首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid A of Salmonella typhimurium can be resolved into multiple molecular species. Many of these substances are more polar than the predominant hexa-acylated lipid A 1,4'-bisphosphate of Escherichia coli K-12. By using new isolation methods, we have purified six lipid A subtypes (St1 to St6) from wild type S. typhimurium. We demonstrate that these lipid A variants are covalently modified with one or two 4-amino-4-deoxy-l-arabinose (l-Ara4N) moieties. Each lipid A species with a defined set of polar modifications can be further derivatized with a palmitoyl moiety and/or a 2-hydroxymyristoyl residue in place of the secondary myristoyl chain at position 3'. The unexpected finding that St5 and St6 contain two l-Ara4N residues accounts for the anomalous structures of lipid A precursors seen in S. typhimurium mutants defective in 3-deoxy-d-manno-octulosonic acid biosynthesis in which only the 1-phosphate group is modified with the l-Ara4N moiety (Strain, S. M., Armitage, I. M., Anderson, L., Takayama, K., Quershi, N., and Raetz, C. R. H. (1985) J. Biol. Chem. 260, 16089-16098). Phosphoethanolamine (pEtN)-modified lipid A species are much less abundant than l-Ara4N containing forms in wild type S. typhimurium grown in broth but accumulate to high levels when l-Ara4N synthesis is blocked in pmrA(C)pmrE(-) and pmrA(C)pmrF(-) mutants. Purification and analysis of selected compounds demonstrate that one or two pEtN moieties may be present. Our findings show that S. typhimurium contains versatile enzymes capable of modifying both the 1- and 4'-phosphates of lipid A with l-Ara4N and/or pEtN groups. PmrA null mutants of S. typhimurium produce lipid A species without any pEtN or l-Ara4N substituents. However, PmrA is not needed for the incorporation of 2-hydroxymyristate or palmitate.  相似文献   

2.
Attachment of the cationic sugar 4-amino-4-deoxy-l-arabinose (l-Ara4N) to lipid A is required for the maintenance of polymyxin resistance in Escherichia coli and Salmonella typhimurium. The enzymes that synthesize l-Ara4N and transfer it to lipid A have not been identified. We now report an inner membrane enzyme, expressed in polymyxin-resistant mutants, that adds one or two l-Ara4N moieties to lipid A or its immediate precursors. No soluble factors are required. A gene located near minute 51 on the S. typhimurium and E. coli chromosomes (previously termed orf5, pmrK, or yfbI) encodes the l-Ara4N transferase. The enzyme, renamed ArnT, consists of 548 amino acid residues in S. typhimurium with 12 possible membrane-spanning regions. ArnT displays distant similarity to yeast protein mannosyltransferases. ArnT adds two l-Ara4N units to lipid A precursors containing a Kdo disaccharide. However, as shown by mass spectrometry and NMR spectroscopy, it transfers only a single l-Ara4N residue to the 1-phosphate moiety of lipid IV(A), a precursor lacking Kdo. Proteins with full-length sequence similarity to ArnT are present in genomes of other bacteria thought to synthesize l-Ara4N-modified lipid A, including Pseudomonas aeruginosa and Yersinia pestis. As shown in the following article (Trent, M. S., Ribeiro, A. A., Doerrler, W. T., Lin, S., Cotter, R. J., and Raetz, C. R. H. (2001) J. Biol. Chem. 276, 43132-43144), ArnT utilizes the novel lipid undecaprenyl phosphate-alpha-l-Ara4N as its sugar donor, suggesting that l-Ara4N transfer to lipid A occurs on the periplasmic side of the inner membrane.  相似文献   

