首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decline of submersed macrophytes has occurred in eutrophic lakes worldwide. Little is known about effects of nutrient enrichment on biomechanical properties of submersed macrophytes. In a 30-day experiment, Myriophyllum spicatum was cultured in aquaria containing two types of sediment (mesotrophic clay vs. fertile loam) with contrasting water NH4 + concentrations (0 vs. 3.0 mg L?1 NH4–N). The plant growth, shoot and root morphology, stem biomechanical properties, and stem total nonstructure carbohydrates content (TNC) were examined. The NH4 +-enriched water, particularly combined with the fertile sediment, caused adverse effects on M. spicatum as indicated by reductions in the growth, stem biomechanical properties (tensile force, bending force and structural stiffness), and TNC content. These results indicate that increased sediment fertility and water NH4 +-enrichment made the plant more fragile and vulnerable to hydraulic damage, particularly for the upper stem, implying that M. spicatum was prone to uprooting and fracture by hydraulic force, and the broken fragment from parent shoot of M. spicatum might have low-survival potential due to its low-TNC content. This may be a mechanical aspect for the decline of submersed macrophytes and makes it more difficult to restore submersed vegetation in the eutrophic lakes.  相似文献   

2.
Madsen  J. D.  Chambers  P. A.  James  W. F.  Koch  E. W.  Westlake  D. F. 《Hydrobiologia》2001,444(1-3):71-84
Water movement in freshwater and marine environments affects submersed macrophytes, which also mediate water movement. The result of this complex interaction also affects sediment dynamics in and around submersed macrophyte beds. This review defines known relationships and identifies areas that need additional research on the complex interactions among submersed macrophytes, water movement, and sediment dynamics. Four areas are addressed: (1) the effects of water movement on macrophytes, (2) the effects of macrophyte stands on water movement, (3) the effects of macrophyte beds on sedimentation within vegetated areas, and (4) the relationship between sediment resuspension and macrophytes. Water movement has a significant effect on macrophyte growth, typically stimulating both abundance and diversity of macrophytes at low to moderate velocities, but reducing growth at higher velocities. In turn, macrophyte beds reduce current velocities both within and adjacent to the beds, resulting in increased sedimentation and reduced turbidity. Reduced turbidity increases light availability to macrophytes, increasing their growth. Additionally, macrophytes affect the distribution, composition and particle size of sediments in both freshwater and marine environments. Therefore, establishment and persistence of macrophytes in both marine and freshwater environments provide important ecosystem services, including: (1) improving water quality; and (2) stabilizing sediments, reducing sediment resuspension, erosion and turbidity.  相似文献   

3.
为探讨蓝藻胁迫条件下沉水植物生长与基质营养含量的关系,研究了添加相同含量蓝藻后2 种不同基质(较贫瘠的黄色粘土和较肥沃的黑色淤泥)对苦草和伊乐藻2 种沉水植物生长的影响。结果表明:与伊乐藻相比,苦草的生物量在粘土条件下高于淤泥条件,而基质类型对伊乐藻生物量没有显著影响;苦草的最大叶片长度(用于表征株高)、无性系新株数目及其干物质重和伊乐藻的株高、分株数目和分枝干物质重也是在粘土条件下高于淤泥条件;苦草的最大根长在粘土条件下显著高于淤泥条件(p<0.05)。研究结果表明在蓝藻胁迫的条件下,高营养含量的基质不利于沉水植物的生长,并且对根生型沉水植物苦草的影响要大于假根沉水植物伊乐藻。  相似文献   

