首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the effect of simultaneous supplementation of creatine and sodium bicarbonate on consecutive maximal swims. Sixteen competitive male and female swimmers completed, in a randomized order, 2 different treatments (placebo and a combination of creatine and sodium bicarbonate) with 30 days of washout period between treatments in a double-blind crossover procedure. Both treatments consisted of placebo or creatine supplementation (20 g per day) in 6 days. In the morning of the seventh day, there was placebo or sodium bicarbonate supplementation (0.3 g per kg body weight) during 2 hours before a warm-up for 2 maximal 100-m freestyle swims that were performed with a passive recovery of 10 minutes in between. The first swims were similar, but the increase in time of the second versus the first 100-m swimming time was 0.9 seconds less (p < 0.05) in the combination group than in placebo. Mean blood pH was higher (p < 0.01-0.001) in the combination group than in placebo after supplementation on the test day. Mean blood pH decreased (p < 0.05) similarly during the swims in both groups. Mean blood lactate increased (p < 0.001) during the swims, but there were no differences in peak blood lactate between the combination group (14.9 +/- 0.9 mmol.L(-1)) and placebo (13.4 +/- 1.0 mmol.L(-1)). The data indicate that simultaneous supplementation of creatine and sodium bicarbonate enhances performance in consecutive maximal swims.  相似文献   

2.
The purpose of this study was to determine the effects creatine (Cr) loading may have on thermoregulatory responses during intermittent sprint exercise in a hot/humid environment. Ten physically active, heat-acclimatized men performed 2 familiarization sessions of an exercise test consisting of a 30-minute low-intensity warm-up followed by 6 x 10 second maximal sprints on a cycle ergometer in the heat (35 degrees C, 60% relative humidity). Subjects then participated in 2 different weeks of supplementation. The first week, subjects ingested 5 g of a placebo (P, maltodextrin) in 4 flavored drinks (20 g total) per day for 6 days and were retested on day 7. The second week was similar to the first except a similar dose (4 x 5 g/day) of creatine monohydrate (Cr) replaced maltodextrin in the flavored drinks. Six days of Cr supplementation produced a significant increase in body weight (+1.30 +/- 0.63 kg), whereas the P did not (+0.11 +/- 0.52 kg). Compared to preexercise measures, the exercise test in the heat produced a significant increase in core temperature, a loss of body water determined by body weight change during exercise, and a relative change in plasma volume (%PVC); however, these were not significantly different between P and Cr. Sprint performance was enhanced by Cr loading. Peak power and mean power were significantly higher during the intermittent sprint exercise test following 6 days of Cr supplementation. It appears that ingestion of Cr for 6 days does not produce any different thermoregulatory responses to intermittent sprint exercise and may augment sprint exercise performance in the heat.  相似文献   

3.
This study examined the effects of supplementation with either creatine monohydrate powder in solution (CP) or a widely available creatine serum (CS) on performance in a repeated maximal sprint cycling test (10 x 6 seconds, 24-second passive rest between sprints). Using a randomized, double-blind, crossover design, 11 competitive male athletes supplemented with creatine in 2 forms according to the manufacturer's recommendations on 2 separate occasions. The 2 supplementation protocols were (a) 20 g.day(-1) x 6 days of creatine powder in solution plus a placebo serum (CP) or (b) 5 ml.day(-1) x 6 days of creatine serum plus a placebo powder (CS). Subjects completed 2 familiarization trials before the 6-day supplementation period. A repeated maximal sprint cycling test was performed prior to and immediately postsupplementation. A 7-week washout period separated the 2 supplementation protocols. Subjects' total work (9.6%) and peak power (3.4%) in the cycle sprint improved significantly (p < 0.05) after loading with CP, but there was little change after loading with CS. The present data support previous research findings showing an ergogenic effect of CP supplementation but indicate that supplementation with CS does not affect sprint cycling performance. Although the levels of creatine in each formulation were not determined, a substantial conversion of creatine into creatinine has been reported in many formulations and may explain the present findings.  相似文献   