3.
When Escherichia coli are grown on LB broth containing 25 mm NH(4)VO(3), complex modifications to the lipid A anchor of lipopolysaccharide are induced. Six modified lipid As (EV1-EV6) have been purified. Many of these variants possess 4-amino-4-deoxy-l-arabinose (l-Ara4N) and/or phosphoethanolamine (pEtN) substituents. Here we use NMR spectroscopy to investigate the attachment sites of the l-Ara4N and pEtN moieties on underivatized, intact EV3 and EV6 and on precursors II(A) and III(A) from kdsA mutants of Salmonella. CDCl(3)/CD(3)OD/D(2)O (2:3:1, v/v) is shown to be a superior solvent for homo- and heteronuclear one- and two-dimensional NMR experiments. The latter were not feasible previously because available solvents caused sample decomposition. Selective inverse decoupling difference spectroscopy is used to determine the attachment sites of substituents on EV3, EV6, II(A), and III(A). l-Ara4N is attached via a phosphodiester linkage to the 4'-phosphates of EV3 and EV6 and has the beta anomeric configuration. pEtN is attached by a pyrophosphate linkage to the 1-phosphate of EV6. The l-Ara4N and pEtN substituents of lipids II(A) and III(A) are attached in the opposite manner, with l-Ara4N on the 1-phosphate of II(A) and pEtN on the 4'-phosphate of III(A). Determination of the proper attachment sites of these substituents is necessary for elucidating the enzymology of lipid A biosynthesis and for characterizing polymyxin-resistant mutants, in which l-Ara4N and pEtN substituents are greatly increased.  相似文献   

4.
5.
Polymyxin-resistant mutants of Escherichia coli and Salmonella typhimurium accumulate a novel minor lipid that can donate 4-amino-4-deoxy-l-arabinose units (l-Ara4N) to lipid A. We now report the purification of this lipid from a pss(-) pmrA(C) mutant of E. coli and assign its structure as undecaprenyl phosphate-alpha-l-Ara4N. Approximately 0.2 mg of homogeneous material was isolated from an 8-liter culture by solvent extraction, followed by chromatography on DEAE-cellulose, C18 reverse phase resin, and silicic acid. Matrix-assisted laser desorption ionization/time of flight mass spectrometry in the negative mode yielded a single species [M - H](-) at m/z 977.5, consistent with undecaprenyl phosphate-alpha-l-Ara4N (M(r) = 978.41). (31)P NMR spectroscopy showed a single phosphorus atom at -0.44 ppm characteristic of a phosphodiester linkage. Selective inverse decoupling difference spectroscopy demonstrated that the undecaprenyl phosphate group is attached to the anomeric carbon of the l-Ara4N unit. One- and two-dimensional (1)H NMR studies confirmed the presence of a polyisoprene chain and a sugar moiety with chemical shifts and coupling constants expected for an equatorially substituted arabinopyranoside. Heteronuclear multiple-quantum coherence spectroscopy analysis demonstrated that a nitrogen atom is attached to C-4 of the sugar residue. The purified donor supports in vitro conversion of lipid IV(A) to lipid II(A), which is substituted with a single l-Ara4N moiety. The identification of undecaprenyl phosphate-alpha-l-Ara4N implies that l-Ara4N transfer to lipid A occurs in the periplasm of polymyxin-resistant strains, and establishes a new enzymatic pathway by which Gram-negative bacteria acquire antibiotic resistance.  相似文献   