4.
研究以湖北枝江金湖(由东湖和刘家湖组成)为例, 综合水下光照条件和沉水植物种子库分析, 探讨沉水植物可恢复区的判别方法。研究分别于2018年6月和12月对金湖开展了综合调查, 并在6月开展了种子库调查。结果表明, 金湖富营养化问题较严重, 6月各位点水深-透明度比值均低于沉水植物生长的阈值需求, 范围为0.13—0.25, 平均为0.17; 12月部分位点的水深-透明度比值达到了沉水植物生长的阈值需求, 范围为0.18—0.95, 平均为0.44。各位点沉水植物种子库密度范围为0—200 ind./m2, 平均为24 ind./m2。根据金湖的水下光照条件和沉水植物种子库分布情况, 结合湖底地形, 建议在冬春季透明度较高的时期降低水位, 进行沉水植物恢复工作。通过水下地形、光照条件和种子库的综合分析, 对金湖的沉水植物恢复区进行了划分, 结果显示东湖的东南部、东湖的西岸、刘家湖的西部和东岸作为沉水植物恢复区较为合适。该研究有望为湖泊沉水植物的恢复提供定量化的参考建议, 提高生态修复工程效果和降低管理成本。  相似文献   

5.
为探究大型浅水湖泊中沉水植物对浊度的影响,对大型浅水湖泊——太湖(有草区和无草区)进行了为期1年的野外调查,将浊度分为藻类浊度(TurbAlg)和非藻类浊度(TurbNonAlg),分析其变异规律及其对总浊度(TurbTot)贡献率的差异。结果显示:(1)太湖水体中TurbNonAlg(年均值为2.45/m)为主要的浊度组分,占总浊度(2.88/m)的83%,春季时高达89%;(2)有草区TurbNonAlg(2.52/m)和无草区的(2.37/m)差异不显著(P>0.05);(3)在相同TP范围内,有草区TurbAlg (0.21/m)和无草区的(0.32/m)无明显差异(P>0.05),在夏季时甚至略高于后者。研究表明,在大型浅水湖泊中,沉水植物对水体浊度的抑制效果有限,对非藻类浊度和藻类浊度均未起到有效的控制作用。因此,在相同营养条件下,大型浅水湖泊更易发生稳态转换,且发生转换后恢复原始状态的难度也可能更大。  相似文献   

6.
We used paleolimnological methods to investigate spatial and temporal patterns of bulk sediment and nutrient (C, N, P) accumulation in Lakes Hell ‘n’ Blazes (A = 154 ha, zmax = 240 cm), Sawgrass (A = 195 ha, zmax = 157 cm) and Washington (A = 1766 ha, zmax = 322 cm), in the Upper St. Johns River Basin, Florida. The study was designed to evaluate long-term changes in sedimentation and nutrient storage in the basin, and was one component of a larger project addressing flood control, wetland restoration, and water quality improvement. These three study lakes are wide, shallow waterbodies in the upper reaches of the St. Johns River channel. Sediment mapping indicates soft, organic deposits are distributed uniformly throughout Lakes Hell ‘n’ Blazes and Sawgrass. In contrast, much of Lake Washington is characterized by sandy bottom, and organic sediment is largely restricted to the north end of the lake. Lakes Hell ‘n’ Blazes and Sawgrass are effective sediment traps because dense submersed macrophytes and their associated epiphytes reduce flow velocity, intercept suspended particles, and utilize dissolved nutrients. Abundant Hydrilla, combined with short fetch, prevents resuspension and downstream transport of sediments. Larger Lake Washington is probably wind-mixed and resuspended organic sediments are redeposited to downstream sites. 210Pb-dated sediment cores show that organic sediment accumulation began in all three lakes before 1900, but that bulk sediment and nutrient accumulation rates have generally increased since then. The increases are probably attributable, in part, to anthropogenic activities including 1) hydrologic modifications that reduced flow rates in the channel, 2) discharge of nutrient-rich waters from urban, agricultural and ranching areas, and, 3) introduction and periodic herbicide treatment of the exotic macrophytes Eichhornia and Hydrilla.  相似文献   