4.
The aim of study was to investigate the effect of oral creatine supplementation upon muscle performance and aerobic capacity of the organism. Knee extensor muscles of two groups with 9 subjects in each were subjected to strength training with and without creatine supplementation (Cre and Pla) for 10 weeks, three times a week with an effort of up to 85% of maximal voluntary contraction (MVC). The Cre group received 5 g of creatine monohydrate a day. After 10 weeks strength training, an increase of MVC by 29 and 40% in training (isotonic) regimen was recorded for the Pla and Cre groups respectively. The muscle isokinetic torque increments of 10-11% were obtained in the Pla group at angular velocities corresponding to training velocities, and in the Cre group increments of 11-17% were recorded at all angular velocities tested. No changes were found in the fatigue test by the Pla group, whereas Cre group showed a tendency for an increase. The aerobic and anaerobic capacities of the organism did not decrease in both groups. Thus the creatine supplementation during strength training potentates an increase of force-velocity characteristics of trained muscle group without impeding aerobic capacity of the organism.  相似文献   

5.
Seventeen active males (age 22.9 +/- 4.9 year) participated in a study to examine the effects of creatine monohydrate supplementation on total body weight (TBW), percent body fat, body water content, and caloric intake. The TBW was measured in kilograms, percent body fat by hydrostatic weighing, body water content via bioelectrical impedance, and caloric intake by daily food log. Subjects were paired and assigned to a creatine or placebo group with a double-blind research design. Supplementation was given for 4 weeks (30 g a day for the initial 2 weeks and 15 g a day for the final 2 weeks). Subjects reported 2 days a week for supervised strength training of the lower extremity. Significant increases before and after the study were found in TBW (90.42 +/- 14.74 to 92.12 +/- 15.19 kg) and body water content (53.77 +/- 1.75 to 57.15 +/- 2.01 L) for the creatine group (p = 0.05). No significant changes were found in percent body fat or daily caloric intake in the creatine group. No significant changes were noted for the placebo group. These findings support previous research that creatine supplementation increases TBW. Mean percent body fat and caloric intake was not affected by creatine supplementation. Therefore weight gain in lieu of creatine supplementation may in part be due to water retention.  相似文献   

6.
Previous studies have demonstrated increases in peak torque (PT) and decreases in acceleration time (ACC) after only 2 days of resistance training, and other studies have reported improvements in isokinetic performance after 5 days of creatine supplementation. Consequently, there may be a combined benefit of creatine supplementation and short-term resistance training for eliciting rapid increases in muscle strength, which may be important for short-term rehabilitation and return-to-play for previously injured athletes. The purpose of this study, therefore, was to examine the effects of 3 days of isokinetic resistance training combined with 8 days of creatine monohydrate supplementation on PT, mean power output (MP), ACC, surface electromyography (EMG), and mechanomyography (MMG) of the vastus lateralis muscle during maximal concentric isokinetic leg extension muscle actions. Twenty-five men (mean age +/- SD = 21 +/- 3 years, stature = 177 +/- 6 cm, and body mass = 80 +/- 12 kg) volunteered to participate in this 9-day, double-blind, placebo-controlled study and were randomly assigned to either the creatine (CRE; n = 13) or placebo (PLA; n = 12) group. The CRE group ingested the treatment drink (280 kcal; 68 g carbohydrate; 10.5 g creatine), whereas the PLA group received an isocaloric placebo (70 g carbohydrate). Two servings per day (morning and afternoon) were administered in the laboratory on days 1-6, with only 1 serving on days 7-8. Before (pre; day 1) and after (post; day 9) the resistance training, maximal voluntary concentric isokinetic leg extensions at 30, 150, and 270 degrees x s(-1) were performed on a calibrated Biodex System 3 dynamometer. Three sets of 10 repetitions at 150 degrees x s(-1) were performed on days 3, 5, and 7. Peak torque increased (p = 0.005; eta(2) = 0.296), whereas ACC decreased (p < 0.001; eta(2) = 0.620), from pretraining to posttraining for both the CRE and PLA groups at each velocity (30, 150, and 270 degrees x s(-1)). Peak torque increased by 13% and 6%, whereas ACC decreased by 42% and 34% for the CRE and PLA groups, respectively, but these differences were not statistically significant (p > 0.05). There were no changes in MP, EMG, or MMG amplitude; however, EMG median frequency (MDF) increased, and MMG MDF increased at 30 degrees x s(-1), from pretraining to posttraining for both the CRE and PLA groups. These results indicated that 3 days of isokinetic resistance training was sufficient to elicit small, but significant, improvements in peak strength (PT) and ACC for both the CRE and PLA groups. Although the greater relative improvements in PT and ACC for the CRE group were not statistically significant, these findings may be useful for rehabilitation or strength and conditioning professionals who may need to rapidly increase the strength of a patient or athlete within 9 days.  相似文献   