6.
In Escherichia coli and Salmonella typhimurium, addition of the 4-amino-4-deoxy-l-arabinose (l-Ara4N) moiety to the phosphate group(s) of lipid A is required for resistance to polymyxin and cationic antimicrobial peptides. We have proposed previously (Breazeale, S. D., Ribeiro, A. A., and Raetz, C. R. H. (2002) J. Biol. Chem. 277, 2886-2896) a pathway for l-Ara4N biosynthesis that begins with the ArnA-catalyzed C-4" oxidation and C-6" decarboxylation of UDP-glucuronic acid, followed by the C-4" transamination of the product to generate the novel sugar nucleotide UDP-l-Ara4N. We now show that ArnB (PmrH) encodes the relevant aminotransferase. ArnB was overexpressed using a T7lac promoter-driven construct and shown to catalyze the reversible transfer of the amino group from glutamate to the acceptor, uridine 5'-(beta-l-threo-pentapyranosyl-4"-ulose diphosphate), the intermediate that is synthesized by ArnA from UDP-glucuronic acid. A 1.7-mg sample of the putative UDP-l-Ara4N product generated in vitro was purified by ion exchange chromatography, and its structure was confirmed by 1H and 13C NMR spectroscopy. ArnB, which is a cytoplasmic protein, was purified to homogeneity from an overproducing strain of E. coli and shown to contain a pyridoxal phosphate cofactor, as judged by ultraviolet/visible spectrophotometry. The pyridoxal phosphate was converted to the pyridoxamine form in the presence of excess glutamate. A simple quantitative radiochemical assay was developed for ArnB, which can be used to assay the enzyme either in the forward or the reverse direction. The enzyme is highly selective for glutamate as the amine donor, but the equilibrium constant in the direction of UDP-l-Ara4N formation is unfavorable (approximately 0.1). ArnB is a member of a very large family of aminotransferases, but closely related ArnB orthologs are present only in those bacteria capable of synthesizing lipid A species modified with the l-Ara4N moiety.  相似文献   

7.
Modification of the phosphate groups of lipid A with 4-amino-4-deoxy-L-arabinose (L-Ara4N) is required for resistance to polymyxin and cationic antimicrobial peptides in Escherichia coli and Salmonella typhimurium. We previously demonstrated that the enzyme ArnA catalyzes the NAD+-dependent oxidative decarboxylation of UDP-glucuronic acid to yield the UDP-4'-ketopentose, uridine 5'-diphospho-beta-(L-threo-pentapyranosyl-4'-ulose), which is converted by ArnB to UDP-beta-(L-Ara4N). E. coli ArnA is a bi-functional enzyme with a molecular mass of approximately 74 kDa. The oxidative decarboxylation of UDP-glucuronic acid is catalyzed by the 345-residue C-terminal domain of ArnA. The latter shows sequence similarity to enzymes that oxidize the C-4' position of sugar nucleotides, like UDP-galactose epimerase, dTDP-glucose-4,6-dehydratase, and UDP-xylose synthase. We now show that the 304-residue N-terminal domain catalyzes the N-10-formyltetrahydrofolate-dependent formylation of the 4'-amine of UDP-L-Ara4N, generating the novel sugar nucleotide, uridine 5'-diphospho-beta-(4-deoxy-4-formamido-L-arabinose). The N-terminal domain is highly homologous to methionyl-tRNA(f)Met formyltransferase. The structure of the formylated sugar nucleotide generated in vitro by ArnA was validated by 1H and 13C NMR spectroscopy. The two domains of ArnA were expressed independently as active proteins in E. coli. Both were required for maintenance of polymyxin resistance and L-Ara4N modification of lipid A. We conclude that N-formylation of UDP-L-Ara4N is an obligatory step in the biosynthesis of L-Ara4N-modified lipid A in polymyxin-resistant mutants. We further demonstrate that only the formylated sugar nucleotide is converted in vitro to an undecaprenyl phosphate-linked form by the enzyme ArnC. Because the L-Ara4N unit attached to lipid A is not derivatized with a formyl group, we postulate the existence of a deformylase, acting later in the pathway.  相似文献   

