首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epiphytic component of four monospecific seagrass beds from Papua New Guinea was studied structurally and functionally. The floristic composition and abundance of the epiphytes on leaves of four seagrass species (Cymodoceoideae) showed considerable variation, but on all four seagrass species, the same algae were among the five quantitatively most important epiphytes: encrusting coralline algae, Cyanophyta, Ceramium gracillimum (Harv.) Mazoyer, Polysiphonia savatierii Hariot and Audouinella spp. The temporal pattern of the epiphytic algae showed more or less the same features on the four seagrass species.Annual mean biomass of epiphytes and seagrass leaves ranged from 54 g ADW m?2 in a community of Cymodocea rotundata Ehrenb. and Hempr. ex Aschers. to 169 g ADW m?2 in a community of Syringodium isoetifolium (Aschers.) Dandy. The contribution of the epiphytic component to the total above-ground biomass ranged from 22 to 24%. Productivity of epiphytes was highest on leaves of Halodule uninervis (Forssk.) Aschers. (2.12 g ADW m?2 sediment surface day?1) and the epiphytic community contributed 35–44% of the total above-ground production of these four seagrass communities.  相似文献   

2.
Increased availability of dissolved CO2 in the ocean can enhance the productivity and growth of marine plants such as seagrasses and algae, but realised benefits may be contingent on additional conditions (e.g. light) that modify biotic interactions between these plant groups. The combined effects of future CO2 and differing light on the growth of seagrass and their algal epiphytes were tested by maintaining juvenile seagrasses Amphibolis antarctica under three different CO2 concentrations representing ambient, moderate future and high future forecasts (i.e. 390, 650 vs. 900 µl l?1) and two light levels representing low and high PAR (i.e. 43 vs. 167 µmol m?2 s?1). Aboveground and belowground biomass, leaf growth, epiphyte cover, tissue chemistry and photosynthetic parameters of seagrasses were measured. At low light, there was a neutral to positive effect of elevated CO2 on seagrass biomass and growth; at high light, this effect of CO2 switched toward negative, as growth and biomass decreased at the highest CO2 level. These opposing responses to CO2 appeared to be closely linked to the overgrowth of seagrass by filamentous algal epiphytes when high light and CO2 were combined. Importantly, all seagrass plants maintained positive leaf growth throughout the experiment, indicating that growth was inhibited by some experimental conditions but not arrested entirely. Therefore, while greater light or elevated CO2 provided direct physiological benefits for seagrasses, such benefits were likely negated by overgrowth of epiphytic algae when greater light and CO2 were combined. This result demonstrates how indirect ecological effects from epiphytes can modify independent physiological predictions for seagrass associated with global change.  相似文献   

3.
The distribution of seagrasses in a 15-ha area in the mid-Indian River lagoon on Florida's central east coast was mapped. Halodule wrightii Aschers. dominated in shallow (< 0.4 m) and Syringodium filiforme Kutz. in deeper water (> 0.5 m). Thalassia testudinum Banks ex König occurred as scattered patches. Areal coverage of monospecific stands of the three major seagrasses was: Syringodium 35%, Halodule 14%, Thalassia 6% and bare sand 21%. Mixed species stands, mostly Syringodium with Hallodule, covered 25% of the total study area. Above-ground seagrass biomass was maximum in summer (June–July) and minimum in late winter (February–March). Summer maxima ranged from 60 g dry wt. m?2 for Syringodium to ~ 300 g dry wt. m?2 for Thalassia, with Halodule intermediate at 160 g dry wt. m?2.Because distribution of unattached benthic macroalgae (“drift algae”), primarily Gracilaria spp., was highly aggregated, aggregations were first mapped, followed by stratified quadrat sampling in order to estimate total drift algal abundance. In April 1982, high-density patches covering a few hectares averaged 409 g dry wt. m?2. At maximum abundance, averaged over the entire 15-ha mapped area, drift algal biomass was 164 g dry wt. m?2; mean above-ground seagrass biomass was only 49 g dry wt. m?2. Other large expanses of the lagoon had similar accumulations of drift algae; densities of some accumulations exceeded 15 000 g dry wt. m?2. Year-to-year variability of seagrass and drift algal abundance was high and may be related to variations in light levels.Drift algae harbor high densities of animals and at times may be quantitatively more important locally than seagrasses in terms of habitat, nutrient dynamics and primary production.  相似文献   

