首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The crystal structure of prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis was determined. Prolyl tripeptidyl aminopeptidase consists of beta-propeller and catalytic domains, and a large cavity between the domains; this structure is similar to dipeptidyl aminopeptidase IV. A catalytic triad (Ser603, His710, and Asp678) was located in the catalytic domain; this triad was virtually identical to that of the enzymes belonging to the prolyl oligopeptidase family. The structure of an inactive S603A mutant enzyme complexed with a substrate was also determined. The pyrrolidine ring of the proline residue appeared to fit into a hydrophobic pocket composed of Tyr604, Val629, Trp632, Tyr635, Tyr639, Val680, and Val681. There were characteristic differences in the residues of the beta-propeller domain, and these differences were related to the substrate specificity of tripeptidyl activity. The N-terminal amino group was recognized by salt bridges, with two carboxyl groups of Glu205 and Glu206 from a helix in dipeptidyl aminopeptidase IV. In prolyl tripeptidyl aminopeptidase, however, the Glu205 (located in the loop) and Glu636 were found to carry out this function. The loop structure provides sufficient space to accommodate three N-terminal residues (Xaa-Xaa-Pro) of substrates. This is the first report of the structure and substrate recognition mechanism of tripeptidyl peptidase.  相似文献   

3.
Structure determination of the inactive S554A variant of prolyl oligopeptidase complexed with an octapeptide has shown that substrate binding is restricted to the P4-P2' region. In addition, it has revealed a hydrogen bond network of potential catalytic importance not detected in other serine peptidases. This involves a unique intramolecular hydrogen bond between the P1' amide and P2 carbonyl groups and another between the P2' amide and Nepsilon2 of the catalytic histidine 680 residue. It is argued that both hydrogen bonds promote proton transfer from the imidazolium ion to the leaving group. Another complex formed with the product-like inhibitor benzyloxycarbonyl-glycyl-proline, indicating that the carboxyl group of the inhibitor forms a hydrogen bond with the Nepsilon2 of His(680). Because a protonated histidine makes a stronger interaction with the carboxyl group, it offers a possibility of the determination of the real pK(a) of the catalytic histidine residue. This was found to be 6.25, lower than that of the well studied serine proteases. The new titration method gave a single pK(a) for prolyl oligopeptidase, whose reaction exhibited a complex pH dependence for k(cat)/K(m), and indicated that the observed pK(a) values are apparent. The procedure presented may be applicable for other serine peptidases.  相似文献   

4.
The proline iminopeptidase from Xanthomonas campestris pv. citri is a serine peptidase that catalyses the removal of N-terminal proline residues from peptides with high specificity. We have solved its three-dimensional structure by multiple isomorphous replacement and refined it to a crystallographic R-factor of 19.2% using X-ray data to 2.7 A resolution. The protein is folded into two contiguous domains. The larger domain shows the general topology of the alpha/beta hydrolase fold, with a central eight-stranded beta-sheet flanked by two helices and the 11 N-terminal residues on one side, and by four helices on the other side. The smaller domain is placed on top of the larger domain and essentially consists of six helices. The active site, located at the end of a deep pocket at the interface between both domains, includes a catalytic triad of Ser110, Asp266 and His294. Cys269, located at the bottom of the active site very close to the catalytic triad, presumably accounts for the inhibition by thiol-specific reagents. The overall topology of this iminopeptidase is very similar to that of yeast serine carboxypeptidase. The striking secondary structure similarity to human lymphocytic prolyl oligopeptidase and dipeptidyl peptidase IV makes this proline iminopeptidase structure a suitable model for the three-dimensional structure of other peptidases of this family.  相似文献   

5.
A family of hypothetical proteins, identified predominantly from archaeal genomes, has been analyzed in order to understand its functional characteristics. Using extensive sequence similarity searches it is inferred that this family is remotely related (best sequence identity is 19%) to ClpP proteinases that belongs to serine proteinase class. This family of hypothetical proteins is referred to as SDH proteinase family based on conserved sequential order of Ser, Asp and His residues and predicted serine proteinase activity. Results of fold recognition of SDH family sequences confirmed the remote relationship between SDH proteinases and Clp proteinases and revealed similar tertiary location of putative catalytic triad residues critical for serine proteinase function. However, the best sequence alignment we could obtain suggests that while catalytic Ser is conserved across Clp and SDH proteinases the location of the other catalytic triad residues, namely, His and Asp are swapped in their amino acid alignment positions and hence in 3-D structure. The evidence of conserved catalytic triad suggests that SDH could be a new family of serine proteinases with the fold of Clp proteinase, however sharing the catalytic triad order of carboxypeptidase clan. Signal peptide sequence identified at the N-terminus of some of the homologues suggests that these might be secretory serine proteinases involved in cleavage of extracellular proteins while the remote homologues, ClpP proteinases, are known to work in intracellular environment.  相似文献   