7.
We collected quantitative data on macrophyte abundance and water quality in 319 mostly shallow, polymictic, Florida lakes to look for relationships between trophic state indicators and the biomasses of plankton algae, periphyton, and macrophytes. The lakes ranged from oligotrophic to hypereutrophic with total algal chlorophylls ranging from 1 to 241 mg m–3. There were strong positive correlations between planktonic chlorophylls and total phosphorus and total nitrogen, but there were weak inverse relationships between the densities of periphyton and the trophic state indicators total phosphorus, total nitrogen and algal chlorophyll and a positive relationship with Secchi depth. There was no predictable relationship between the abundance of emergent, floating-leaved, and submersed aquatic vegetation and the trophic state indicators. It was only at the highest levels of nutrient concentrations that submersed macrophytes were predictably absent and the lakes were algal dominated. Below these levels, macrophyte abundance could be high or low. The phosphorus–chlorophyll and phosphorus–Secchi depth relationships were not influenced by the amounts of aquatic vegetation present indicating that the role of macrophytes in clearing lakes may be primarily to reduce nutrient concentrations for a given level of loading. Rather than nutrient concentrations controlling macrophyte abundance, it seems that macrophytes acted to modify nutrient concentrations.  相似文献   

8.
Gross  Elisabeth M.  Erhard  Daniela  Iványi  Enikö 《Hydrobiologia》2003,506(1-3):583-589
Hydrobiologia - We investigated the allelopathic activity of two submersed macrophytes with different growth forms and nutrient uptake modes, Ceratophyllum demersum and Najas marina ssp....  相似文献   

9.
Ecosystem restoration by rewetting of degraded fens led to the new formation of large-scale shallow lakes in the catchment of the River Peene in NE Germany. We analyzed the biomass and the nutrient stock of the submersed (Ceratophyllum demersum) and the floating macrophytes (Lemna minor and Spirodela polyrhiza) in order to assess their influence on temporal nutrient storage in water bodies compared to other freshwater systems. Ceratophyllum demersum displayed a significantly higher biomass production (0.86–1.19 t DM = dry matter ha−1) than the Lemnaceae (0.64–0.71 t DM ha−1). The nutrient stock of submersed macrophytes ranged between 28–44 kg N ha−1 and 8–12 kg P ha−1 and that of floating macrophytes between 14–19 kg N ha−1 and 4–5 kg P ha−1 which is in the range of waste water treatment plants. We found the N and P stock in the biomass of aquatic macrophytes being 20–900 times and up to eight times higher compared to the nutrient amount of the open water body in the shallow lakes of rewetted fens (average depth: 0.5 m). Thereafter, submersed and floating macrophytes accumulate substantial amounts of dissolved nutrients released from highly decomposed surface peat layers, moderating the nutrient load of the shallow lakes during the growing season from April to October. In addition, the risk of nutrient loss to adjacent surface waters becomes reduced during this period. The removal of submersed macrophytes in rewetted fens to accelerate the restoration of the low nutrient status is discussed.  相似文献   

10.
Mobilization of sediment phosphorus by submersed freshwater macrophytes   总被引:10,自引:0,他引:10  
SUMMARY. The mobilization of sediment phosphorus (P) by three submersed freshwater macrophyte species was investigated on five different sediments. The study was conducted under controlled environmental conditions in lucite columns that enabled the separation of sediment and plant roots from the overlying P-free 'complete' nutrient solution. The species investigated ( Egeria densa, Hydrilla verticillata , and Myriophyllum spicatum ) had minor root systems (on a biomass basis), but were demonstrated to be fully capable of deriving their P nutrition exclusively from the sediments. Phosphorus absorption and translocation into shoots (i.e., mobilization) was substantial, and in some cases suggested a greater than 1000-fold turnover of interstitial water PO4-P over a 3-month period. Sediment P mobilization, a function of both plant growth and tissue P concentration, differed considerably among plant species and sediments. Phosphorus release from the species investigated appears to be primarily dependent upon tissue decay rather than excretory processes. The mobilization of sediment P by submersed macrophytes represents an important aspect of the P cycle, and may affect the overall metabolism of lacustrine systems.  相似文献   

