首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genotypes If e Sn hr, Lf e Sn hr, and If e Sn Hr requirefewer inductive cycles as they age. It is suggested that thisresults from a decrease in the activity of the Sn gene in theleaves as they age, resulting in a higher ratio of promoterto inhibitor. Gene Lf does not affect the rate of this agingbut it does increase the number of inductive cycles requiredfor flower induction over the first 5 weeks of growth. The geneHr has no effect until week 4 but thereafter causes a reductionin the effect of age on the Sn gene. The genotype If e Sn Hrcan be induced by a single inductive cycle (32 h of light) fora relatively long period. The length of dark period required for the expression of theSn gene is shown to be less than 4 h providing a relativelylong photoperiod precedes the dark period. It appears that noper manent induction of tissue by photoperiods favourable toflowering occurs in peas. The critical photoperiod for plantsof genotype if e Sn Hr is shown to be between 12 and 14 h atl7·5 °C and the usefulness of the term ‘criticalphotoperiod’ is discussed with respect to quantitativelong-day plants.  相似文献   

2.
The rates of leaf and flower production were determined in peas(Pisum sativum L.) of genotypes e sn hr (line 13), E Sn hr (line60), and E Sn Hr (line G2), to assess the role of the interactionof alleles Sn and Hr with photoperiod in development. The ratesat which flowers at successive nodes opened (AR) and leavesat successive nodes unfolded (PR) were constant. The AR wasfaster than the PR so that successive flowers opened at nodescloser to the apical bud. The rate at which this occurred wasindependent of photoperiod in line 13 but was slightly or markedlyslower in short days (SD) than long days (LD) in lines 60 andG2, respectively. The opening of flowers closer to the apicalbud of G2 peas in SD was so slow as to not be visually apparentduring the time of this study. The number of nodes between thefirst open flower and the apical bud was unaffected by photoperiodin line 13 but was greater in SD than LD in lines 60 and G2.The daylength effects are photoperiodic, since development ofG2 peas in LD with respect to the parameters measured was unaffectedby light intensity. It is concluded that photoperiod and theE Sn allele combination control the rate of reproductive developmentrelative to vegetative development in peas. The effects of ESn are magnified by the presence of the Hr allele. The constantrates of development measured are not consistent with declineof Sn allele expression with age. Delay of the rate of reproductivedevelopment relative to vegetative development correlated withdelay of apical senescence, suggesting that these processesare related. Pisum sativum, genotypes, photoperiod, flowering, reproductive development, vegetative development, senescence  相似文献   

3.
REID  J. B. 《Annals of botany》1979,44(2):163-173
Late cultivars of peas behave as quantitative long day plants.The reason that they flower between nodes 20 and 35 under an8 h photoperiod is shown to be because the leaves and maturestem produce a more promotory ratio of the flowering hormonesas they age. Later formed leaves may also start with a slightlymore promotory ratio than the leaves produced at a lower node.The gene Sn controls the production of a flower inhibitor andit is suggested that the activity of this gene in a leaf isgradually reduced as the leaf ages. From grafting experiments,the site of action of the gene Hr is shown to be in the leavesor mature stem and not at the shoot apex. This supports a previoussuggestion that the gene Hr is a specific inhibitor of the ageingresponse of gene Sn. Gene Hr is shown to cause a substantial delay in the floweringnode of decotyledonized plants of genotype If e sn hr undershort day conditions, suggesting that Hr has little effect inthe cotyledons. It is argued that the gene sn is a leaky mutantand that gene Hr does not control a photoperiod response inits own right but has its effect through the Sn locus. From a comparison of intact plants and self-grafts of the lategenotype If e Sn hr it is shown that under the conditions usedphysiological age may be of more importance than chronologicalage in determining flowering in peas. Reasons for the smalleffect of defoliation treatments on flowering are discussedas well as possible reasons for the promotory effect of decotyledonizationon the flowering node of late lines. Pisum sativum L, flowering, ageing, genetic control  相似文献   

4.
Lf, E, Sn, and Hr are major loci that condition the flowering and photoperiod responses of Pisum sativum L. Genetic lines containing the dominant alleles of these loci are characterized by flowering in long days, but having a prolonged (>50 node) vegetative phase in short days. A representative of this class, response type G, was used as a receptor in short days for donors of other flowering response types. The qualitative and quantitative flowering response of G receptors depended on the genotype of the donor. Donors containing sn hr induced the earliest development, followed by sn Hr and Sn hr donors. The Lf and E loci in foliar donors apparently did not affect flowering of G. Five-leaved > single-leaved > cotyledonary donors in effecting a flowering response in G, in part due to the longer life of the foliar donors. The responses of G to the various donors were generally consistent with the proposed roles of Lf, E, and Sn, but the role of Hr in these grafts was unclear.  相似文献   