6.
Salmonella enterica serovar Typhimurium peptidase E (PepE) is an N-terminal Asp-specific dipeptidase. PepE is not inhibited by any of the classical peptidase inhibitors, and its amino acid sequence does not place it in any of the known peptidase structural classes. A comparison of the amino acid sequence of PepE with a number of related sequences has allowed us to define the amino acid residues that are strongly conserved in this family. To ensure the validity of this comparison, we have expressed one of the most distantly related relatives (Xenopus) in Escherichia coli and have shown that it is indeed an Asp-specific dipeptidase with properties very similar to those of serovar Typhimurium PepE. The sequence comparison suggests that PepE is a serine hydrolase. We have used site-directed mutagenesis to change all of the conserved Ser, His, and Asp residues and have found that Ser120, His157, and Asp135 are all required for activity. Conversion of Ser120 to Cys leads to severely reduced (10(4)-fold) but still detectable activity, and this activity but not that of the parent is inhibited by thiol reagents; these results confirm that this residue is likely to be the catalytic nucleophile. These results suggest that PepE is the prototype of a new family of serine peptidases. The phylogenetic distribution of the family is unusual, since representatives are found in eubacteria, an insect (Drosophila), and a vertebrate (Xenopus) but not in the Archaea or in any of the other eukaryotes for which genome sequences are available.  相似文献   

7.
Chlorophyllases (Chlases), cloned so far, contain a lipase motif with the active serine residue of the catalytic triad of triglyceride lipases. Inhibitors specific for the catalytic serine residue in serine hydrolases, which include lipases effectively inhibited the activity of the recombinant Chenopodium album Chlase (CaCLH). From this evidence we assumed that the catalytic mechanism of hydrolysis by Chlase might be similar to those of serine hydrolases that have a catalytic triad composed of serine, histidine and aspartic acid in their active site. Thus, we introduced mutations into the putative catalytic residue (Ser162) and conserved amino acid residues (histidine, aspartic acid and cysteine) to generate recombinant CaCLH mutants. The three amino acid residues (Ser162, Asp191 and His262) essential for Chlase activity were identified. These results indicate that Chlase is a serine hydrolase and, by analogy with a plausible catalytic mechanism of serine hydrolases, we proposed a mechanism for hydrolysis catalyzed by Chlase.  相似文献   

8.
Prolyl oligopeptidase, a serine peptidase unrelated to trypsin and subtilisin, is implicated in memory disorders and is an important target of drug design. The catalytic competence of the Asp(641) residue of the catalytic triad (Ser(554), Asp(641), His(680)) was studied using the D641N and D641A variants of the enzyme. Both variants displayed 3 orders of magnitude reduction in k(cat)/K(m) for benzyloxycarbonyl-Gly-Pro-2-naphthylamide. Using an octapeptide substrate, the decrease was 6 orders of magnitude, whereas with Z-Gly-Pro-4-nitrophenyl ester there was virtually no change in k(cat)/K(m). This indicates that the contribution of Asp(641) is very much dependent on the substrate-leaving group, which was not the case for the classic serine peptidase, trypsin. The rate constant for benzyloxycarbonyl-Gly-Pro-thiobenzylester conformed to this series as demonstrated by a method designed for monitoring the hydrolysis of thiolesters in the presence of thiol groups. Alkylation of His(680) with Z-Gly-Pro-CH(2)Cl was concluded with similar rate constants for wild-type and D641A variant. However, kinetic measurements with Z-Gly-Pro-OH, a product-like inhibitor, indicated that the His(680) is not accessible in the enzyme variants. Crystal structure determination of these mutants revealed subtle perturbations related to the catalytic activity. Many of these observations show differences in the catalysis between trypsin and prolyl oligopeptidase.  相似文献   

