenesis was obtained from cotyledon and mature zygotic embryo callus cultures of Terminalia chebula Retz. Callus cultures of cotyledon and mature zygotic embryo were initiated on induction medium containing Murashige and Skoog (MS) nutrients with 1.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) either 0.01 or 0.1 mg/l Kinetin and 30 g/l sucrose. Induction of somatic embryogenesis, proliferation and development was obtained through different culture passages. Embryogenic cotyledon callus with globular somatic embryos was obtained on MS basal medium supplemented with 50 g/l sucrose. Globular somatic embryos were observed from mature zygotic embryo callus on induction medium. Different stages of somatic embryo development from cotyledon and mature zygotic embryo calluses were observed on MS basal medium supplemented with 50 g/l sucrose after 4 weeks of culture. Histological studies have revealed the developmental stages of somatic embryos. A maximum of 40.3±1.45 cotyledonary somatic embryos/callus was obtained from mature zygotic embryo compared to 7.70±0.37 cotyledonary somatic embryos/callus initiated from cotyledons. Germination of somatic embryos and conversion to plants were achieved. Highest frequency of germination (46.66±0.88) of somatic embryos was obtained on MS basal medium containing benzyladenine (0.5 mg/l) with 30 g/l sucrose.  相似文献   

7.
Developmental Aspects of Soybean (Glycine max) Somatic Embryogenesis   总被引:2,自引:0,他引:2  
A detailed study of the developmental aspects for soybean somaticembryogenesis was undertaken with emphasis on biochemical andhistological markers. The various stages of somatic embryo developmentin callus cultures have been identified and characterized. Germinatingembryos could be converted to fertile plants at a high frequency(90%). Dicamba (3, 6-dichloro-o-anisic acid) was found to bethe auxin of choice for the clear distinction of the variousdevelopmental phases of soybean somatic embryos. Differencesin their protein patterns were determined using polyacrylamidegel electrophoresis. This analysis revealed distinguishabledifferences in protein profiles amongst the various developmentalstages, especially in heart stage embryos. Histological studieson somatic embryos revealed specific tissue types which closelyresemble those reported for zygotic embryos. Further evidenceis provided that there is a close similarity in tissue differentiation,between somatic and zygotic embryogenesis although there aresome unique features in the development of somatic embryos. Glycine max, callus cultures, developmental stage, liquid cultures, neomorphs, plant regeneration, stage specific proteins, histology  相似文献   

8.
In vitro regenerated corm with a shoot incubated on MS medium with modified combination of vitamins supplemented with 2 mg l–1 2,4-D, 1.5 mg l–1 BA and 1000 mg l–1 L-glutamine formed an embryogenic callus. On transfer to a hormone free medium the callus turned black and formed whitish spherical nodules on the peripheral region from which mature embryos grew out in about 40 days. Histological preparations at successive stages in development confirmed the origin of somatic embryos initiated from single cells of the callus. Detailed analysis of the ontogeny of the somatic embryogenesis and zygotic embryogenesis has been done in the present study. Comparison of the ontogenetic stages of the somatic embryogenesis to that of zygotic embryogenesis has shown that the early segmentation of the embryo, the organization of the embryonic apex, formation of cotyledon and epicotyl, the morphology and shape of the zygotic and somatic embryos of E. superbum at successive stages show remarkable similarities in spite of the different environments in which they have developed and differen-tiated.  相似文献   

9.
Somatic embryogenesis was induced in immature zygotic embryos of pea (Pisum sativum L.), synthetic auxins α-naphthalene acetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-amino-3,5,6-trichloropicolinic acid (picloram, PIC) being used. Only one (line HM-6) of 46 genotypes tested exhibited good potential for somatic embryogenesis. 2,4-D was found as the best somatic embryo inductor. Three different ways of somatic embryo conversion have been described. Plantlets from individual somatic embryos were micropropagated as somaclones and subsequently rooted. A sterile morphological mutant has been found within a group of fertile plants of T0-generation. Sufficient amount of T1-seeds is available for somaclonal variation studies.  相似文献   