5.
In addition to the known loci, If, e, sn and hr, a fifth locus,veg, is shown to control flowering in peas. Regardless of thegenotype for the other flowering genes, plants homozygous forthe gene veg did not initiate flower buds under a wide rangeof photoperiod and temperature regimes, including those normallyhighly promotory in peas. Treatment with various plant growthsubstances and grafting to stocks known to promote floweringalso failed to cause initiation. Gene veg prevented expressionof allelic differences at the If locus but segregation for allelesat the sn and hr loci was clearly visible by examination ofseveral vegetative characteristics. For example, sn hr veg andSn hr veg plants showed an opening of the apical bud, productionof lateral branches, and a reduction in growth rate, leafletsize, internode length and stem thickness at approx the sametime as sn hr Veg and Sn hr Veg plants carrying the Lf allelecommenced fruit production, respectively. The graft-transmissibleinhibitor controlled by gene Sn is therefore not specific forthe transition from vegetative to reproductive growth. Geneveg allows the processes leading to apical and foliar senescenceto be examined independently of any effect of flowering andfruiting. We found that gene Sn influenced the total numberof leaves expanded in veg plants but not the time of shoot senescence,which, in plants without flowers and fruits appeared to resultfrom failure of the root system. Pisum sativum L., garden pea, flowering, senescence, genetics  相似文献   

6.
Previous work has shown that vernalization acts at two sites,one in the cotyledons and one in the shoot, in young plantsof genotype Ife Sn Hr. During the present study the size ofthe vernalization responses in both the cotyledons and shootincreased as the temperature was lowered from 17 to 3 °C.This occurred regardless of whether the treatment was givenfor the same chronological period of time or for the same physiologicalperiod of time. Vernalization treatment was effective from thetime the seeds were developing in the pods on the maternal plantuntil at least 20 leaves were expanded and became graduallymore effective as the length of the treatment was increasedfrom 2 to 5 weeks. High pre– or post–vernalizationtemperatures can reduce the cotyledon effect and to a lesserextent the shoot effect of vernalization. Devernalization occurredto a larger extent in low light intensities and darkness thanin high light intensities. No stabilization of the vernalizationeffects in the cotyledons or shoot appeared to occur at normalgrowing temperatures (15–25 °C). These results arediscussed in terms of the previously hypothesized mechanismsfor the cotyledon and shoot effects of vernalization. Pisum sativum, flowering, vernalization  相似文献   

7.
A sixth major flowering gene, dne, is identified in the gardenpea (Pisum salivum L.). Linkage tests show dne is located onchromosome 3 near locus st. The ability to respond to photoperioddepends on the joint presence of the dominant genes Sn and Dnewhich together confer a long day habit. Genotypes Sn dne, snDne and sn dne are all essentially day-neutral although by examiningseveral flowering criteria under strictly controlled conditionssome small responses could be demonstrated. Like sn, dne reducedthe response to vernalization when substituted into genotypeSn Dne. It is suggested genes Sn and Dne both control steps in a biosyntheticpathway which leads to the production of a graft-transmissibleinhibitor of flowering and apical senescence. Stocks of genotypeSn dne and sn Dne promoted flowering in Sn Dne scions whileSn Dne stocks delayed flowering in Sn dne (and sn Dne) scions.However, reciprocal grafting between genotypes Sn dne and snDne gave no evidence of physiological complementarity correspondingto the genetic complementarity ofSn and Dne. Initial resultssuggest dne may be less effective than sn at blocking inhibitorproduction but this requires confirmation.  相似文献   

8.
REID  J. B. 《Annals of botany》1980,45(2):195-201
Apical senescence was examined in a range of intact and defloweredflowering genotypes under both long and short photoperiods.The flower inhibitor produced by the gene Sn, appears to havea direct effect on apical senescence since it can delay apicalsenescence under short day conditions in the absence of flowerand fruit development or where the rate of such developmentis the same in different treatments. Gene Hr can magnify thiseffect. Gene E, on the other hand, appears to influence apicalsenescence only indirectly through the effect it has on flowerand fruit development. The flowering genes at the If, sn andhr loci are also thought to have indirect effects on apicalsenescence. Even in deflowered plants apical senescence appearsto occur eventually in continuous light in all genotypes testedindicating that the presence of developing fruits, althoughpromotory, is not essential for apical senescence. Pisum sativum L., garden pea, flowering, senescence  相似文献   