9.
Oligopeptidase B is a "processing peptidase" from the prolyl oligopeptidase family of serine peptidases present in Gram negative bacteria, protozoa and plants. Unlike the prototype prolyl oligopeptidase, oligopeptidase B hydrolyses peptides on the carboxyl side of pairs of basic amino acid residues. Molecular modelling and mutation studies have identified carboxyl dyads in the C-terminal catalytic domain that mediate substrate and inhibitor binding. The peptidase is efficiently inhibited by non-peptide irreversible serine peptidase inhibitors, peptidyl-chloromethylketones, -phosphonate alpha-aminoalkyl diphenyl esters with basic residues at P1, and tripeptide aldehydes, but not by proteinaceous host plasma inhibitors such as alpha2-macroglobulin and serpins. Access of these large molecular mass inhibitors and substrates larger than approximately 30 amino acid residues to the catalytic cleft is restricted by the N-terminal beta-propeller domain. The physiological role of oligopeptidase B from various sources has not yet been elucidated. However, the peptidase has been identified as an important virulence factor and therapeutic agent in animal trypanosomosis. This review highlights the structure-function properties of oligopeptidase B in context with its physiological and/or pathological roles which make the enzyme a promising drug target.  相似文献   

10.
The revised amino acid sequence of rat submaxillary gland tonin, a serine protease, does contain the active site Asp residue. The active site of this kallikrein-related enzyme is thus made up of the same catalytic triad (Asp, Ser, and His) found in all known serine proteases. The important Asp residue has now been localized in a 16 amino acid peptide previously reported as missing in the tonin sequence. The complete amino acid sequence thus contains 235 residues corresponding to a molecular weight of 25,658, more in agreement with previously reported molecular weights. Moreover, the revised structure led (a) to the assignment of Arg, Asn, and Val residues instead of His, Asp, and Gly at positions 63, 165, and 169, respectively; (b) to the assignment of residues occupying an overlapping sequence at positions 165-171, and finally (c) to the localization of two N-glycosylation sites at positions 82 and 165. These results further document the close relationship of tonin to the ever expanding kallikrein family.  相似文献   

11.
The moderate thermophilic eubacterium Alicyclobacillus (formerly Bacillus) acidocaldarius expresses a thermostable carboxylesterase (esterase 2) belonging to the hormone-sensitive lipase (HSL)-like group of the esterase/lipase family. Based on secondary structures predictions and a secondary structure-driven multiple sequence alignment with remote homologous protein of known three-dimensional (3D) structure, we previously hypothesized for this enzyme the alpha/beta-hydrolase fold typical of several lipases and esterases and identified Ser155, Asp252, and His282 as the putative members of the catalytic triad. In this paper we report the construction of a 3D model for this enzyme based on the structure of mouse acetylcholinesterase complexed with fasciculin. The model reveals the topological organization of the fold corroborating our predictions. As regarding the active-site residues, Ser155, Asp252, and His282 are located close to each other at hydrogen bond distances. Their catalytic role was here probed by biochemical and mutagenic studies. Moreover, on the basis of the secondary structure-driven multiple sequence alignment and the 3D structural model, a residue supposed important for catalysis, Gly84, was mutated to Ser. The activity of the mutated enzyme was drastically reduced. We propose that Gly84 is part of a putative "oxyanion hole" involved in the stabilization of the transition state similar to the C group of the esterase/lipase family.  相似文献   

12.
Sullivan ER  Leahy JG  Colwell RR 《Gene》1999,230(2):277-286
The genes encoding the lipase (LipA) and lipase chaperone (LipB) from Acinetobacter calcoaceticus RAG-1 were cloned and sequenced. The genes were isolated from a genomic DNA library by complementation of a lipase-deficient transposon mutant of the same strain. Transposon insertion in this mutant and three others was mapped to a single site in the chaperone gene. The deduced amino acid (aa) sequences for the lipase and its chaperone were found to encode mature proteins of 313 aa (32.5kDa) and 347 aa (38.6kDa), respectively. The lipase contained a putative leader sequence, as well as the conserved Ser, His, and Asp residues which are known to function as the catalytic triad in other lipases. A possible trans-membrane hydrophobic helix was identified in the N-terminal region of the chaperone. Phylogenetic comparisons showed that LipA, together with the lipases of A. calcoaceticus BD413, Vibrio cholerae El Tor, and Proteus vulgaris K80, were members of a previously described family of Pseudomonas and Burkholderia lipases. This new family, which we redefine as the Group I Proteobacterial lipases, was subdivided into four subfamilies on the basis of overall sequence homology and conservation of residues which are unique to the subfamilies. LipB, moreover, was found to be a member of an analogous family of lipase chaperones. We propose that the lipases produced by P. fluorescens and Serratia marcescens, which comprise a second sequence family, be referred to as the Group II Proteobacterial lipases. Evidence is provided to support the hypothesis that both the Group I and Group II families have evolved from a combination of common descent and lateral gene transfer.  相似文献   