4.
《Aquatic Botany》1987,27(4):363-383
During 1982, structural and functional aspects of the epiphytic component in a tropical mixed seagrass meadow, have been investigated for each seagrass species separately. This meadow consisted of the seagrasses Thalassia hemprichii (Ehrenb.) Aschers., Cymodocea serrulata (R.Br.) Aschers. et Magnus, C. rotundata Ehrenb. et Hempr. ex Aschers., Halodule uninervis (Forssk.) Aschers. and Syringodium isoetifolium (Aschers.) Dandy.No significant differences were observed in floristic composition, number of algal species, abundance and diversity of the epiphytic component. On an area basis, annual mean above-ground biomass (seagrass leaves and epiphytes), amounted to 82 g ADW, of which 18% could be ascribed to the epiphytic component. The contribution of the epiphytic component to the annual mean above-ground production ranged from 16% on leaves of Thalassia hemprichii to 33% on leaves of Cymodocea serrulata. Total annual mean epiphyte production was 4.6 g ADW m−2 sediment surface day−1 (19%).When including the macroalgal component of this mixed seagrass meadow, total annual mean above-ground plant biomass amounted to 93 g ADW (212 g DW) on an area basis, of which the epiphytes contributed 15.5% (28.5% DW), the macroalgal component 12% (32.5% DW) and the seagrass leaves 72.5% (39.5% DW). Aspects of the epiphytic component (e.g., floristic composition, abundance, biomass and production) in monospecific and mixed seagrass communities are discussed.  相似文献   

5.
Wu F Z  Yang W Q  Lu Y J 《农业工程》2009,29(3):192-198
Dense dwarf bamboo population is a structurally and functionally important component in many subalpine forest systems. To characterize the effects of stem density on biomass, carbon and majority nutrients (N, P, K, Ca and Mg) distribution pattern, three dwarf bamboo (Fargesia denudata) populations with different stem densities (Dh with 220 ± 11 stems m?2, Dm with 140 ± 7 stems m?2, and Dl with 80 ± 4 stems m?2, respectively) were selected beneath a bamboo-fir (Picea purpurea) forest in Wanglang National Nature Reserve, Sichuan, China. Leaf, branch, rhizome, root and total biomass of dwarf bamboo increased with the increase of stem density, while carbon and nutrient concentrations in bamboo components decreased. Percentages of below-ground biomass and element stocks to total biomass and stocks decreased with the increase of stem density, whereas above-ground biomass and element stocks exhibited the opposite tendency. Moreover, more above-ground biomass and elements were allocated to higher part in the higher density population. In addition, percentages of culm biomass, above-ground biomass and element stocks below 100 cm culm height (H100) increased with the increase of stem density, while percentages of branch and leaf biomass below H100 decreased. Pearson’s correlation analyses revealed that root biomass, above-ground biomass, below-ground biomass and total biomass significantly correlated to leaf biomass in H100?200 and total leaf biomass within high density population, while they significantly correlated to leaf biomass in H50?150 within low density population. The results suggested that dwarf bamboo performed an efficient adaptive strategy to favor limited resources by altering biomass, carbon and nutrients distribution pattern in the dense population.  相似文献   

6.
Annual production and biomass data were collected in three seagrass communities of Thalassia hemprichii (Ehrenb.) Aschers. from Papua New Guinea. Leaf growth rates, determined by the marking technique, resulted in a growth rate of 8.3 mm day?1 for the youngest leaves. Production of above-ground plant parts was assessed by the plastochrone interval. The annual mean values were 9.3, 10.0 and 9.9 days for Sites 1, 2 and 3, respectively. Annual mean total above-ground production amounted to 2.1 mg ADW shoot?1 day?1 at Site 1, and 5.5 and 4.5 mg ADW shoot?1 day?1 for Sites 2 and 3, respectively; 73–89% of the total net production was contributed by the leaves. Rhizome production was correlated to the plastochrone interval of the leaves. Annual mean biomass of leaves amounted to 16–27% of the total biomass. The mean biomass of the other plant parts remained constant during the year. The annual mean turnover time of the different plant parts (above- and below-ground) varied considerably between the sites.  相似文献   