9.
Exogenous gibberellin A3(GA3) reduced the number of leaf nodesat flowering and time to flowering and increased the stem heightat flowering in three genotypes of spring rape (Brassica napusvar.annua L.). The responses to GA3were similar to those forlong days (LD) and low-temperature treatments, suggesting thatthe effect of photoperiod and the vernalization response areprobably mediated through gibberellins. The response to exogenousGA3was greatest in non-cold-treated plants in short days (SD)suggesting that endogenous GAs are limiting in these conditions.CCC, an inhibitor of gibberellin biosynthesis, caused a smallincrease in the number of leaf nodes at flowering and time toflowering and a small decrease in the stem height at flowering,but unexpectedly, its effect was hardly influenced by the applicationof exogenous GA3. Genotypes that showed the clearest responsesto the treatments with regard to the number of leaf nodes atflowering and time to flowering did not show the clearest responseswith regard to the stem height at flowering; the pattern ofresponses of the number of leaf nodes at flowering and timeto flowering was distinct from that of stem height at flowering.This indicates that flower formation and stem elongation areseparable developmental processes which may be controlled bydifferent endogenous gibberellins, different levels of a specificendogenous gibberellin, or different responses to gibberellin.Copyright 1999 Annals of Botany Company Brassica napus var. annua, gibberellin, photoperiod, spring rape, vernalization.  相似文献   

10.
11.
Vernalization periods ranging from 0 to 11 weeks at 4 °Cwere used to study the reproductive development of four near-isogeniclines of wheat (Triticum aestivum L. em. Thell). From the resultsfor days to anthesis two types of gene action were identified,a threshold (all-or-nothing) response (vrn3 and/or vrn4) anda cumulative (graded) response (vrn1). The action of anothergene (vrn2) intensified these two responses. Based on the actionof genes, a model relating days to anthesis to genotype wasderived. Final leaf number and days to anthesis were shown tobe closely related after adjusting for differences due to theduration of vernalization treatment. No relationship betweendays to anthesis and spikelet number was observed. This studyemphasises the need to understand vernalization at the levelof the gene in terms of responses and interactions. Such knowledgeshould enable the plant breeder to predict and more preciselycontrol reproductive development. Triticum aestivum L., wheat, vernalization, gene action, isogenic lines  相似文献   

12.
FLC or not FLC: the other side of vernalization   总被引:4,自引:0,他引:4  
Vernalization is the promotion of the competence for floweringby long periods of low temperatures such as those typicallyexperienced during winters. In Arabidopsis, the vernalizationresponse is, to a large extent, mediated by the repression ofthe floral repressor FLC, and the stable epigenetic silencingof FLC after cold treatments is essential for vernalization.In addition to FLC, other vernalization targets exist in Arabidopsis.In grasses, vernalization seems to be entirely independent ofFLC. Here, the current understanding of FLC-independent branchesof the vernalization pathway in Arabidopsis and vernalizationwithout FLC in grasses is discussed. This review focuses onthe role of AGL19, AGL24, and the MAF genes in Arabidopsis.Interestingly, vernalization acts through related molecularmachineries on distinct targets. In particular, protein complexessimilar to Drosophila Polycomb Repressive Complex 2 play a prominentrole in establishing an epigenetic cellular memory for cold-regulatedexpression states of AGL19 and FLC. Finally, the similar networktopology of the apparently independently evolved vernalizationpathways of grasses and Arabidopsis is discussed. Key words: AGL19, Arabidopsis, chromatin, epigenetics, FLC, flowering time, polycomb, PRC2, vernalization Received 19 December 2007; Revised 11 February 2008 Accepted 15 February 2008  相似文献   

13.
Exposure to high temperature (30 °C) before or after exposureto low temperature (0, 4 or 8 weeks at 4 °C) consistentlyincreased the number of leaf nodes at flowering and delayedflowering in a range of genotypes of spring rape(Brassica napusvar.annuaL.).Four days of prior exposure to high temperature had more effectthan 2 d, and the effect of subsequent exposure to high temperaturewas maximized when exposure commenced 1 week after the end ofthe low-temperature treatment. In genotypes that showed a vernalizationresponse (i.e. in which the number of leaf nodes at floweringwas reduced or flowering was advanced by low temperature), thisresponse was reduced or eliminated by either prior high-temperaturetreatment (antivernalization) or subsequent high-temperaturetreatment (devernalization). A biochemical model to accountfor these effects is proposed.Copyright 1998 Annals of BotanyCompany Brassica napusvar.annua, spring rape, antivernalization, devernalization, vernalization  相似文献   