7.
Twenty-nine (17 men, 12 women) collegiate track and field athletes were randomly divided into a creatine monohydrate (CM, n = 10) group, creatine monohydrate and glutamine (CG, n = 10) group, or placebo (P, n = 9) group. The CM group received 0.3 g creatine.kg body mass per day for 1 week, followed by 0.03 g creatine.kg body mass per day for 7 weeks. The CG group received the same creatine dosage scheme as the CM group plus 4 g glutamine.day(-1). All 3 treatment groups participated in an identical periodized strength and conditioning program during preseason training. Body composition, vertical jump, and cycle performances were tested before (T1) and after (T2) the 8-week supplementation period. Body mass and lean body mass (LBM) increased at a greater rate for the CM and CG groups, compared with the P treatment. Additionally, the CM and CG groups exhibited significantly greater improvement in initial rate of power production, compared with the placebo treatment. These results suggest CM and CG significantly increase body mass, LBM, and initial rate of power production during multiple cycle ergometer bouts.  相似文献   

8.
The purpose of this study was to determine the effects of short-term (7 days) oral creatine supplementation (0.3 g.kg(-1)) in elderly women during exercise tests that reflect functional capacity during daily living tasks. We assessed several indices of endurance capacity (1-mile walk test, gross mechanical efficiency, ventilatory threshold, and peak oxygen intake determined during cycle-ergometry) and lower-extremity functional performance (time to complete sit-stand test). Subjects were assigned to a creatine (n = 10; age 67 +/- 6 years) or placebo (n = 6; age 68 +/- 4 years) group. We found a significant improvement only after creatine loading in the sit-stand test (placebo: 9.7 +/- 0.9 seconds for pretest and 9.3 +/- 0.7 seconds for posttest, p > 0.05; creatine: 10.0 +/- 0.7 seconds for pretest and 8.8 +/- 1.1 seconds for posttest). Significance was recorded at p < 0.05 for the interaction effect (group [creatine, placebo] x time [pretest, posttest]). In elderly women, short-term oral creatine supplementation does not improve endurance capacity but increases the ability to perform lower-body functional living tasks involving rapid movements.  相似文献   

9.
To determine whether creatine monohydrate supplementation would improve performance during a submaximal treadmill run interspersed with high-intensity intervals, 15 college soccer players (8 women, 7 men) received either creatine or a maltodextrin placebo at 0.3 g.kg body mass per day for 6 days. The speed of the treadmill was constant at 160.8 m.min, and every 2 minutes the grade was elevated to 15%. Each hill segment was 1 minute long. At the end of the 20-minute protocol, the treadmill was again elevated to 15% and held there until volitional exhaustion occurred. There was a significant treatment effect of creatine supplementation on body mass (p < 0.05) in the men; however, no significant differences were observed in the women (p > 0.05). There were no treatment effects (p > 0.05) on time to exhaustion, ratings of perceived exertion, or blood lactate concentration. There was a tendency for blood lactate levels to be lower after short-term creatine supplementation in the women, but this was not statistically significant. Based on these results, it appears that creatine supplementation does not improve performance in submaximal running interspersed with high-intensity intervals.  相似文献   

10.
The purpose of this study was to test the effect of oral creatine (Cr) supplementation on pulmonary oxygen uptake (VO(2)) kinetics during moderate [below ventilatory threshold (VT)] and heavy (above VT) submaximal cycle exercise. Nine subjects (7 men; means +/- SD: age 28 +/- 3 yr, body mass 73.2 +/- 5.6 kg, maximal VO(2) 46.4 +/- 8.0 ml. kg(-1). min(-1)) volunteered to participate in this study. Subjects performed transitions of 6-min duration from unloaded cycling to moderate (80% VT; 8-12 repeats) and heavy exercise (50% change; i.e., halfway between VT and maximal VO(2); 4-6 repeats), both in the control condition and after Cr loading, in a crossover design. The Cr loading regimen involved oral consumption of 20 g/day of Cr monohydrate for 5 days, followed by a maintenance dose of 5 g/day thereafter. VO(2) was measured breath by breath and modeled by using two (moderate) or three (heavy) exponential terms. For moderate exercise, there were no differences in the parameters of the VO(2) kinetic response between control and Cr-loaded conditions. For heavy exercise, the time-based parameters of the VO(2) response were unchanged, but the amplitude of the primary component was significantly reduced with Cr loading (means +/- SE: control 2.00 +/- 0.12 l/min; Cr loaded 1.92 +/- 0.10 l/min; P < 0.05) as was the end-exercise VO(2) (control 2.19 +/- 0.13 l/min; Cr loaded 2.12 +/- 0.14 l/min; P < 0.05). The magnitude of the reduction in submaximal VO(2) with Cr loading was significantly correlated with the percentage of type II fibers in the vastus lateralis (r = 0.87; P < 0.01; n = 7), indicating that the effect might be related to changes in motor unit recruitment patterns or the volume of muscle activated.  相似文献   