7.
Productivity measurements from carbon uptake have been suggested as good indicators of the physiological health of seagrasses. As seagrasses acquire carbon from the surrounding water, the rate of uptake often provide a good measure of the efficiency at which seagrasses meet their resource demands for growth. This rate is often used to assess the photosynthetic efficiency of the plants, a proxy for the physiological status of seagrass. This has special relevance to the Adelaide region as over 5000 ha of seagrasses have been lost from Adelaide coastal waters over the last 70 years, with much of this loss attributed to nutrient inputs from wastewater, industrial and stormwater discharges. This study used an in-situ inorganic carbon isotope-labelling and spike approach to obtain ecologically relevant estimates of seasonal variability in carbon uptake and its allocation in two species of temperate seagrass common to this coast (Amphibolis antarctica and Posidonia angustifolia). Uptake of carbon by the seagrass complex (leaves, roots, phytoplankton and epiphytes) was affected by both season and species. Carbon uptake rates of phytoplankton were generally higher than other components of the system. Uptake rates ranged from 0.01 mg C g− 1 DW h− 1 (summer) to 0.61 mg C g− 1 DW h− 1 (spring) in Posidonia and 0.02 mg C g− 1 DW h− 1 (summer) to 0.93 mg C g− 1 DW h− 1 (winter) in Amphibolis. Carbon uptake by the Amphibolis complex was higher than in the Posidonia complex. The Amphibolis complex had higher uptake rates in summer whereas the Posidonia complex was higher in spring. Fine sediments probably from a nearby dredging operation, are likely to have resulted in lower carbon uptake and a reduction in the above-ground and below-ground biomass in summer.  相似文献   

8.
This study investigates aspects of the life history of the polychaete Thoracophelia furcifera on a sandy beach in southern Brazil. Two fixed transects perpendicular to the shoreline in the intertidal zone were sampled fortnightly from May 2008 to April 2009 at low tide. Five T. furcifera samples were collected along each transect and sediment temperature and the salinity of interstitial water were recorded. The material was washed over 0.5- and 0.088-mm sieves, and the width of setiger 8 of each specimen was measured. A total of 5,870 organisms were examined and the estimated parameters of the von Bertalanffy growth curve were L 3.60?mm (Wd8S), K 0.63?year?1, C 0.3 and WP 0.97 (Rn 0.132). Life span was 2.6?years, instantaneous mortality rate Z was 3.8?year?1 and the growth index φ′ 0.91. Mean density ranged from 644.44?±?191.77 to 2,783.33?±?453.64 ind m?2 and mean biomass ranged from 2.52?±?0.55 to 9.52?±?1.83?g?m?2. Recruitment occurred from April to July and ovigerous females were found from June to November. Annual secondary production was 6.582?g?m?2?year?1, mean biomass was 5.638?g?m?2 and turnover rate was 1.167. The high values for density, secondary production and biomass suggest that T. furcifera constitute an important food source. These features of T. furcifera’ life strategy demonstrate the significant role this species plays in ecosystem dynamics.  相似文献   

9.
Effects of salinity and nitrogen on cotton growth in arid environment   总被引:5,自引:0,他引:5  
The influences of different N fertilization rates and soil salinity levels on the growth and nitrogen uptake of cotton was evaluated with a pot experiment under greenhouse conditions. Results showed that cotton growth measured as plant height was significantly affected by the soil salinity and N-salinity interaction, but not by N alone. Cotton was more sensitive to salinity during the emergence and early growth stages than the later developmental stages. At low to moderate soil salinity, the growth inhibition could be alleviated by fertilizer application. Soil salinity was a dominated factor affecting cotton’s above-ground dry mass and root development. Dry mass of seed was reduced by 22%, 52%, and 84% respectively, when the soil salinity level increased from control level of 2.4 dS m?1 to 7.7 dS m?1, 12.5 dS m?1 and to 17.1 dS m?1, respectively. N uptake increased with N fertilization at adequate rates at both low and medium soil salinities but was not influenced by over N fertilization. At higher salinities, N uptake was independent of N rates and mainly influenced by soil salinity. The uptake of K decreased with soil salinity. The concentration of Na, Cl and Ca in plant tissues increased with soil salinity with highest concentrations in the cotton leaf.  相似文献   