14.
The late flowering, quantitative long day habit of wild type pea ( Pisum sativum L.) is conferred by the joint presence of dominant genes Sn, Dne and Ppd. Grafting studies have shown that flowering in wild type plants is delayed under short days by formation of a graft-transmissible inhibitor and that the early flowering, day neutral mutants sn and dne are deficient in this inhibitor. However, the physiological action of the Ppd gene has not been examined by grafting and the possibility exists that the ppd mutation causes early flowering and a day neutral habit by blocking response to, rather than synthesis of, the inhibitor. We here identify a second, more severe (probably null) mutant allele ( ppd -2) at the Ppd locus and show that flowering was delayed by 4 nodes in a ppd -2 shoot grafted to a wild type stock, and promoted by 13 nodes in a wild type shoot grafted to a ppd -2 stock. Thus a ppd -2 shoot can respond to inhibitor donated by a wild type stock but a ppd -2 stock is unable to provide sufficient inhibitor to prevent early flower initiation in a wild type shoot. We conclude genes Sn, Dne and Ppd each control steps in the synthesis of the flower inhibitor. Grafts among the sn, dne and ppd mutants gave an indication that the three genes may act in the sequence Sn, Ppd, Dne , but possible cases of physiological complementation need to be tested using null mutants in the same genetic background.  相似文献   

15.
Four near-isogenic lines of wheat (Triticum aestivum L.em Thell)were used to compare selected night temperatures for their effectivenessas vernalizing temperatures. All treatments (conducted withina phytotron) had a common day temperature of 20 °C for 12h and night temperatures were 4, 7, 10, 13 and 20 °C. Interpretationof results for reproductive development was confounded by threeinteracting factors, their relative importance varying withgenotype. Firstly, development rate was generally slower atlower night temperatures. Secondly, in contrast, there was atendency for lower night temperatures to hasten developmentrate if vernalization requirements were satisfied. Thirdly,the lower night temperatures provided a more favourable environmentfor leaf production such that for some genotypes, vernalizedplants had higher final leaf numbers than unvernalized plants.Only for the genotype with the strongest vernalization response(vrn1 vrn2) did hastening of development due to vernalizationoverride any delaying effects. For this genotype, 4, 7 and 10°C were vernalizing temperatures. For the other three genotypes,any hastening of development due to vernalization was outweighedby delaying effects of lower night temperatures. Spikelet numberand days to anthesis were positively correlated in three ofthe four genotypes. It appeared that differences in spikeletnumber were a direct result of night temperature influencingthe duration of the spikelet phase and/or rate of spikelet initiation.Plant size at flowering was determined by the differential effectsof night temperature on growth and development rates. Triticum aestivum L., wheat, vernalization, night temperature, isogenic lines  相似文献   

16.
In the sweet pea (Lathyrus odoratus L.) genes Dnl andDrh controlthe production of a graft-transmissible substance which delaysflowering and promotes outgrowth of basal laterals. Seed vernalizationpromotes flowering and reduces lateral outgrowth in intact plantsand grafted scions of genotype DniDnl, suggesting that vernalizationreduces output of the Dni system, possibly by disrupting therelationship between chronological and plastochronic age. Whenlateral outgrowth and floral abortion are used as indicatorsof inhibitor levels, it can be shown that vernalized Dni plantspossess more inhibitor but initiate flower buds at a lower nodethan unvernalized dn plants. This supports the suggestion thatin regard to floral initiation vernalization also alters thesensitivity of the shoot apex to the flowering hormone(s). InLathyrus odoratus an hormonally based vernalization responseof considerable magnitude can be shown for day-neutral (dndn)lines, supporting the suggestion that vernalization also influencesthe level of a flower promotor. Lathyrus odoratus L., sweet pea, vernalization, flowering, branching, genotype, grafting  相似文献   