8.
Addition of the 4-amino-4-deoxy-l-arabinose (l-Ara4N) moiety to the phosphate groups of lipid A is implicated in bacterial resistance to polymyxin and cationic antimicrobial peptides of the innate immune system. The sequences of the products of the Salmonella typhimurium pmrE and pmrF loci, both of which are required for polymyxin resistance, recently led us to propose a pathway for l-Ara4N biosynthesis from UDP-glucuronic acid (Zhou, Z., Lin, S., Cotter, R. J., and Raetz, C. R. H. (1999) J. Biol. Chem. 274, 18503-18514). We now report that extracts of a polymyxin-resistant mutant of Escherichia coli catalyze the C-4" oxidation and C-6" decarboxylation of [alpha-(32)P]UDP-glucuronic acid, followed by transamination to generate [alpha-(32)P]UDP-l-Ara4N, when NAD and glutamate are added as co-substrates. In addition, the [alpha-(32)P]UDP-l-Ara4N is formylated when N-10-formyltetrahydrofolate is included. These activities are consistent with the proposed functions of two of the gene products (PmrI and PmrH) of the pmrF operon. PmrI (renamed ArnA) was overexpressed using a T7 construct, and shown by itself to catalyze the unprecedented oxidative decarboxylation of UDP-glucuronic acid to form uridine 5'-(beta-l-threo-pentapyranosyl-4"-ulose diphosphate). A 6-mg sample of the latter was purified, and its structure was validated by NMR studies as the hydrate of the 4" ketone. ArnA resembles UDP-galactose epimerase, dTDP-glucose-4,6-dehydratase, and UDP-xylose synthase in oxidizing the C-4" position of its substrate, but differs in that it releases the NADH product.  相似文献   

9.
In response to the in vivo environment, the Salmonella enterica serovar Typhimurium lipopolysaccharide (LPS) is modified. These modifications are controlled in part by the two-component regulatory system PmrA-PmrB, with the addition of 4-aminoarabinose (Ara4N) to the lipid A and phosphoethanolamine (pEtN) to the lipid A and core. Here we demonstrate that the PmrA-regulated STM4118 (cptA) gene is necessary for the addition of pEtN to the LPS core. pmrC, a PmrA-regulated gene necessary for the addition of pEtN to lipid A, did not affect core pEtN addition. Although imparting a similar surface charge modification as Ara4N, which greatly affects polymyxin B resistance and murine virulence, neither pmrC nor cptA plays a dramatic role in antimicrobial peptide resistance in vitro or virulence in the mouse model. Therefore, factors other than surface charge/electrostatic interaction contribute to resistance to antimicrobial peptides such as polymyxin B.  相似文献   

10.
Pathogenic bacteria modify the lipid A portion of their lipopolysaccharide to help evade the host innate immune response. Modification of the negatively charged phosphate groups of lipid A aids in resistance to cationic antimicrobial peptides targeting the bacterial cell surface. The lipid A of Helicobacter pylori contains a phosphoethanolamine (pEtN) unit directly linked to the 1-position of the disaccharide backbone. This is in contrast to the pEtN units found in other pathogenic Gram-negative bacteria, which are attached to the lipid A phosphate group to form a pyrophosphate linkage. This study describes two enzymes involved in the periplasmic modification of the 1-phosphate group of H. pylori lipid A. By using an in vitro assay system, we demonstrate the presence of lipid A 1-phosphatase activity in membranes of H. pylori. In an attempt to identify genes encoding possible lipid A phosphatases, we cloned four putative orthologs of Escherichia coli pgpB, the phosphatidylglycerol-phosphate phosphatase, from H. pylori 26695. One of these orthologs, Hp0021, is the structural gene for the lipid A 1-phosphatase and is required for removal of the 1-phosphate group from mature lipid A in an in vitro assay system. Heterologous expression of Hp0021 in E. coli resulted in the highly selective removal of the 1-phosphate group from E. coli lipid A, as demonstrated by mass spectrometry. We also identified the structural gene for the H. pylori lipid A pEtN transferase (Hp0022). Mass spectrometric analysis of the lipid A isolated from E. coli expressing Hp0021 and Hp0022 shows the addition of a single pEtN group at the 1-position, confirming that Hp0022 is responsible for the addition of a pEtN unit at the 1-position in H. pylori lipid A. In summary, we demonstrate that modification of the 1-phosphate group of H. pylori lipid A requires two enzymatic steps.  相似文献   