10.
Benthic macrophyte communities of different substratum types (soft, hard) were studied in eleven differently impacted sites belonging in two different water typologies (transitional waters: Lesina Lagoon, Varna Lake; coastal waters: Varna Bay) and two ecoregions (Mediterranean Sea, Black Sea). Species lists were compiled for each study site, 20 taxa were found at Lesina and Varna Lake and Bay, and the abundance of each taxon was determined at each site. The relationship between nine metrics related to community structure [species richness, % of total coverage, dry biomass (g/m?2), and cluster and multi-dimensional scaling plot of Bray–Curtis similarity] and function [Ecological Status Group I % coverage, ESG II % coverage, Ecological Evaluation Index (EEI-c) and Ecological Index (EIEEI)] and key abiotic factors and an anthropogenic stress index (EnII) were studied. A strong relationship (Spearman rank correlation coefficient ρ ≤ ?0.89; R 2 ≥ 0.89) between anthropogenic stress and functional indices, EEI-c and EIEEI, was found. The structural index ‘species richness’ correlated negatively with EnII and positively with salinity, demonstrating a freshwater and confinement influence on species diversity. EEI-c and EIEEI indices classified the studied sites and locations in different Ecological Status Classes in accordance with the anthropogenic stress gradient.  相似文献   

11.
A bimonthly sampling of the seaweed-seagrass resource of Mararison Island, Culasi Antique, was undertaken over 1 year to assess the species composition, similarity of taxa, and biomass (dry weight [d.w.] g m?2) at seven localities. A total of 45 species was identified: 17 Chlorophyta, seven Phaeophyta, 15 Rhodophyta, one Cyanophyta and five seagrasses. Except for some Rhodophyta and Syringodium isoetifolium (Ascherson) Dandy, the occurrence of species between stations was not significantly different; however, differences in biomass between sampling time (month) were significant. Identical taxa between stations were determined. The highest (40) and lowest (22) number of species collected were in May and July, respectively. The species were most abundant from March to May (dry months) and sparse from July to September (wet months). The most abundant species were: Sargassum polycystum C. Agardh (399 g m?2) (Phaeophyta), Dictyosphaeria cav-ernosa (Forsskat) Borgesen (43.1 g m?2) (Chlorophyta), Acanthopeitis japonica Okamura (97.2 gm?2) (Rhodophyta) and Thalassia hemprichii (Ehrenberg) Ascherson (1370 g m?2; seagrass). The Phaeophyta were abundant in March, and the Chlorophyta and Rhodophyta in May, while the seagrasses were abundant in September. Some species occurred only during the dry months: two Phaeophyta, nine Chlorophyta and five Rhodophyta. All the seagrasses were found year-round. Almost all of the seaweeds (39/45) were found associated with seagrass. The number of seaweeds in Mararison Island was higher than for seagrasses but the total biomass of the latter was much higher than the combined biomass of the seaweeds.  相似文献   

12.
In the pure stand of tropical seagrass,Syringodium isoetifolium, in a small oceanic island, Fiji, grazing effects of the seagrass-associated gammarid,Ampithoe sp., on seagrass and epiphytes were assessed in October 1989, November 1991, November 1992. Density of the gammarid was estimated with two methods, mesh bag method and tuft method. During the three years surveyed the density of the gammarid increased remarkably from 1989 to 1991, with heavy epiphytism. Gut contents of the gammarid were examined. Grazing rates on seagrass leaf with and without epiphytic blue-green algae were measured in a bottle experiment. Litter bag experiments were conducted using different mesh sizes each containing seagrass only and seagrass and gammarids. The seagrass leaf biomass in the litter bag reduced abruptly in both bags. After one week, 78–86% of seagrass biomass disappeared from the bags. Enhancement of decomposition of seagrass leaf by the gammarid grazing was observed. Oxygen consumption and ammonium excretion rates were measured simultaneously in bottle experiments. Carbon budget in the seagrass bed was estimated as follows: 0.9 gC m−2 day−1 in seagrass growth, gammarid grazing was about a half of it and further assimilated a half of it, about 0.1 gC m−2 day−1, and more than half of it become CO2 by respiration. Grazing effects on epiphyte and seagrass growth and production were discussed through the carbon budget and indirect interactions between seagrass, epiphytes and associated gammarids to explain the temporal change of seagrass and epiphyte dynamics.  相似文献   