11.
The ecological responses of aquatic macrophytes and benthic macroinvertebrates to deep-release dams in three impounded rivers of the Henares River Basin (Central Spain) were studied, specially focusing on the effects of nutrient enrichment caused by deep releases on these two freshwater communities. Three sampling sites, one upstream and two downstream from the reservoir, were established in each impounded river. Sampling surveys to collect submersed macrophytes and benthic macroinvertebrates at each sampling site were carried out in spring–summer of 2009 and 2011. Water temperature tended to decrease downstream from dams, whereas nitrate and phosphate concentrations tended to increase. These abiotic changes, particularly the downstream nutrient enrichment, apparently affected the macrophyte and macroinvertebrate communities. In the case of submersed macrophytes, total coverage and taxa richness increased downstream from dams. In the case of benthic macroinvertebrates, total density and total biomass also increased downstream, but taxa richness tended to decrease. Scrapers appeared to be the macroinvertebrate feeding group most favored downstream from dams as a probable consequence of the positive effect of nutrient enrichment on periphyton and perilithon abundance. Nutrients would ultimately come from water runoff over agricultural lands and over semi-natural forests and pastures, being subsequently accumulated in the hypolimnion of reservoirs.  相似文献   

12.
为研究洱海底泥特性对沉水植物生长的影响,采用不同比例洱海底泥与湖岸土壤掺混形成五种基质,并分别移栽苦草、黑藻、微齿眼子菜、马来眼子菜、光叶眼子菜、穿叶眼子菜和狐尾藻,进行为期70d的室外生长实验,结果表明不同基质对几种植物的影响具种间差异。(1)在基质为50%深层底泥+50%湖岸土壤(碳、氮、磷含量分别为31.59、0.334和0.095 mg/g)时,苦草、马来眼子菜和光叶眼子菜的株高最大;基质为100%深层底泥(碳、氮、磷含量分别为37.88、0.803和0.149 mg/g)时,黑藻、微齿眼子菜、穿叶眼子菜和狐尾藻的株高最大;(2)基质为100%深层底泥时,苦草、黑藻、微齿眼子菜、马来眼子菜和光叶眼子菜生物量增加最多且相对生长速率最大;基质为100%浅层底泥(碳、氮、磷含量分别为77.37、5.691和0.136 mg/g)时,穿叶眼子菜生物量增加最多,相对生长速率最大;狐尾藻在基质为50%浅层底泥+50%深层底泥(碳、氮、磷含量分别为49.27、2.005和0.131 mg/g)时生物量增加最多,相对生长速率最大;(3)基质为100%湖岸土壤(碳、氮、磷含量分别为22.06、0.327和0.231 mg/g)时,7种沉水植物均生长缓慢,生物量增加较少。综上所述,中营养底泥(碳、氮、磷含量分别为31.59-49.27、0.334-2.005和0.095-0.131 mg/g)更适合沉水植物生长,底泥中过高或过低营养都不利于沉水植物生长。  相似文献   

13.
Huss AA  Wehr JD 《Microbial ecology》2004,47(4):305-315
Phytoplankton and allochthonous matter are important sources of dissolved organic carbon (DOC) for planktonic bacteria in aquatic ecosystems. But in small temperate lakes, aquatic macrophytes may also be an important source of DOC, as well as a source or sink for inorganic nutrients. We conducted micro- and mesocosm studies to investigate the possible effects of an actively growing macrophyte, Vallisneria americana, on bacterial growth and water chemistry in mesotrophic Calder Lake. A first microcosm (1 L) study conducted under high ambient NH 4 + levels (NH 4 + 10 µM) demonstrated that macrophytes had a positive effect on bacterial densities through release of DOC and P. A second microcosm experiment, conducted under NH 4 + -depleted conditions (NH 4 + < 10 µM), examined interactive effects of macrophytes and their sediments on bacterial growth and water chemistry. Non-rooted macrophytes had negative effects on bacterial numbers, while rooted macrophytes had no significant effects, despite significant increases in DOC and P. A 70-L mesocosm experiment manipulated macrophytes, as well as N and P supply under surplus NH 4 + conditions (NH 4 + 10 µM), and measured effects on bacterial growth, Chl a concentrations, and water chemistry. Bacterial growth and Chl a concentrations declined with macrophyte additions, while bacterial densities increased with P addition (with or without N). Results suggest that the submersed macrophyte Vallisneria exerts a strong but indirect effect on bacteria by modifying nutrient conditions and/or suppressing phytoplankton. Effects of living macrophytes differed with ambient nutrient conditions: under NH 4 + -surplus conditions, submersed macrophytes stimulated bacterioplankton through release of DOC or P, but in NH 4 + -depleted conditions, the influence of Vallisneria was negative or neutral. Effects of living macrophytes on planktonic bacteria were apparently mediated by the macrophytes use and/or release of nutrients, as well as through possible effects on phytoplankton production.  相似文献   