11.
12.
The lipid A anchor of Francisella tularensis lipopolysaccharide (LPS) lacks both phosphate groups present in Escherichia coli lipid A. Membranes of Francisella novicida (an environmental strain related to F. tularensis) contain enzymes that dephosphorylate lipid A and its precursors at the 1- and 4'-positions. We now report the cloning and characterization of a membrane-bound phosphatase of F. novicida that selectively dephosphorylates the 1-position. By transferring an F. novicida genomic DNA library into E. coli and selecting for low level polymyxin resistance, we isolated FnlpxE as the structural gene for the 1-phosphatase, an inner membrane enzyme of 239 amino acid residues. Expression of FnlpxE in a heptose-deficient mutant of E. coli caused massive accumulation of a previously uncharacterized LPS molecule, identified by mass spectrometry as 1-dephospho-Kdo2-lipid A. The predicted periplasmic orientation of the FnLpxE active site suggested that LPS export might be required for 1-dephosphorylation of lipid A. LPS and phospholipid export depend on the activity of MsbA, an essential inner membrane ABC transporter. Expression of FnlpxE in the msbA temperature-sensitive E. coli mutant WD2 resulted in 90% 1-dephosphorylation of lipid A at the permissive temperature (30 degrees C). However, the 1-phosphate group of newly synthesized lipid A was not cleaved at the nonpermissive temperature (44 degrees C). Our findings provide the first direct evidence that lipid A 1-dephosphorylation catalyzed by LpxE occurs on the periplasmic surface of the inner membrane.  相似文献   

13.
All possible combinations of insertion mutations in the three genes encoding the acyl carrier protein-dependent late acyltransferases of lipid A biosynthesis, designated lpxL(htrB), lpxM(msbB), and lpxP, were generated in Escherichia coli K12 W3110. Mutants defective in lpxM synthesize penta-acylated lipid A molecules and grow normally. Strains lacking lpxP fail to incorporate palmitoleate into their lipid A at 12 degrees C but make normal amounts of hexa-acylated lipid A and are viable. Although lpxL mutants and lpxL lpxM double mutants grow slowly on minimal medium at all temperatures, they do not grow on nutrient broth above 32 degrees C. Such mutants retain the ability to synthesize some penta- and hexa-acylated lipid A molecules because of limited induction of lpxP at 30 degrees C but not above 32 degrees C. MKV15, an E. coli lpxL lpxM lpxP triple mutant, likewise grows slowly on minimal medium at all temperatures but not on nutrient broth at any temperature. MKV15 synthesizes a lipid A molecule containing only the four primary (R)-3-hydroxymyristoyl chains. The outer membrane localization and content of lipid A are nearly normal in MKV15, as is the glycerophospholipid and membrane protein composition. However, the rate at which the tetra-acylated lipid A of MKV15 is exported to the outer membrane is reduced compared with wild type. The integrity of the outer membrane of MKV15 is compromised, as judged by antibiotic hypersensitivity, and MKV15 undergoes lysis following centrifugation. MKV15 may prove useful as a host strain for expressing late acyltransferase genes from other Gram-negative bacteria, facilitating the re-engineering of lipid A structure in living cells and the design of novel vaccines.  相似文献   

14.
The PmrAB two-component system of enterobacteria regulates a number of genes whose protein products modify lipopolysaccharide (LPS). The LPS is modified during transport to the bacterial outer membrane (OM). A subset of PmrAB-mediated LPS modifications consists of the addition of phosphoethanolamine (pEtN) to lipid A by PmrC and to the core by CptA. In Salmonella enterica, pEtN modifications have been associated with resistance to polymyxin B and to excess iron. To investigate putative functions of pEtN modifications in Citrobacter rodentium, ΔpmrAB, ΔpmrC, ΔcptA, and ΔpmrC ΔcptA deletion mutants were constructed. Compared to the wild type, most mutant strains were found to be more susceptible to antibiotics that must diffuse across the LPS layer of the OM. All mutant strains also showed increased influx rates of ethidium dye across their OM, suggesting that PmrAB-regulated pEtN modifications affect OM permeability. This was confirmed by increased partitioning of the fluorescent dye 1-N-phenylnaphthylamine (NPN) into the OM phospholipid layer of the mutant strains. In addition, substantial release of periplasmic β-lactamase was observed for the ΔpmrAB and ΔpmrC ΔcptA strains, indicating a loss of OM integrity. This study attributes a new role for PmrAB-mediated pEtN LPS modifications in the maintenance of C. rodentium OM integrity.  相似文献   