13.
Growth, productivity and potential for exploitation of the clam Tawera gayi from shallow waters (3–5 m) of Ushuaia Bay, Beagle Channel were investigated. Mean abundance and biomass in the study area were 1091 ± 737 ind. m?2 and 901.83 g SFWM m?2 (shell‐free wet mass), respectively. Individual growth was described best by the von Bertalanffy growth model with the parameter values H = 28.03 mm, K = 0.288 year?1, t0 = ?0.34 (r2 = 0.83). Annual production of the population was estimated to be 120.45 g SFWM m?2 year?1, corresponding to a production‐to‐biomass ratio (P/B) of 0.134 year?1. The single negative exponential mortality model does not fit the population mortality pattern, but predation by gastropods (Xymenopsis muriciformis, Trophon geversianus, Natica sp.) appears to be the major cause of mortality. These highly mobile predators together with the comparatively slow growth and low turnover of T. gayi in Ushuaia Bay limit its potential for sustainable commercial exploitation.  相似文献   

14.
The seasonal and spatial dynamics of two groups of macroalgae, drift algae and rhizophytes, commonly found in tropical seagrass meadows were studied. The aim of this study was to provide insight into how freshwater discharges may be altering seagrass-dominated nearshore tropical habitats. Species composition, biomass, and percent cover of macroalgae were collected at six Thalassia testudinum König dominated sites within Biscayne Bay, Florida, representing three salinity regimes: canal-influenced, natural sheet-flow, and oceanic conditions. Mean annual salinities in these three regimes correspond to 10, 25 and 35 psu, respectively, with much greater variability in the canal and sheet-flow regimes, than in the oceanic condition. There were distinct changes in the composition of the macroalgal community along this salinity gradient. Drift algae (Chondria spp., Laurencia spp.) were most commonly found at canal-disturbed sites (10–85 g m−2), while rhizophytic calcareous green algae (Halimeda spp., Penicillus spp.) were most abundant at the higher salinity oceanic sites (20–105 g m−2). Seasonal patterns exhibited by the two groups differed also, with drift algae being more abundant in the cooler dry-season months, while rhizophytic algae were more abundant during the warmer wet-season months. These periods of higher abundance correlated with higher growth rates (drift = 2.3% day−1, rhizophytes = 0.85% day−1) measured in representative species for each group. Grazing rates on drift algae were found to be low for tropical habitats and did not differ much between canal (0.44% h−1) and oceanic sites (0.42% h−1).  相似文献   