13.
In 11 patients with a recessive congenital disorder, which we refer to as "the hypotonia-cystinuria syndrome," microdeletion of part of the SLC3A1 and PREPL genes on chromosome 2p21 was found. Patients present with generalized hypotonia at birth, nephrolithiasis, growth hormone deficiency, minor facial dysmorphism, and failure to thrive, followed by hyperphagia and rapid weight gain in late childhood. Since loss-of-function mutations in SLC3A1 are known to cause isolated cystinuria type I, and since the expression of the flanking genes, C2orf34 and PPM1B, was normal, the extended phenotype can be attributed to the deletion of PREPL. PREPL is localized in the cytosol and shows homology with prolyl endopeptidase and oligopeptidase B. Substitution of the predicted catalytic residues (Ser470, Asp556, and His601) by alanines resulted in loss of reactivity with a serine hydrolase-specific probe. In sharp contrast to prolyl oligopeptidase and oligopeptidase B, which require both aminoterminal and carboxyterminal sequences for activity, PREPL activity appears to depend only on the carboxyterminal domain. Taken together, these results suggest that PREPL is a novel oligopeptidase, with unique structural and functional characteristics, involved in hypotonia-cystinuria syndrome.  相似文献   

14.
Proline-specific dipeptidyl peptidases (DPPs) are emerging targets for drug development. DPP4 inhibitors are approved in many countries, and other dipeptidyl peptidases are often referred to as DPP4 activity- and/or structure-homologues (DASH). Members of the DASH family have overlapping substrate specificities, and, even though they share low sequence identity, therapeutic or clinical cross-reactivity is a concern. Here, we report the structure of human DPP7 and its complex with a selective inhibitor Dab-Pip (L-2,4-diaminobutyryl-piperidinamide) and compare it with that of DPP4. Both enzymes share a common catalytic domain (α/β-hydrolase). The catalytic pocket is located in the interior of DPP7, deep inside the cleft between the two domains. Substrates might access the active site via a narrow tunnel. The DPP7 catalytic triad is completely conserved and comprises Ser162, Asp418 and His443 (corresponding to Ser630, Asp708 and His740 in DPP4), while other residues lining the catalytic pockets differ considerably. The "specificity domains" are structurally also completely different exhibiting a β-propeller fold in DPP4 compared to a rare, completely helical fold in DPP7. Comparing the structures of DPP7 and DPP4 allows the design of specific inhibitors and thus the development of less cross-reactive drugs. Furthermore, the reported DPP7 structures shed some light onto the evolutionary relationship of prolyl-specific peptidases through the analysis of the architectural organization of their domains.  相似文献   

15.
The hyperthermophilic Archaeon Archaeoglobus fulgidus has a gene (AF1763) which encodes a thermostable carboxylesterase belonging to the hormone-sensitive lipase (HSL)-like group of the esterase/lipase family. Based on secondary structure predictions and a secondary structure-driven multiple sequence alignment with remote homologous proteins of known three-dimensional structure, we previously hypothesized for this enzyme the alpha/beta-hydrolase fold typical of several lipases and esterases and identified Ser160, Asp 255 and His285 as the putative members of the catalytic triad. In this paper we report the building of a 3D model for this enzyme based on the structure of the homologous brefeldin A esterase from Bacillus subtilis whose structure has been recently elucidated. The model reveals the topological organization of the fold corroborating our predictions. As regarding the active-site residues, Ser160, Asp255 and His285 are located close each other at hydrogen bond distances. The catalytic role of Ser160 as the nucleophilic member of the triad is demonstrated by the [(3)H]diisopropylphosphofluoridate (DFP) active-site labeling and sequencing of a radioactive peptide containing the signature sequence GDSAGG.  相似文献   

16.
A lipase from Pseudomonas sp. MIS38 (PML) is a member of the lipase family I.3. We analyzed the roles of the five histidine residues (His(30), His(274), His(291), His(313), and His(365)) and five acidic amino acid residues (Glu(253), Asp(255), Asp(262), Asp(275), and Asp(290)), which are fully conserved in the amino acid sequences of family I.3 lipases, by site-directed mutagenesis. We showed that the mutation of His(313) or Asp(255) to Ala almost fully inactivated the enzyme, whereas the mutations of other residues to Ala did not seriously affect the enzymatic activity. Measurement of the far- and near-UV circular dichroism spectra suggests that inactivation by the mutation of His(313) or Asp(255) is not due to marked changes in the tertiary structure. We propose that His(313) and Asp(255), together with Ser(207), form a catalytic triad in PML.  相似文献   