11.
This study investigated creatine supplementation (CrS) effects on muscle total creatine (TCr), creatine phosphate (CrP), and intermittent sprinting performance by using a design incorporating the time course of the initial increase and subsequent washout period of muscle TCr. Two groups of seven volunteers ingested either creatine [Cr; 6 x (5 g Cr-H(2)O + 5 g dextrose)/day)] or a placebo (6 x 5 g dextrose/day) over 5 days. Five 10-s maximal cycle ergometer sprints with rest intervals of 180, 50, 20, and 20 s and a resting vastus lateralis biopsy were conducted before and 0, 2, and 4 wk after placebo or CrS. Resting muscle TCr, CrP, and Cr were unchanged after the placebo but were increased (P < 0.05) at 0 [by 22.9 +/- 4.2, 8.9 +/- 1.9, and 14.0 +/- 3.3 (SE) mmol/kg dry mass, respectively] and 2 but not 4 wk after CrS. An apparent placebo main effect of increased peak power and cumulative work was found after placebo and CrS, but no treatment (CrS) main effect was found on either variable. Thus, despite the rise and washout of muscle TCr and CrP, maximal intermittent sprinting performance was unchanged by CrS.  相似文献   

12.
Creatine monohydrate has become the supplement of choice for many athletes striving to improve sports performance. Recent data indicate that athletes may not be using creatine as a sports performance booster per se but instead use creatine chronically as a training aid to augment intense resistance training workouts. Although several studies have evaluated the combined effects of creatine supplementation and resistance training on muscle strength and weightlifting performance, these data have not been analyzed collectively. The purpose of this review is to evaluate the effects of creatine supplementation on muscle strength and weightlifting performance when ingested concomitant with resistance training. The effects of gender, interindividual variability, training status, and possible mechanisms of action are discussed. Of the 22 studies reviewed, the average increase in muscle strength (1, 3, or 10 repetition maximum [RM]) following creatine supplementation plus resistance training was 8% greater than the average increase in muscle strength following placebo ingestion during resistance training (20 vs. 12%). Similarly, the average increase in weightlifting performance (maximal repetitions at a given percent of maximal strength) following creatine supplementation plus resistance training was 14% greater than the average increase in weightlifting performance following placebo ingestion during resistance training (26 vs. 12%). The increase in bench press 1RM ranged from 3 to 45%, and the improvement in weightlifting performance in the bench press ranged from 16 to 43%. Thus there is substantial evidence to indicate that creatine supplementation during resistance training is more effective at increasing muscle strength and weightlifting performance than resistance training alone, although the response is highly variable.  相似文献   

13.
This study examined the impact of short-term (7-day), high-dose (0.35 g.kg(-1).d(-1)) oral creatine monohydrate supplementation (CrS) on single sprint running performance (40 m, <6 seconds) and on intermittent sprint performance in highly trained sprinters. Nine subjects completed the double-blind cross-over design with 2 supplementation periods (placebo and creatine) and a 7-week wash-out period. A test protocol consisting of 40-m sprint runs was performed, and running velocity was continuously recorded over the total distance. The maximal sprint performance, the relative degree of fatigue at the end of intermittent sprint exercise (6 x 40 m, 30-second rest interval), as well as the degree of recovery (120-second passive rest) remained unchanged following CrS. There were no significant changes related to CrS in absolute running velocity at any distance between start and finish (40 m). It was concluded that no ergogenic effect on single or repeated 40-m sprint times with varying rest periods was observed in highly trained athletes.  相似文献   