15.
Synechococcus R-2 (PCC 7942) actively accumulated Cl? in the light and dark, under control conditions (BG-11 media: pHo, 7·5; [Na+]o, 18 mol m?3; [Cl?]o, 0·508 molm?3). In BG-11 medium [Cl?], was 17·2±0·848 mol m?3 (light), electrochemical potential of Cl? (ΔμCl?i,o) =+211±2mV; [Cl?]i= 1·24±0·11 mol m?3(dark), ΔμCl?i,o=+133±4mV. Cl? fluxes, but not permeabilities, were much higher in the light: ?Cl?i,o= 4·01±5·4 nmol m?2 s?1, PCl?i,o= 47±5pm s?1 (light); ?Cl?i,o= 0·395±0·071 nmol m?2 s?1, PCl?i,o= 69±14 pm s?1 (dark). Chloride fluxes are inhibited by acid pHo (pHo 5; ?Cl?i,o= 0·14±0·04 nmol m?2 s?1); optimal at pHo 7·5 and not strongly inhibited by alkaline pHo (pHo 10; ?Cl?1i,o= 1·7±0·14 nmol m?2 s?1). A Cl?in/2H+in coporter could not account for the accumulation of Cl? alkaline pHo. Permeability of Cl? is very low, below 100pm s?1 under all conditions used, and appears to be maximal at pHo 7·5 (50–70 pm s?1) and minimal in acid pHo (20pm s?1). DCCD (dicyclohexyl-carbodiimide) inhibited ?Cl?i,o in the light about 75% and [Cl?]i fell to 2·2±0·26 (4) mol m?3. Valinomycin had no effect but monensin severely inhibited Cl? uptake ([Cl?]i= 1·02±0·32 mol m?3; ?Cl?i,o= 0·20±0·1 nmol m?2 s?1). Vanadate (200 mmol m?3) accelerated the Cl? flux (?Cl?i,o= 5·28±0·64 nmol m?2 s?1) but slightly decreased accumulation of Cl? ([Cl?], = 13·9±1·3 mol m?3) in BG-11 medium but had no significant effect in Na+-free media. DCMU (dichlorophenyldimethylurea) did not reduce [Cl?], or ?Cl?i,o to that found in the dark ([Cl?]i= 8·41±0·76 mol m?3; ?Cl?i,o= 2·06±0·36 nmol m?2 s?1). Synechococcus also actively accumulated Cl? in Na+-free media, [Cl?]i was lower but ΔΨi,o hyperpolarized in Na+-free media and so the ΔμCl?i,o was little changed ([Cl?]i= 7·98±0·698 mol m?3; ΔμCl?i,o=+203±3 mV). Net Cl? uptake was stimulated by Na+; Li+ acted as a partial analogue for Na+. Synechococcus has a Na+ activated Cl? transporter which is probably a primary 2Cl?/ATP pump. The Cl? pump is voltage sensitive. ΔμCl?i,o is directly proportional to ΔΨi,o(P»0·01%): ΔμCl?i,o= -1·487 (±0·102) ×ΔΨi,o, r= -0·983, n= 31. The ΔμCl?i,o increased (more positive) as the Δμi,o became more negative. The ΔμCl?i,o has no known function, but might provide a driving force for the uptake of micronutrients.  相似文献   

16.
Extreme climatic events can trigger abrupt and often lasting change in ecosystems via the reduction or elimination of foundation (i.e., habitat‐forming) species. However, while the frequency/intensity of extreme events is predicted to increase under climate change, the impact of these events on many foundation species and the ecosystems they support remains poorly understood. Here, we use the iconic seagrass meadows of Shark Bay, Western Australia – a relatively pristine subtropical embayment whose dominant, canopy‐forming seagrass, Amphibolis antarctica, is a temperate species growing near its low‐latitude range limit – as a model system to investigate the impacts of extreme temperatures on ecosystems supported by thermally sensitive foundation species in a changing climate. Following an unprecedented marine heat wave in late summer 2010/11, A. antarctica experienced catastrophic (>90%) dieback in several regions of Shark Bay. Animal‐borne video footage taken from the perspective of resident, seagrass‐associated megafauna (sea turtles) revealed severe habitat degradation after the event compared with a decade earlier. This reduction in habitat quality corresponded with a decline in the health status of largely herbivorous green turtles (Chelonia mydas) in the 2 years following the heat wave, providing evidence of long‐term, community‐level impacts of the event. Based on these findings, and similar examples from diverse ecosystems, we argue that a generalized framework for assessing the vulnerability of ecosystems to abrupt change associated with the loss of foundation species is needed to accurately predict ecosystem trajectories in a changing climate. This includes seagrass meadows, which have received relatively little attention in this context. Novel research and monitoring methods, such as the analysis of habitat and environmental data from animal‐borne video and data‐logging systems, can make an important contribution to this framework.  相似文献   

17.
This paper presents data on species composition, biomass, and element pools (C, N, P, Ca, Mg, Na, K, Al, Fe, Mn) of the understory vegetation of spruce forests in the catchments of lakes ?ertovo jezero (CT) and Ple?né jezero (PL) in the Bohemian Forest (?umava, Czech Republic). Calamagrostis villosa was the most abundant species in the CT catchment, while Vaccinium myrtillus was the most abundant species in the PL catchment. The catchments weighted mean (CWM) of above-ground biomass of the understory vegetation was 288 and 723 g m?2 in the CT and PL catchments, respectively. The significant difference in the biomass between the catchments was caused by the much higher abundance of V. myrtillus in the PL catchment. The CWM of below-ground biomass of the fine roots was 491 and 483 g m?2 in the CT and PL catchments, respectively. The respective CWM element pools of biomass in the CT and PL catchments were: C (33 and 51 mol m?2), N (0.8 and 1.0 mol m?2), P (24 and 34 mmol m?2), Ca (53 and 113 mmol m?2), Mg (24 and 41mmol m?2), Na (3.7 and 6.5 mmol m?2), K (83 and 109 mmol m?2), Al (50 and 42 mmol m?2), Fe (13.3 and 7.3 mmol m?2), and Mn (4.2 and 8.8 mmol m?2).  相似文献   