17.
The genes encoding the lipase (LipA) and lipase chaperone (LipB) from Acinetobacter calcoaceticus RAG-1 were cloned and sequenced. The genes were isolated from a genomic DNA library by complementation of a lipase-deficient transposon mutant of the same strain. Transposon insertion in this mutant and three others was mapped to a single site in the chaperone gene. The deduced amino acid (aa) sequences for the lipase and its chaperone were found to encode mature proteins of 313 aa (32.5 kDa) and 347 aa (38.6 kDa), respectively. The lipase contained a putative leader sequence, as well as the conserved Ser, His, and Asp residues which are known to function as the catalytic triad in other lipases. A possible trans-membrane hydrophobic helix was identified in the N-terminal region of the chaperone. Phylogenetic comparisons showed that LipA, together with the lipases of A. calcoaceticus BD413, Vibrio cholerae El Tor, and Proteus vulgaris K80, were members of a previously described family of Pseudomonas and Burkholderia lipases. This new family, which we redefine as the Group I Proteobacterial lipases, was subdivided into four subfamilies on the basis of overall sequence homology and conservation of residues which are unique to the subfamilies. LipB, moreover, was found to be a member of an analogous family of lipase chaperones. We propose that the lipases produced by P. fluorescens and Serratia marcescens, which comprise a second sequence family, be referred to as the Group II Proteobacterial lipases. Evidence is provided to support the hypothesis that both the Group I and Group II families have evolved from a combination of common descent and lateral gene transfer.  相似文献   

18.
Escherichia coli esterase (EcE) is a member of the hormone-sensitive lipase family. We have analyzed the roles of the conserved residues in this enzyme (His103, Glu128, Gly163, Asp164, Ser165, Gly167, Asp262, Asp266 and His292) by site-directed mutagenesis. Among them, Gly163, Asp164, Ser165, and Gly167 are the components of a G-D/E-S-A-G motif. We showed that Ser165, Asp262, and His292 are the active-site residues of the enzyme. We also showed that none of the other residues, except for Asp164, is critical for the enzymatic activity. The mutation of Asp164 to Ala dramatically reduced the catalytic efficiency of the enzyme by the factor of 10(4) without seriously affecting the substrate binding. This residue is probably structurally important to make the conformation of the active-site functional.  相似文献   

19.
The prolyl peptidase that removes the tetra-peptide of pro-transglutaminase was purified from Streptomyces mobaraensis mycelia. The substrate specificity of the enzyme using synthetic peptide substrates showed proline-specific activity with not only tripeptidyl peptidase activity, but also tetrapeptidyl peptidase activity. However, the enzyme had no other exo- and endo-activities. This substrate specificity is different from proline specific peptidases so far reported. The enzyme gene was cloned, based on the direct N-terminal amino acid sequence of the purified enzyme, and the entire nucleotide sequence of the coding region was determined. The deduced amino acid sequence revealed an N-terminal signal peptide sequence (33 amino acids) followed by the mature protein comprising 444 amino acid residues. This enzyme shows no remarkable homology with enzymes belonging to the prolyl oligopeptidase family, but has about 65% identity with three tripeptidyl peptidases from Streptomyces lividans, Streptomyces coelicolor, and Streptomyces avermitilis. Based on its substrate specificity, a new name, "prolyl tri/tetra-peptidyl aminopeptidase," is proposed for the enzyme.  相似文献   

20.
Serine proteases comprise nearly one-third of all known proteases identified to date and play crucial roles in a wide variety of cellular as well as extracellular functions, including the process of blood clotting, protein digestion, cell signaling, inflammation, and protein processing. Their hallmark is that they contain the so-called "classical" catalytic Ser/His/Asp triad. Although the classical serine proteases are the most widespread in nature, there exist a variety of "nonclassical" serine proteases where variations to the catalytic triad are observed. Such variations include the triads Ser/His/Glu, Ser/His/His, and Ser/Glu/Asp, and include the dyads Ser/Lys and Ser/His. Other variations are seen with certain serine and threonine peptidases of the Ntn hydrolase superfamily that carry out catalysis with a single active site residue. This work discusses the structure and function of these novel serine proteases and threonine proteases and how their catalytic machinery differs from the prototypic serine protease class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号