14.
The influence of creatine supplementation on substrate utilization during rest was investigated using a double-blind crossover design. Ten active men participated in 12 wk of weight training and were given creatine and placebo (20 g/day for 4 days, then 2 g/day for 17 days) in two trials separated by a 4-wk washout. Body composition, substrate utilization, and strength were assessed after weeks 2, 5, 9, and 12. Maximal isometric contraction [1 repetition maximum (RM)] leg press increased significantly (P < 0.05) after both treatments, but 1-RM bench press was increased (33 +/- 8 kg, P < 0.05) only after creatine. Total body mass increased (1.6 +/- 0.5 kg, P < 0.05) after creatine but not after placebo. Significant (P < 0.05) increases in fat-free mass were found after creatine and placebo supplementation (1.9 +/- 0.8 and 2.2 +/- 0.7 kg, respectively). Fat mass did not change significantly with creatine but decreased after the placebo trial (-2.4 +/- 0.8 kg, P < 0.05). Carbohydrate oxidation was increased by creatine (8.9 +/- 4.0%, P < 0.05), whereas there was a trend for increased respiratory exchange ratio after creatine supplementation (0.03 +/- 0.01, P = 0.07). Changes in substrate oxidation may influence the inhibition of fat mass loss associated with creatine after weight training.  相似文献   

15.
Creatine monohydrate (CrM) supplementation during resistance exercise training results in a greater increase in strength and fat-free mass than placebo. Whether this is solely due to an increase in intracellular water or whether there may be alterations in protein turnover is not clear at this point. We examined the effects of CrM supplementation on indexes of protein metabolism in young healthy men (n = 13) and women (n = 14). Subjects were randomly allocated to CrM (20 g/day for 5 days followed by 5 g/day for 3-4 days) or placebo (glucose polymers) and tested before and after the supplementation period under rigorous dietary and exercise controls. Muscle phosphocreatine, creatine, and total creatine were measured before and after supplementation. A primed-continuous intravenous infusion of L-[1-(13)C]leucine and mass spectrometry were used to measure mixed-muscle protein fractional synthetic rate and indexes of whole body leucine metabolism (nonoxidative leucine disposal), leucine oxidation, and plasma leucine rate of appearance. CrM supplementation increased muscle total creatine (+13.1%, P < 0.05) with a trend toward an increase in phosphocreatine (+8.8%, P = 0.09). CrM supplementation did not increase muscle fractional synthetic rate but reduced leucine oxidation (-19.6%) and plasma leucine rate of appearance (-7.5%, P < 0.05) in men, but not in women. CrM did not increase total body mass or fat-free mass. We conclude that short-term CrM supplementation may have anticatabolic actions in some proteins (in men), but CrM does not increase whole body or mixed-muscle protein synthesis.  相似文献   

16.
The aim of this study was to examine the effects of short-term creatine monohydrate supplementation on multiple sprint running performance. Using a double-blind research design, 42 physically active men completed a series of 3 indoor multiple sprint running trials (15 x 30 m repeated at 35-second intervals). After the first 2 trials (familiarization and baseline), subjects were matched for fatigue score before being randomly assigned to 5 days of either creatine (4 x d(-1) x 5 g creatine monohydrate + 1 g maltodextrin) or placebo (4 x d(-1) x 6 g maltodextrin) supplementation. Sprint times were recorded via twin-beam photocells, and earlobe blood samples were drawn to evaluate posttest lactate concentrations. Relative to placebo, creatine supplementation resulted in a 0.7 kg increase in body mass (95% likely range: 0.02 to 1.3 kg) and a 0.4% reduction in body fat (95% likely range: -0.2 to 0.9%). There were no significant (p > 0.05) between-group differences in multiple sprint measures of fastest time, mean time, fatigue, or posttest blood lactate concentration. Despite widespread use as an ergogenic aid in sport, the results of this study suggest that creatine monohydrate supplementation conveys no benefit to multiple sprint running performance.  相似文献   