10.
11.
We used four cultivars ofCapsicum annuum L.—Sweet Banana, California Wonder, Yolo Wonder, and Ace—to reexamine the critical factors influencing somatic embryogenesis from zygotic embryo explants, as reported in the literature. When we followed the protocol of Buyukalaca and Mavituna (1996), which had induced somatic embryogenesis from mature zygotic embryos of cv. Ace, only callus was formed without embryogenesis from our mature zygotic embryo expiants. Using the procedures of Harini and Lakshmi Sita (1993) and Binzel et al. (1996), with some modifications, we were able to induce somatic embryogenesis in all four cultivars. Rates of conversion were significantly reduced, from 75% and 65% to 40% and 28% in ’Sweet Banana’ and ’California Wonder’, respectively, when the immature zygotic embryo expiants were held on the induction medium for longer than two weeks. Likewise, somatic embryogenesis of ’Yolo Wonder’ was not observed if the induction medium was supplemented with 10% glucose or fructose, or without 10% sucrose. For somatic embryo induction and eventual plantlet conversion in Yolo Wonder’, maltose could adequately replace sucrose. In all four cultivars, somatic embryos were initiated from immature zygotic explants on media with or without coconut water, under both light and dark conditions.  相似文献   

12.
The effectiveness of nitrogen sources in Feijoa somatic embryogenesis   总被引:4,自引:0,他引:4  
Immature and mature zygotic embryos excised from Feijoa fruits were employed as explants and the effects of NH4 + and NO3 ionic concentration in basal LPm culture medium supplemented with 2,4-D (10 M) were evaluated. Moreover, the addition of 4 mM of Asn, Gln, and Arg, and levels of Gln (0 to 8 mM) were tested. The original NH4 + and NO3 concentration present in the LPm culture medium supplemented with Gln (4 mM) resulted in the highest somatic embryo number from immature zygotic embryos. For mature zygotic embryos, the addition of Asn, Gln or Arg to the basal LPm culture medium resulted in improved somatic embryogenesis induction. Ten weeks in culture allowed the highest somatic embryo number when mature zygotic embryos were used as explant. Half-strength MS culture medium supplemented with BAP (0.5 M) enhanced the conversion of somatic embryos to plantlets.  相似文献   

13.
花楸合子胚诱导体细胞胚胎发生研究   总被引:2,自引:0,他引:2  
分别以完整成熟胚、切去一个子叶的成熟胚和切下的子叶为外植体,以MS为基本诱导培养基、1/2MS为基本分化培养基,进行了花楸体细胞胚胎发生研究。结果表明:以完整合子胚作为外植体的体胚诱导率最高,为100%,最佳植物生长调节剂组合为5 mg.L-1NAA+2 mg.L-16-BA;NAA和6-BA浓度及二者的交互作用对愈伤组织和体胚诱导率的影响极显著;光照配合延长继代间隔时间有利于体胚发生。实体观察结果表明,花楸体胚发生方式有直接发生和间接发生两种;体胚发育经历了球形期、心形期、鱼雷形期和子叶期。组织学观察结果表明,体胚具有两极性,子叶期体胚结构完整。  相似文献   

14.
15.
The immature zygotic embryos of reciprocal maize hybrids (CHI-31 x GF1 and CHI-31 × GE2) were used as the initial material for induction of somatic embryogenesis in vitro. Histological analysis of somatic embryogenesis revealed high developmental variability. The arising formations were classified into 5 groups: A) somatic embryos phenotypically similar to zygotic embryos, B) polyembryos, C) formations with radicle but without meristematic plumule, D) formations with radicle without differentiated plumule, and E) formations with plumule without radicle. The formatioms A and B regenerated directly into plants. Plant regeneration from formations E required preculture on the rooting medium. Formations C and D failed to develope into plants possibly because of early loss of meristematic cell character during the embryo axis differentiation. The reverse sequence of radicle and plumule differentiation in somatic embryos in comparison with zygotic ones was noted. The epigenetic character of the scutellum, coleoptile, coleorhiza and leaves primordia development was discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
By direct somatic embryogenesis in vitro a clone of asepticplantlets can be raised from a single immature embryo of Trifoliumrepens (white clover) within about 6 weeks of pollination. Embryoidsare induced directly from intact zygotic embryonic tissue ona culture medium containing 0·025 or 0·05 mg 1–1BAP and 1·0 g 1–1 yeast extract. Similar directsomatic embryogenesis has also been achieved for Trifolium pratense(red clover) and Medicago sativa (lucerne). Applications ofembryo propagation by direct somatic embryogenesis are discussed,particularly in relation to multiple screening of host genotypesfor analysis of host/pathogen and legume/Rhizobium interactions. Trifolium repens L., Trifolium pratense L., Medicago sativa L., clover, lucerne, tissue culture, embryoid, somatic embryogenesis, legumes  相似文献   