15.
The lipid composition of cells of Pseudomonas aeruginosa strains resistant to polymyxin was compared with the lipid composition of cells of polymyxin-sensitive strains as to their content of readily extractable lipids (RELs), acid-extractable lipids, the fatty acid composition of RELs, and the contents of various phospholipids in the REL fraction. The polymyxin-resistant strains had an increased content of RELs, but a decreased phospholipid content. The REL fraction from the polymyxin-resistant strains had an increased content of unsaturated fatty acids accompanied by a decreased content of cyclopropane fatty acids as compared with the fatty acid composition of RELs from polymyxin-sensitive strains. The phosphatidylethanolamine content was greatly reduced in the polymyxin-resistant strains, whereas the content of an unidentified lipid, thought to be a neutral lipid lacking either a phosphate, free amino, or choline moiety, was greatly increased. Cell envelopes of the polymyxin-resistant strains contained reduced concentrations of Mg2+ and Ca2+ as compared with the cell envelopes of polymyxin-sensitive strains. It appears that polymyxin resistance in these strains is associated with a significant alteration in the lipid composition and divalent cation content of the cell envelope.  相似文献   

16.
Addition of a phosphoethanolamine (pEtN) moiety to the outer 3-deoxy-D-manno-octulosonic acid (Kdo) residue of lipopolysaccharide (LPS) in WBB06, a heptose-deficient Escherichia coli mutant, occurs when cells are grown in 5-50 mM CaCl2 (Kanipes, M. I., Lin, S., Cotter, R. J., and Raetz, C. R. H. (2001) J. Biol. Chem. 276, 1156-1163). A Ca2+-induced, membrane-bound enzyme was responsible for the transfer of the pEtN unit to the Kdo domain. We now report the identification of the gene encoding the pEtN transferase. E. coli yhjW was cloned and overexpressed, because it is homologous to a putative pEtN transferase implicated in the modification of the beta-chain heptose residue of Neisseria meningitidis lipo-oligosaccharide (Mackinnon, F. G., Cox, A. D., Plested, J. S., Tang, C. M., Makepeace, K., Coull, P. A., Wright, J. C., Chalmers, R., Hood, D. W., Richards, J. C., and Moxon, E. R. (2002) Mol. Microbiol. 43, 931-943). In vitro assays with Kdo2-4'-[32P]lipid A as the acceptor showed that YhjW (renamed EptB) utilizes phosphatidylethanolamine in the presence of Ca2+ to transfer the pEtN group. Stoichiometric amounts of diacylglycerol were generated during the EptB-catalyzed transfer of pEtN to Kdo2-lipid A. EptB is an inner membrane protein of 574 amino acid residues with five predicted trans-membrane segments within its N-terminal region. An in-frame replacement of eptB with a kanamycin resistance cassette rendered E. coli WBB06 (but not wild-type W3110) hypersensitive to CaCl2 at 5 mM or higher. Ca2+ hypersensitivity was suppressed by excess Mg2+ in the medium or by restoring the LPS core of WBB06. The latter was achieved by reintroducing the waaC and waaF genes, which encode LPS heptosyl transferases I and II, respectively. Our data demonstrate that pEtN modification of the outer Kdo protected cells containing heptose-deficient LPS from damage by high concentrations of Ca2+. Based on its sequence similarity to EptA(PmrC), we propose that the active site of EptB faces the periplasmic surface of the inner membrane.  相似文献   