17.
The purpose of this study was to examine with (31)P-magnetic resonance spectroscopy energy metabolism during repeated plantar flexion isometric exercise (Ex-1-Ex-4) at 32 +/- 1 and 79 +/- 4% of maximal voluntary contraction (MVC) before and during a creatine (Cr) feeding period of 5 g/day for 11 days. Eight trained male subjects participated in the study. ATP was unchanged with Cr supplementation at rest and during exercise at both intensities. Resting muscle phosphocreatine (PCr) increased (P < 0.05) from 18.3 +/- 0.9 (before) to 19.6 +/- 1.0 mmol/kg wet wt after 9 days. At 79% MVC, PCr used, P(i) accumulated, and pH at the end of Ex-1-Ex-4 were similar after 4 and 11 days of Cr supplementation. In contrast, PCr utilization and P(i) accumulation were lower and pH was higher for exercise at 32% MVC with Cr supplementation, suggesting aerobic resynthesis of PCr was more rapid during exercise. These results suggest that elevating muscle Cr enhances oxidative phosphorylation during mild isometric exercise, where it is expected that oxygen delivery matches demands and predominantly slow-twitch motor units are recruited.  相似文献   

18.
Anecdotal reports suggesting that creatine (Cr) supplementation may cause side effects, such as an increased incidence of muscle strains or tears, require scientific examination. In this study, it was hypothesized that the rapid fluid retention and "dry matter growth" evident after Cr supplementation may cause an increase in musculotendinous stiffness. Intuitively, an increase in musculotendinous stiffness would increase the chance of injury during exercise. Twenty men were randomly allocated to a control or an experimental group and were examined for musculotendinous stiffness of the triceps surae and for numerous performance indices before and after Cr ingestion. The Cr group achieved a significant increase in body mass (79.7 +/- 10.8 kg vs. 80.9 +/- 10.7 kg), counter movement jump height (40.2 +/- 4.8 cm vs. 42.7 +/- 5.9 cm), and 20-cm drop jump height (32.3 +/- 3.3 cm vs. 35.1 +/- 4.8 cm) after supplementation. No increase was found for musculotendinous stiffness at any assessment load. There were no significant changes in any variables within the control group. These findings have both performance- and injury-related implications. Primarily, anecdotal evidence suggesting that Cr supplementation causes muscular strain injuries is not supported by this study. In addition, the increase in jump performance is indicative of performance enhancement in activities requiring maximal power output.  相似文献   

19.
The purpose of this study was to examine the effects of vitamin E (VE) supplementation (1200 IU/day) on recovery responses to repeated bouts of resistance exercise. Non-resistance trained men were assigned to supplement with VE (n = 9) or placebo (PL; n = 9) for 3 weeks and then perform 3 resistance exercise sessions separated by 3 days of recovery (EX-1, EX-2, and EX-3). Performance was assessed at EX-1, EX-2, and EX-3. Fasting morning blood samples and perceived muscle soreness were obtained before EX-1 and for 10 consecutive days. Muscle soreness peaked after EX-1 and gradually returned to baseline values by day 6. Lower and upper body maximal strength and explosive power were significantly (p < or = 0.05) decreased at EX-2 and EX-3 (approximately 10%). Plasma malondialdehyde (MDA) was significantly elevated on days 7 and 8. There were no significant differences between VE and PL in muscle soreness, performance measures, or plasma MDA. Creatine kinase (CK) area under the curve from day 1 to day 10 was significantly greater for VE because of a nearly 2-fold greater increase in CK after EX-1 in VE, compared with PL (404 +/- 146 and 214 +/- 179 U/L, respectively). VE supplementation was not effective at attenuating putative markers of membrane damage, oxidative stress, and performance decrements after repeated bouts of whole-body concentric/eccentric resistance exercise.  相似文献   

20.
To examine the efficacy of a low-dose, short-duration creatine monohydrate supplement, 40 physically active men were randomly assigned to either a placebo or creatine supplementation group (6 g of creatine monohydrate per day). Testing occurred before and at the end of 6 days of supplementation. During each testing session, subjects performed three 15-second Wingate anaerobic power tests. No significant (p > 0.05) group or time differences were observed in body mass, peak power, mean power, or total work. In addition, no significant (p > 0.05) differences were observed in peak power, mean power, or total work. However, the change in the rate of fatigue of total work was significantly (p < 0.05) lower in the creatine supplementation group than in the placebo group, indicating a reduced fatigue rate in subjects supplementing with creatine compared with the placebo. Although the results of this study demonstrated reduced fatigue rates in patients during high-intensity sprint intervals, further research is necessary in examining the efficacy of low-dose, short-term creatine supplementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号