14.
Ecosystems under stress may respond abruptly and irreversibly through tipping points. Although mechanisms leading to alternative stable states are much studied, little is known about how such ecosystems could have emerged in the first place. We investigate whether evolution by natural selection along resource gradients leads to bistability, using shallow lakes as an example. There, tipping points occur between two alternative states dominated by either submersed or floating macrophytes depending on nutrient loading. We model the evolution of macrophyte depth in the lake, identify the conditions under which the ancestor population diversifies and investigate whether alternative stable states dominated by different macrophyte phenotypes occur. We find that eco-evolutionary dynamics may lead to alternative stable states, but under restrictive conditions. Such dynamics require sufficient asymmetries in the acquisition of both light and nutrient. Our analysis suggests that competitive asymmetries along opposing resource gradients may allow bistability to emerge by natural selection.  相似文献   

15.
This study investigated the interactions of submersed plants with environmental factors using structural equation modeling (SEM) and evaluated the effect strength of respective factors in an aquatic ecosystem using a data set collected at a fourth order stream in Japan. A model that simultaneously examines the relative importance of factors of the system has developed. The investigated factors included plant biomass (Biomass) of submersed macrophytes (Potamogeton malaianus and Potamogeton oxyphyllus) and other environmental factors, i.e. water velocity and water depth (Hydraulic), pore water nitrogen (TNL), pore water phosphorus (TPL), sediment organic matter (Organic) and sediment particle size (Texture). The estimated model showed that the Biomass was negatively correlated with Hydraulic but positively correlated with Organic whilst TNL and TPL affected the Biomass with almost equal strength. The effects caused by Hydraulic to Texture were greater than the ones caused by Biomass. At the narrow ranges of water velocity (0–7 cm s−1) and shallow depth (0–35 cm), the effect of wash-away of Organic by Hydraulic were smaller than the retention effect of Organic by Biomass. These results provide more insights into interactions of the submersed macrophytes with environmental factors. Handling editor: K. Martens  相似文献   

16.
Heavy metals in aquatic macrophytes drifting in a large river   总被引:1,自引:1,他引:0  
Macrophytes drifting throughout the water column in the Detroit River were collected monthly from May to October 1985 to estimate the quantities of heavy metals being transported to Lake Erie by the plants. Most macrophytes (80–92% by weight) drifted at the water surface. Live submersed macrophytes made up the bulk of each sample. The most widely distributed submersed macrophyte in the river, American wildcelery (Vallisneria americana), occurred most frequently in the drift. A total of 151 tonnes (ash-free dry weight) of macrophytes drifted out of the Detroit River from May to October. The drift was greatest (37 tonnes) in May. Concentrations of heavy metals were significantly higher in macrophytes drifting in the river than in those growing elsewhere in unpolluted waters. Annually, a maximum of 2 796 kg (eight heavy metals combined) were transported into Lake Erie by drifting macrophytes. The enrichment of all metals was remarkably high (range: 4 000 × to 161 000 × ) in macrophytes, relative to their concentration in water of the Detroit River. Detroit River macrophytes are thus a source of contaminated food for animals in the river and in Lake Erie.Contribution 734 of the National Fisheries Research Center-Great Lakes, U.S. Fish and Wildlife Service, 1451 Green Road, Ann Arbor, MI 48105.  相似文献   

17.
浊度的上升是湖泊富营养化过程中沉水植物消失、由草向藻发生稳态转换的根本原因。研究利用长江中下游浅水湖群区域数据对藻类浊度(TurbAlg)和非藻类浊度(TurbNonAlg)及其对总浊度(TurbTot)的贡献率(TurbAlg%,TurbNonAlg%)进行了推算。结果显示,在该区域非藻类浊度绝对值及其贡献率均普遍高于藻类浊度;TurbAlg主要受限于总磷(TP),而TurbNonAlg受水深(ZM)、TP和沉水植物等多重因素的影响。TurbAlg和TurbNonAlg呈现出随着TP浓度的升高而持续上升的趋势,表明尽管稳态转换存在特定的阈值,但整个富营养化过程中均需加强对营养物浓度的控制。  相似文献   