17.
Gatzeva-Topalova PZ  May AP  Sousa MC 《Biochemistry》2004,43(42):13370-13379
Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa can modify the structure of lipid A in their outer membrane with 4-amino-4-deoxy-l-arabinose (Ara4N). Such modification results in resistance to cationic antimicrobial peptides of the innate immune system and antibiotics such as polymyxin. ArnA is a key enzyme in the lipid A modification pathway, and its deletion abolishes both the Ara4N-lipid A modification and polymyxin resistance. ArnA is a bifunctional enzyme. It can catalyze (i) the NAD(+)-dependent decarboxylation of UDP-glucuronic acid to UDP-4-keto-arabinose and (ii) the N-10-formyltetrahydrofolate-dependent formylation of UDP-4-amino-4-deoxy-l-arabinose. We show that the NAD(+)-dependent decarboxylating activity is contained in the 360 amino acid C-terminal domain of ArnA. This domain is separable from the N-terminal fragment, and its activity is identical to that of the full-length enzyme. The crystal structure of the ArnA decarboxylase domain from E. coli is presented here. The structure confirms that the enzyme belongs to the short-chain dehydrogenase/reductase (SDR) family. On the basis of sequence and structure comparisons of the ArnA decarboxylase domain with other members of the short-chain dehydrogenase/reductase (SDR) family, we propose a binding model for NAD(+) and UDP-glucuronic acid and the involvement of residues T(432), Y(463), K(467), R(619), and S(433) in the mechanism of NAD(+)-dependent oxidation of the 4'-OH of the UDP-glucuronic acid and decarboxylation of the UDP-4-keto-glucuronic acid intermediate.  相似文献   

18.
Three sets of novel 4-deoxy-l-arabinose analogs were synthesized and evaluated as potential inhibitors of the bacterial resistance mechanism in which lipid A, on the outer membrane, is modified with 4-amino-4-deoxy-l-arabinose (l-Ara4N). One compound diminished the transfer of l-Ara4N onto lipid A. These results suggest that small molecules might be designed that would effect the same reversal of bacterial resistance observed in genetic knockouts.  相似文献   

19.
Certain strains of Escherichia coli and Salmonella contain lipopolysaccharide (LPS) modified with a phosphoethanolamine (pEtN) group at position 7 of the outer 3-deoxy-d-manno-octulosonic acid (Kdo) residue. Using the heptose-deficient E. coli mutant WBB06 (Brabetz, W., Muller-Loennies, S., Holst, O., and Brade, H. (1997) Eur. J. Biochem. 247, 716-724), we now demonstrate that the critical parameter determining the presence or absence of pEtN is the concentration of CaCl(2) in the medium. As judged by mass spectrometry, half the LPS in WBB06, grown on nutrient broth with 5 mm CaCl(2), is derivatized with a pEtN group, whereas LPS from WBB06 grown without supplemental CaCl(2) is not. Membranes from E. coli WBB06 or wild-type W3110 grown on 5-50 mm CaCl(2) contain a novel pEtN transferase that uses the precursor Kdo(2)-[4'-(32)P]lipid IV(A) as an acceptor. Transferase is not present in membranes of E. coli grown with 5 mm MgCl(2), BaCl(2), or ZnCl(2). Hydrolysis of the in vitro reaction product, pEtN-Kdo(2)-[4'-(32)P]lipid IV(A), at pH 4.5 shows that the pEtN substituent is located on the outer Kdo moiety. Membranes from an E. coli pss knockout mutant grown on 50 mm CaCl(2), which lack phosphatidylethanolamine, do not contain measurable transferase activity unless exogenous phosphatidylethanolamine is added back to the assay system. The induction of the pEtN transferase by 5-50 mm CaCl(2) suggests possible role(s) in establishing transformation competence or resisting environmental stress, and represents the first example of a regulated covalent modification of the inner core of E. coli LPS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号