18.
The southern Barents Sea is considered to be the most productive area in the Arctic Ocean; however, there are no assessments of daily production rates in the coastal waters. During the summer and autumn of 2007, we investigated the variation of mesozooplankton community structure relative to environmental conditions at 12 coastal stations. Copepods dominated the total zooplankton biomass and abundance during both periods. Diversity indices and the total biomass of zooplankton communities differed significantly between the two seasons. Cluster analyses revealed two distinct groups of stations which were associated with Ura Bay and the adjacent open sea, respectively. Daily production rates of the copepod species examined were calculated using three methods based on: (1) a temperature-dependent equation and (2) two multiple regressions that consider temperature, body weight, and chlorophyll a concentration. Significant seasonal differences for daily production rates were found using all three model equations (p?<?0.05): 358?±?188–1,775?±?791 versus 198?±?85–1,584?±?559?μg?dry?mass?m?3?day?1. Results of principal components analyses demonstrated that the abundance and biomass of herbivorous species were related to variation in chlorophyll a concentration while the abundance and biomass of other species (omnivorous copepods and Ctenophora) were related mainly with water temperature and salinity. Mesozooplankton biomass was higher during this study relative to previous studies. Computed copepod production rates were higher compared with other Arctic seas confirming a high productive potential of the coastal southern Barents Sea.  相似文献   

19.
Synechococcus R-2 (PCC 1942) actively accumulates sulphate in the light and dark. Intracellular sulphate was 1.35 ± 0.23 mol m?3 (light) and 0.894 ± 0.152 mol m?3 (dark) under control conditions (BG-11 media: pHo, 7.5; [SO42?]o, 0.304 mol m?3). The sulphate transporter is different from that found in higher plants: it appears to be an ATP-driven pump transporting one SO42?/ATP [ΔμSO42?i,o=+ 27.7 ± 0.24 kJ mol?1 (light) and + 24 ± 0.34 kj mol?1 (dark)]. The rate of metabolism of SO42?at pHo, 7.5 was 150 ± 28 pmol m?2 s?1 (n = 185) in the light but only 12.8 ± 3.6 pmol m?2 s?1 (n = 61) in the dark. Light-driven sulphate uptake is partially inhibited by DCMU and chloramphenicol. Sulphate uptake is not linked to potassium, proton, sodium or chloride transport. The alga has a constitutive over-capacity for sulphate uptake [light (n= 105): Km= 0.3 ± 0.1 mmol m?3, Vmax, = 1.8 ± 0.6 nmol m?2 s?1; dark (n= 56): Km= 1.4 ± 0.4 mmol m?3, Vmax= 41 ± 22 pmol m?2 s?1]. Sulphite (SO32?) was a competitive inhibitor of sulphate uptake. Selenate (SeO42?) was an uncompetitive inhibitor.  相似文献   

20.
The uptake of nitrate, ammonium and phosphate was examined in vitro in seedlings of the seagrass Amphibolis antarctica ((Labill.) Sonder ex Aschers.). Uptake of all three nutrients was significantly correlated with external concentration up to 800 µ g l–1. The uptake of nitrate (0–200 µ g NO3-N g dry wt–1 h–1) was significantly lower than the uptake of ammonium (0–500 µ g NH4-N g dry wt–1 h–1), suggesting that the seedlings have a higher affinity for this form of nitrogen in the water column.Data were in general agreement with uptake rates recorded for other seagrasses, notably Zostera marina. In comparison to the dominant macroalgae for the same region, seedlings had either similar or higher uptake rates in relation to external concentration, lending support to the hypothesis that seedlings, which do not possess roots, behave like macroalgae in terms of nutrient acquisition from the water column.A comparison with literature data on adult seagrass suggests, however, that seagrasses show lower uptake rates than macroalgae suggesting that the macroalgae, which are totally reliant on the water column for nutrients, are more efficient at uptake than seagrasses which may potentially use the sediment for a nutrient source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号