18.
We examined sediment resuspension and light attenuation in relation to the potential for macrophytes to improve water quality conditions in Peoria Lake, Illinois (U.S.A.). The lake exhibited high total suspended solids (TSS) loading and retention of predominantly fine-grained particles in 2000. Large fetches along prevailing wind rose, coupled with shallow morphometry and sediment particles composed of >90% silt and clay resulted in frequent periods of sediment resuspension. As calculated (wave theory) shear stress increased above the critical shear stress (measured experimentally), turbidity increased substantially at a resuspension monitoring station. Resuspension model explorations suggested that establishment of submersed aquatic macrophytes could substantially reduce sediment resuspension in Peoria Lake. However, K d is currently very high, while Secchi transparency low, at in-lake stations. Thus, in order to establish a persistent macrophyte population in the lake to control resuspension, the underwater light regime will have to improve quite dramatically.  相似文献   

19.
Dong Xie  Dan Yu 《Hydrobiologia》2011,658(1):221-231
Size-related asexual reproduction of submersed macrophytes is still poorly understood. Here, we investigate how size-related auto-fragmentation in Myriophyllum spicatum L. responds to sediment nutrients and plant density. An experiment was carried out with sediments containing two different nutrient levels and with two levels of plant density. The results show that sediment nutrients and plant density brought about a strong dependency of auto-fragment production and the amount of total non-structural carbohydrate (TNC) storage in auto-fragments on individual plant size (total plant biomass). However, these two factors acted differently on size dependency. Sediment nutrients positively affected auto-fragment production and the amount of TNC in auto-fragments of M. spicatum. High concentrations of sediment nutrients significantly increased these two traits in absolute value and the value relative to plant size. Although the auto-fragment biomass and the amount of TNC in auto-fragments did not differ between density treatments when plant size was considered, the absolute values of these two traits were much larger in the low plant density treatment than in the high plant density treatment, which suggested an indirect negative effect of plant density on the auto-fragmentation of M. spicatum. In addition, higher percentages of large auto-fragments (>100 mg) were produced by plants that grew in nutrient poor sediment and low plant density environment than plants in nutrient rich sediment and high plant density environment. These results do not solely highlight a size-dependent effect, but also a size-independent effect of auto-fragment production and the amount of TNC in auto-fragments of M. spicatum. Furthermore, such size-independent effects can be explained by the significant biomass partitioning differences and the similar TNC-concentrations in auto-fragments under different environmental conditions.  相似文献   

20.
《Aquatic Botany》2002,72(3-4):249-260
The capability of Chara beds to act as nutrient sinks in shallow lakes is reviewed. Under favorable conditions charophytes form dense meadows. Biomass and nutrient content in such beds are comparable or even higher than in beds of vascular aquatic macrophytes. As some Chara species are capable of overwintering, the nutrient storage in plant biomass may extend beyond the growing season. Some commonly observed phenomena in vascular plants (nutrient uptake and mobilization of nutrients from the sediment) appear to be unlikely or negligible in Characeae. Charophytes have been reported to decompose slower than their vascular counterparts prolonging nutrient storage in plant biomass.Charophytes may also indirectly affect nutrient cycling in lakes. Utilization of bicarbonate is accompanied by precipitation of calcite during periods of intensive photosynthesis, favoring immobilization of P by binding in the crystal structure or sorption on sedimenting mineral particles. Charophytes are able to deliver oxygen to the sediment, thus potentially enhancing nitrification/denitrification processes and preventing iron-bound sediment phosphorus from being released to the overlying water. Furthermore, dense Chara meadows restrict sediment resuspension, consequently blocking an important internal source of nutrients to planktonic algae. We conclude that Chara meadows probably are an efficient nutrient trap in shallow lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号