17.
Professor Komamine asked me to refine the system of carrot somatic embryogenesis in 1972. That was a very hard task, but after refining the system, we have understood the process of somatic embryogenesis clearly. The refined system has been used in physiological, biochemical and molecular biological studies of embryogenesis. Culture and embryo induction of carrot cells are easy, but the outcrossing nature of carrots hinders development of genetic and molecular biological analyses of embryogenesis. Rapid development of DNA technologies like next generation sequencing and transformation technique of carrot cells will open the way to clarify the mechanism of carrot somatic and zygotic embryogenesis.  相似文献   

18.
In vitro somatic embryogenesis of Glehnia littoralis Fr. schm. was observed when zygotic embryos were cultured on a medium containing 1-naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid (0.01-10 μM), with 1 μM being the optimum. Microscopic observations revealed globular, heart-shaped and torpedo-shaped embryo formations and plantlet regeneration. These somatic embryos seemed to be produced directly from cells of the zygotic embryos used as explants. Of seven types of media tested, Nitsch's medium showed the highest rate of somatic embryogenesis. Somatic embryos developed into normal plantlets and were able to be potted. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Changes in protein profiles associated with somatic embryogenesis in peanut   总被引:6,自引:0,他引:6  
The somatic embryogenesis potential of zygotic embryo axes of peanut (Arachis hypogaea L. cv. DRG-12) at different stages of development was evaluated by culturing on MS medium with 18.1 μM 2,4-dichlorophenoxyacetic acid (2,4-D). A 100 % frequency with 18.3 somatic embryos per explant was observed from 4 mm long immature zygotic embryo axes collected 31 – 40 d after pollination. Medium supplemented with 16.6 μM picloram resulted in slow development of somatic embryos whereas in the presence of 21.5 μM α-naphthaleneacetic acid (NAA), the explants underwent maturation with induction of roots after 30 d. The changes in protein profiles in zygotic embryo axes at different stages of development correlated with their potential to form somatic embryos. Immature zygotic embryo axes exhibited high frequency somatic embryogenesis in the stage preceding abundant accumulation of 22 and 65 kDa proteins. The content of 22 and 65 kDa proteins decreased immediately after culture on medium fortified with 18.1 μM 2,4-D and increased again after 12 d of culture coinciding with the development of somatic embryos on the explants. The content of 22 and 65 kDa proteins was low at 15 d of culture on medium supplemented with 16.6 μM picloram possibly due to slow development of the somatic embryos on the explant. On maturation medium containing 21.5 μM NAA, a marked increase in the content of 22 and 65 kDa proteins in 15 d-old cultures was observed.  相似文献   

20.
Zhang S  Wong L  Meng L  Lemaux PG 《Planta》2002,215(2):191-194
Expression of knotted1 ( kn1) and ZmLEC1, a maize homologue of the Arabidopsis LEAFY COTYLEDON1 ( LEC1) was studied using in situ hybridization during in vitro somatic embryogenesis of maize ( Zea mays L.) genotype Hi-II. Expression of kn1 was initially detected in a small group of cells (5-10) in the somatic embryo proper at the globular stage, in a specific region where the shoot meristem is initiating at the scutellar stage, and specifically in the shoot meristem at the coleoptilar stage. Expression of ZmLEC1 was strongly detected in the entire somatic embryo proper at the globular stage, gradually less in the differentiating scutellum at the scutellar and coleoptilar stages. The results of analyses show that the expression pattern of kn1 during in vitro somatic embryogenesis of maize is similar to that of kn1 observed during zygotic embryo development in maize. The expression pattern of ZmLEC1 in maize during in vitro development is similar to that of LEC1 in Arabidopsis during zygotic embryo development. These observations indicate that in vitro somatic embryogenesis likely proceeds through similar developmental pathways as zygotic embryo development, after somatic cells acquire competence to form embryos. In addition, based on the ZmLEC1 expression pattern, we suggest that expression of ZmLEC1 can be used as a reliable molecular marker for detecting early-stage in vitro somatic embryogenesis in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号