17.
Bagnall  D. J. 《Annals of botany》1993,71(1):75-83
The late flowering ecotypes of Arabidopsis thaliana L. (Heyn.)Eifel, Pitztal and Innsbruck responded to 10 d vernalization(cold treatment) by flowering earlier with less with less thanhalf the number of leaves of non-induced plants. The vernalizationresponse was cumulative: increased numbers of days of vernalizationinduced earlier flowering up to an apparent saturation in responseafter 30 to 40 d. The ratio of red:far-red (R:FR) light alsoaffected non-vernalized time-to-flower. When grown under fluorescentplus incandescent lamps (R:FR = 1·0), time-to-flowerwas approximately half that required by plants grown under fluorescentlamps (R:FR = 5·8) at the same photon flux density andphotoperiod. Leaf production rate was unaffected by either vernalizationor light quality changes and time-to-flower and leaf numberwere highly correlated (r2 = 0·973). The late flowering mutants of Landsberg erecta were grown underlighting which displayed a gradient of R:FR. Some mutants likeco, flowered at the same time in all R:FR treatment, while otherlike fca took nearly twice as long to flower, with double thenumber of leaves at R:FR ratio of 5·8 compared with theR:FR = 1 treatment. The ranking of the response from least tomost responsive was co, fe, gi, WT, fd, fwa, ft, fha, fpa, fy,fve and fca. Vernalization of these Landsberg mutants always resulted inearlier flowering, although only fca, fve, fy and fpa were significantlymore sensitive to thermoinduction than the wild type parent.There was a high correlation (r2 = 0·89 between the responseto thermoinduction and to R:FR ratio. Vernalization of fca for24 d largely eliminated the R:FR time-to-flower response. Vernalizationand photoinduction similarly affect late flowering and can substitutefor each another.Copyright 1993, 1999 Academic Press Light quality, vernalization, flowering, Arabidopsis thaliana, phytochrome, thermoinduction, photoperiod, photoinduction, growth conditions, photon flux density, daylength, spectral quality, far-red light  相似文献   

18.
Various cool treatments of imbibing seeds reduced the subsequenttimes taken to flower in two genotypes of chickpea (Cicer arietinumL.). These reductions were greater in the kabuli cv. Rabat thanin the desi accession ICC 5810. Nevertheless, in both genotypes,the hastening of flowering was entirely accounted for by thephotothermal time accumulated during each cool temperature pretreatment,provided it was recognized that the ceiling photoperiods wereapproximately 10 and 8 h d–1, respectively; i.e. neithergenotype shows a true vernalization response. A thorough reevaluationof ‘ responsiveness to vernalization’ in the chickpeagermplasm might now be prudent. Cicer arietinum L, chickpea, vernalization, photothermal time, screening germplasm  相似文献   

19.
Flowering time in pea (Pisum sativum L.) is determined by genetically controlled responses to photoperiod and temperature. To investigate these responses, 11 lines homozygous for the flowering genes Lf, Sn, E, and Hr were grown under contrasting semi-controlled photothermal environments and the durations (d) from sowing to first flower (f) were recorded. The effects of the four genes were quantified using a two-plane photothermal model which linearly relates the rate of progress from sowing to flowering (1/f) with the mean pre-flowering values of temperature (T) and/or photo-period (P), based on 1/fa + bT (when P is longer than the critical photoperiod, Pc) and 1/fa + bT + cP (when P<Pc). The main effect of Lf alleles was on temperature sensitivity (b) when P>Pc, which increased in the sequence Lfd<Lf< lf<lfa. Gene Hr, when together with Sn, increased photoperiod sensitivity (c) and reduced the intercept (a) when P<Pc. Allele sn determined a single plane response to temperature alone (i.e. a day-neutral response). Gene E, when present with lf Sn, increased 1/f in both the thermal (P<Pc) and photothermal (PPc) domains, mainly by increasing a and b, respectively. Variations in the coefficients of the thermal and photothermal responses determined that the critical photoperiod varied with temperature in all photoperiod-sensitive genotypes. A common base temperature of 0.2C was determined amongst Day-Neutral Class genotypes (sn) and thermal time from sowing to flowering increased in the sequence lfa<lf< <:f<Lfd. Intra-Class variations attributed to the Lf alleles were also detected in the Late (Sn hr) and Late High Response (Sn Hr) Classes. The linear photothermal model provided a sound basis for studying the quantitative effects of flowering genes in pea.  相似文献   

20.
Flowering in Pisum: the Effect of Light Quality on the Genotype If e Sn Hr   总被引:1,自引:0,他引:1  
Far-red light, when given as a 16 h photoperiod extension, iamore effective than red light in reducing the flowering nodeof genotype Pisum. In contrast, when a 16 h dark period is interruptedby a 2 h light break red light is more effective than far-redlight. In addition, the stimulatory effect of a red interruptionis partially reversed by a subsequent period of far-red. However,a light interruption is not effective until over 12 h have elapsedsince the start of the previous photoperiod, regardless of whetherthe photoperiod was of 4 or 8 h duration. The results suggest that there are two light-dependent reactionscontrolling flowering in peas, one operating through the phytochromesystem with high levels of Pfr suppressing production of flowerinhibitor by the sn gene and a second requiring continuous illuminationwith wavelengths above 700 nm. The role of time measurementin the photoperiod response in peas is suggested to be filledby the proportion of time the Sn gene is effectively producinginhibitor. The photoperiod response in peas is not independentof temperature or plant age since the activity of gene Sn isalso varied by these factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号